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Abstract

Let G be a graph with order n, and let k be an integer with 1 ≤ k ≤ n/3. In

this article, we show that if σ2(G) ≥ n+k−1, then for any stable set S ⊆ V (G)

with |S| = k, there exists a 2-factor with precisely k cycles C1, . . . , Ck such

that |V (Ci) ∩ S| = 1 for all 1 ≤ i ≤ k and at most one of the cycles Ci has

length strictly greater than three. The lower bound on σ2 is best possible.

1 Introduction

All graphs considered are simple and finite. We refer to the number of vertices of

G as the order of G and denote it by |G|. If there is no ambiguity, we let n denote

the order of the graph G under consideration. A 2-factor is a spanning subgraph

in which every component is a cycle. Let H1, H2, . . . , Hp be pairwise vertex-disjoint

subgraphs of G, i.e., V (Hi)∩V (Hj) = ∅ for all i �= j. In this article, we always omit

the word “pairwise” and simply say that H1, . . . , Hp are vertex-disjoint. Notation

and terminology not explained in this article can be found in [2].
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Ore [8] proved that a graph G of order n ≥ 3 with σ2(G) := min{d(x)+ d(y)|x �=
y, xy /∈ E(G)} ≥ n is hamiltonian and, as an extension of it, Brandt et al. [1] showed

that a graph G with σ2(G) ≥ n has a 2-factor with precisely k cycles for any integer

k ≤ n/4. Furthermore, if the minimum degree is at least n/2, then for any set S of

k(≤ (n + 3)/6) vertices, G contains a 2-factor with precisely k cycles each of which

contains a vertex in S (see [4]). However, the natural σ2-version of this statement

does not hold. Let

H = K2k−1 + (Kk ∪ Kn−(3k−1)) and S = V (Kk) (1.1)

(here Km denotes the complete graph of order m and, for two graphs G1, G2 with

V (G1)∩ V (G2) = ∅, we let G1 ∪G2 denote the union of G1 and G2, and let G1 + G2

denote the join of G1 and G2, i.e., the graph obtained from G1 ∪G2 by joining each

vertex in V (G1) to all vertices in V (G2)). Then it is easy to check that σ2(H) =

n + 2(k − 1) − 1 and there is no desired 2-factor. But this is the upper bound of σ2

for graphs which do not have such a 2-factor. Actually, a much stronger fact holds.

Theorem A ([6]) Let G be a graph with order n, let k be an integer with 2 ≤ k ≤
(n + 1)/4, and suppose that σ2(G) ≥ n + 2(k − 1). Then for any independent edges

e1, e2, . . . , ek, there exists a 2-factor with precisely k cycles C1, C2, . . . , Ck such that

ei ∈ E(Ci) for all 1 ≤ i ≤ k.

The lower bound on σ2 is best possible. This can be seen from (1.1) by letting

e1, e2, . . . , ek be independent edges joining the K2k−1 part and the Kk part.

Ishigami and Wang [7] gave an alternative proof of Theorem A by showing that

if G is a graph with order n, k is an integer with 2 ≤ k ≤ (n + 1)/4, and σ2(G) ≥
n + 2(k − 1), then for any independent edges e1, e2, . . . , ek, there exists a 2-factor

with precisely k cycles C1, C2, . . . , Ck such that ei ∈ E(Ci) for all 1 ≤ i ≤ k and

at most one of the cycles Ci has length strictly greater than four, unless K2k +

(Kp ∪ Kn−(2k+p)) ⊆ G ⊆ K2k + (Kp ∪ Kn−(2k+p)) for some integer p (2(k − 1) < p <

n − 4(k − 1) − 2).

We have already mentioned that (1.1) shows that even for a specified vertex set,

the lower bound n + 2(k− 1) on σ2 is best possible. However, Dong showed that the

situation is different if we assume that the specified set S is stable, i.e., xy /∈ E(G)

for any x, y ∈ S. He proved the following three theorems.

Theorem B (Dong [3]) Let G be a graph of order n, and let k be an integer with

1 ≤ k ≤ n/3. Suppose that σ2(G) ≥ n + k − 1, and let S be a stable set of vertices
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with |S| = k. Then G has a 2-factor consisting of precisely k cycles C1, C2, . . . , Ck

such that |V (Ci) ∩ S| = 1 for all 1 ≤ i ≤ k and |Ci| ≤ 4 for all 1 ≤ i ≤ k − 1.

Theorem C (Dong [3]) Let G be a graph of order n, and let k be an integer

with 1 ≤ k ≤ n/3. Suppose that σ2(G) ≥ n + k − 1, and let S be a stable set of

vertices with |S| = k. Then there exist k vertex-disjoint cycles C1, . . . , Ck such that

|V (Ci) ∩ S| = 1 and |Ci| ≤ 4 for all 1 ≤ i ≤ k.

Theorem D (Dong [4]) Let G be a graph of order n, and let k be an integer with

1 ≤ k ≤ n/3. Suppose that σ2(G) ≥ n + k − 1, and let S be a stable set of vertices

with |S| = k. Suppose further that there exist vertex-disjoint triangles D1, . . . , Dk

such that |V (Di) ∩ S| = 1 for all 1 ≤ i ≤ k. (1.2)

Then G has a 2-factor consisting of precisely k cycles C1, . . . , Ck such that |V (Ci) ∩
S| = 1 for all 1 ≤ i ≤ k and |Ci| = 3 for all 1 ≤ i ≤ k − 1.

In Theorems B and D, the lower bound on σ2 is best possible. To see this, let

H = Kk + (K1 ∪Kn−k−1) and S = V (Kk). Then σ2(H) = n + k − 2, but there is no

desired 2-factor.

The purpose of this article is to prove a result which is a common refinement of

Theorems B and C and, at the same time, implies that the conclusion of Theorem

D holds even if we drop the assumption (1.2). Specifically, we prove the following

theorem.

Theorem 1 Let G be a graph of order n, and let k be an integer with 1 ≤ k ≤ n/3.

Suppose that σ2(G) ≥ n + k − 1, and let S be a stable set of vertices with |S| = k.

Then one of the following holds:

(i) there exist k vertex-disjoint triangles C1, . . . , Ck such that |V (Ci) ∩ S| = 1 for

all 1 ≤ i ≤ k; or

(ii) there exist k−1 vertex-disjoint triangles C1, . . . , Ck−1 such that |V (Ci)∩S| = 1

for all 1 ≤ i ≤ k−1, and such that if we let H = G−⋃
1≤i≤k−1 V (Ci) and write

S ∩V (H) = {v0}, then |H | ≥ 4, dH(x) ≥ 2 for all x ∈ V (H), and H contains a

vertex a with a �= v0 which has the property that dH(x) + dH(y) ≥ |H | for any

x, y ∈ V (H) \ {a} with x �= y and xy /∈ E(H).

In Thereom 1, the lower bound on σ2 is best possible. Assume that n+k is even,

and let G′ = Kk−2 + K(n−k+2)/2,(n−k+2)/2 (here Kl,m denotes the complete bipartite
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graph with partite sets having cardinalities l and m). Then σ2(G
′) = n + k − 2, and

G′ does not contain k − 1 vertex-disjoint triangles. Thus neither (i) nor (ii) holds.

In view of Theorem D, we obtain the following two corollaries as consequences

of Thereom 1 (see Section 3). Note that Corollaries 2 and 3 are refinements of

Theorems B and C, respectively, and Corollary 2 also shows that in Theorem D, the

assumption (1.2) is not necessary.

Corollary 2 Let G be a graph of order n, and let k be an integer with 1 ≤ k ≤
n/3. Suppose that σ2(G) ≥ n + k − 1, and let S be a stable set of vertices with

|S| = k. Then G has a 2-factor consisting of precisely k cycles C1, . . . , Ck such that

|V (Ci) ∩ S| = 1 for all 1 ≤ i ≤ k and |Ci| = 3 for all 1 ≤ i ≤ k − 1.

Corollary 3 Let G be a graph of order n, and let k be an integer with 1 ≤ k ≤ n/3.

Suppose that σ2(G) ≥ n + k − 1, and let S be a stable set of vertices with |S| = k.

Then there exist k vertex-disjoint cycles C1, . . . , Ck such that |V (Ci)∩S| = 1 for all

1 ≤ i ≤ k, |Ci| = 3 for all 1 ≤ i ≤ k − 1, and |Ck| = 3 or 4.

We establish Theorem 1 in Section 2 by proving the following two propositions

(note that the graph H in Proposition 4 (ii) satisfies the conditions stated in (ii) of

Theorem 1).

Proposition 4 Let G be a graph of order n, and let k be an integer with 1 ≤ k ≤
n/3. Suppose that σ2(G) ≥ n + k − 1, and let S be a stable set of vertices with

|S| = k. Suppose further that each v ∈ S is contained in a triangle. Then one of the

following holds:

(i) there exist k vertex-disjoint triangles C1, . . . , Ck such that |V (Ci) ∩ S| = 1 for

all 1 ≤ i ≤ k; or

(ii) n + k is odd, d(v) = (n + k − 1)/2 for all v ∈ S, and there exist k − 1 vertex-

disjoint triangles C1, . . . , Ck−1 such that |V (Ci) ∩ S| = 1 for all 1 ≤ i ≤ k − 1,

and such that if we let H = G−⋃
1≤i≤k−1 V (Ci), then |H | ≥ 4 and H contains

a spanning subgraph isomorphic to K(n−3(k−1))/2,(n−3(k−1))/2.

Proposition 5 Let G be a graph of order n, and let k be an integer with 1 ≤ k ≤
n/3. Suppose that σ2(G) ≥ n + k − 1, and let S be a stable set of vertices with

|S| = k. Suppose further that there exists v0 ∈ S such that v0 is not contained in

a triangle. Then there exist k − 1 vertex-disjoint triangles C1, . . . , Ck−1 such that
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|V (Ci)∩S| = 1 for all 1 ≤ i ≤ k−1, and such that if we let H = G−⋃
1≤i≤k−1 V (Ci),

then |H | ≥ 4, dH(x) ≥ 2 for all x ∈ V (H), and H contains a vertex a with a �= v0

which has the property that dH(x) + dH(y) ≥ |H | for any x, y ∈ V (H) \ {a} with

x �= y and xy /∈ E(H).

In the rest of this section, we prepare notations which we use in subsequent

sections. The set of all neighbours of a vertex x in a graph G is denoted by NG(x),

or simply by N(x), and its cardinality is denoted by dG(x) or d(x). For a subgraph H

of G, we denote NG(x)∩V (H) by NH(x) and its cardinality by dH(x). For simplicity,

we denote |V (H)| by |H |, and G−V (H) by G−H . Also we write “u ∈ H” to mean

that u ∈ V (H).

2 Proof of Propositions

We first prove Proposition 4. Let n, k, G, S be an in Proposition 4. We proceed

by induction on k. If k = 1, (i) clearly holds. Thus let k ≥ 2, and assume that

the proposition holds for k − 1. We may assume (i) does not hold. Let S ′ be a

subset of S with cardinality k − 1. Note that if k ≥ 3, then by the assumption that

σ2(G) ≥ n+k−1, it is not possible that d(v) = (n+(k−1)−1)/2 for all v ∈ S ′, and

hence it follows from the induction assumption that there exist k − 1 vertex-disjoint

triangles C1, . . . , Ck−1 such that |V (Ci)∩ S ′| = 1 for all 1 ≤ i ≤ k − 1; if k = 2, then

|S ′| = 1, and hence there exists a triangle C1 such that |V (C1)∩S ′| = |S ′| = 1. Write

S = {v1, . . . , vk} so that d(v1) ≤ d(v2) ≤ · · · ≤ d(vk). Note that if there exists v ∈ S

with v �= v1 such that d(v) = (n + k − 1)/2, then we also have d(v1) = (n + k − 1)/2

by the assumption that σ2(G) ≥ n− k + 1. Thus the proposition follows if we prove

the following lemma.

Lemma 2.1 Let n, k, G, S, v1, . . . , vk be as above, and suppose that (i) does not

hold. Fix i0 with 2 ≤ i0 ≤ k, and set S ′ = S \ {v0}. Further let C1, . . . , Ck−1 be

vertex-disjoint triangles such that |V (Ci) ∩ S ′| = 1 for all 1 ≤ i ≤ k − 1, and set

H =
⋃

1≤i≤k−1 Ci. Then n+k is odd, d(vi0) = (n+k−1)/2, |H | ≥ 4, and H contains

a spanning subgraph isomorphic to K(n−3(k−1))/2,(n−3(k−1))/2.

Proof of Lemma 2.1. Recall that S is stable. Thus dCi
(vi0) ≤ 2 for every 1 ≤ i ≤

k − 1. Since dG(v1) ≤ dG(vi0), we also have

dG(vi0) ≥ (n + k − 1)/2. (2.1)
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Hence

dH(vi0) ≥ dG(vi0) − 2(k − 1) ≥ (n − 3(k − 1))/2 = |H |/2. (2.2)

In particular, dH(vi0) ≥ 2. Note that from the assumption that (i) does not hold, it

follows that NH(vi0) is stable. Hence

NH(x) ∩ NH(vi0) = ∅ for all x ∈ NH(vi0), (2.3)

which implies

dH(x) + dH(vi0) ≤ |H | for all x ∈ NH(vi0). (2.4)

Take x1, x2 ∈ NH(x) with x1 �= x2. If there exists i with 1 ≤ i ≤ k − 1 such that

dCi
(x1)+dCi

(x2)+dCi
(vi0) ≥ 7, then in the subgraph induced by V (Ci)∪{vi0 , x1, x2},

we can easily find two disjoint triangles C ′
i and D such that V (C ′

i)∩S ′ = V (Ci)∩S ′

and vi0 ∈ D, which contradicts the assumption that (i) does not hold. Thus dCi
(x1)+

dCi
(x2) + dCi

(vi0) ≤ 6 for every 1 ≤ i ≤ k − 1. Consequently it follows from (2.1)

that

dH(x1) + dH(x2) + dH(vi0) ≥
3

2
(n + k − 1) − 6(k − 1)

=
3

2
(n − 3(k − 1)) =

3

2
|H |.

On the other hand, since it follows from (2.2) and (2.4) that dH(x1) ≤ |H |/2, we get

dH(x1)+dH(x2)+dH(vi0) ≤ |H |/2+ |H | by (2.4). Since x1 and x2 are arbitrary, this

means that equality holds in (2.2) and (2.4). Therefore |H | is even, dH(vi0) = |H |/2,

and dH(x) = |H |/2 for all x ∈ NH(vi0). In view of (2.3), this implies that H contains

a spanning subgraph isomorphic to K|H|/2,|H|/2
∼= K(n−3(k−1))/2),(n−3(k−1))/2. Since

|H | = n − 3(k − 1) ≥ 3 and |H | is even, it follows that |H | ≥ 4 and n + k is odd.

Finally the equality in (2.2) together with (2.1) implies dG(vi0) = (n + k − 1)/2.

Thus Lemma 2.1 is proved, and this completes the proof of Proposition 4.

We proceed to the proof of Proposition 5. Let n, k, G, S, v0 be as in Proposition

5. If k = 1, then the proposition clearly holds because the assumption σ2(G) ≥ n

implies that d(x) ≥ 2 for all x ∈ G. Thus assume k ≥ 2. From the assumption that

v0 is not contained in a triangle, it follows that N(v0) is stable. Hence

d(x) + d(y) ≥ n + k − 1 for all x, y ∈ N(v0) with x �= y. (2.5)
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In particular, there exists a ∈ NG(v0) such that

d(x) ≥ (n + k − 1)/2 for all x ∈ N(v0) \ {a}. (2.6)

Thus

d(v0) ≤ (n − (k − 1))/2. (2.7)

This implies that for each v ∈ S \{v0}, d(v) ≥ (n+3(k−1))/2 and v is contained

in a triangle. Hence applying Proposition 4 with k and S replaced by k − 1 and

S \{v0}, we see that there exist k−1 vertex-disjoint triangles C1, . . . , Ck−1 such that

|V (Ci)∩S| = 1 for all 1 ≤ i ≤ k−1. We choose C1, . . . , Ck−1 so that the number p of

edges joining v0 and
⋃

1≤i≤k−1 V (Ci) is as large as possible. Set H = G−⋃
1≤i≤k−1 Ci.

We have |H | = n − 3(k − 1) ≥ 3. By (2.7),

dG(w) ≥ n + 3(k − 1)

2
for all w ∈ V (G) \ NG(v0),

and hence

dH(w) ≥ dG(w) − 3(k − 1) ≥ (n − 3(k − 1))/2 = |H |/2

for all w ∈ V (H) \ NH(v0).
(2.8)

From the fact that NG(v0) is stable, it follows that |NCi
(v0)| ≤ 1 for every 1 ≤ i ≤

k − 1. Hence

dH(v0) + dH(w) ≥ σ2(G) − 4(k − 1) ≥ n − 3(k − 1) = |H |
for all w ∈ V (H) \ NH(v0).

(2.9)

Since |H | ≥ 3, (2.9) in particular implies dH(v0) ≥ 2. Take x ∈ NH(v0). Suppose

that there exists i with 1 ≤ i ≤ k − 1 such that dCi
(x) = 3. Write Ci = vu1u2 with

v ∈ S. Since NG(v0) is stable, we have dCi
(v0) = 0. But then replacing Ci by the

triangle vu1x, we get a contradiction to that maximality of p. Thus dCi
(x) ≤ 2 for

each x ∈ NH(v0) and each 1 ≤ i ≤ k − 1. Therefore it follows from (2.5) and (2.6)

that

dH(x) + dH(y) ≥ dG(x) + dG(y) − 4(k − 1) ≥ n − 3(k − 1) = |H |
for all x, y ∈ NH(v0) with x �= y,

(2.10)

and

dH(x) ≥ dG(x) − 2(k − 1) ≥ (n − 3(k − 1))/2 = |H |/2

for all x ∈ NH(v0) \ {a}
(2.11)
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(it is possible that a /∈ H). Recall that dH(v0) ≥ 2. Thus (2.10) in particular implies

that dH(x) ≥ 2 for all x ∈ NH(v0). Consequently we see from (2.8) that dH(x) ≥ 2

for all x ∈ V (H). Since v0 is not contained in a triangle, this implies |H | ≥ 4.

Finally, combining (2.8), (2.9) and (2.11), we see that dH(x) + dH(y) ≥ |H | for any

x, y ∈ V (H) \ {a} with x �= y and xy /∈ E(G).

This completes the proof of Proposition 5.

3 A Lemma

For completeness, we here include the proof of the following lemma, which shows

that Theorem 1 implies Corollaries 2 and 3.

Lemma 3.1 Let H be a graph such that |H | ≥ 4, and dH(x) ≥ 2 for all x ∈ H . Let

a ∈ H , and suppose that dH(x) + dH(y) ≥ |H | for any x, y ∈ V (H) \ {a} with x �= y

and xy /∈ E(H). Then the following hold.

(1) H is hamiltonian.

(2) For each v ∈ V (H) \ {a}, there exists a cycle C such that v ∈ C and |C| = 4.

Proof. We first prove (1). Take a path P such that a ∈ P and a is not an endvertex

of P . We choose P so that |P | is as large as possible. Write P = x1x2 . . . xl. Then

NH(x1), NH(xl) ⊆ V (P ). This implies that if x1xl /∈ E(H), then there exists i

with 2 ≤ i ≤ l such that xi−1xl, x1xi ∈ E(H). Thus H contains a cycle D with

V (D) = V (P ). Since H is connected by the assumption of the lemma, it follows

from the maximality of |P | that V (P ) = V (H), and hence D is a hamiltonian

cycle of H , as desired. We now prove (2). If |H | = 4, the desired conclusion

follows from (1). Thus we may assume |H | ≥ 5. Let v ∈ V (H) \ {a}. First assume

dH(v) ≤ |H |−3, and take x ∈ V (H)\({v}∪NH(v)∪{a}). Then dH(v)+dH(x) ≥ |H |,
which implies |NH(v) ∩ NH(x)| ≥ 2. Hence v, x and two vertices in NH(v) ∩ NH(x)

form a cycle with the desired properties. Next assume dH(v) = |H | − 2, and write

V (H)\({v}∪NH(v)) = {x}. Then |NH(v)∩NH(x)| = |NH(x)| ≥ 2, and hence we can

again find a desired cycle. Finally assume dH(v) = |H | − 1. Then |NH(v) − {a}| =

|H | − 2 ≥ 3. Hence if NH(v) − {a} induces a complete graph, then the desired

conclusion clearly holds. Thus we may assume there exist x, y ∈ NH(v) − {a} with

x �= y such that xy /∈ E(H). Then |NH(x)∩NH(y)| ≥ 2. Consequently v, x, y and a

vertex in (NH(x) ∩ NH(y)) \ {v} form a desired cycle.
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