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2Department of Mathematical Information Science, Tokyo University of Science,

1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

3National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

4Department of Mathematics, Collage of Science and Technology,

Nihon University, Tokyo 101-8308, Japan.

Abstract

For a subset A of the set of positive integers, a graph G is called A-coverable if
G has a cycle (a subgraph in which all vertices have even degree) which intersects
all edge-cuts T in G with |T | ∈ A, and A is said to be coverable if all graphs are
A-coverable. As a possible approach to the Dominating cycle conjecture, Kaiser
and Škrekovski conjectured in [Cycles intersecting edge-cuts of prescribed sizes,
SIAM J. Discrete Math. 22 (2008) 861–874], that N+3 is coverable, where N+3 =
{4, 5, 6, · · · }. In this paper, we disprove Kaiser and Škrekovski’s conjecture by
showing that there exist infinitely many graphs which are not {4, 5}-coverable.
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1 Introduction

In [6], Kaiser and Škrekovski studied the existence of a cycle intersecting all edge-cuts
of prescribed size in a graph. In the present paper, the terminology follows the ones
in [6]. A cycle in the present paper is a graph (not necessarily connected) in which
all vertices have even degree. Possibly a cycle might have a vertex of degree zero. An
edge-cut, in short, a cut in a graph G is an inclusionwise minimal set of edges whose
removal increases the number of components of G.

Let N be the set of positive integers and A ⊆ N. We say that a cycle in a graph G
is A-covering if it intersects all cuts T in G with |T | ∈ A. A graph G is A-coverable if
G has an A-covering cycle, and A is coverable if all graphs are A-coverable. Note that
for A′ ⊆ A ⊆ N, A′ is coverable if A is coverable, but generally the converse does not
hold. The following is shown in [6].

Theorem 1 (Kaiser and Škrekovski [6]) {3, 4} is coverable.

As mentioned in [6], the concept of “coverability” concerns several fundamental
topics in graph theory, for example, the 4-Color Theorem, the 4-Flow conjecture by
Tutte [12] and the Dominating cycle conjecture by Fleischner [3]. A subgraph C in G is
said to be dominating if each edge of G is incident with a vertex in C. The Dominating
cycle conjecture states the following.

Conjecture 2 (the Dominating cycle conjecture) Every cyclically 4-edge-connected

cubic graph has a dominating circuit.

See the next section for the definition of the terms “cyclically 4-edge-connected” and
“circuit”. Note that many statements have been shown to be equivalent to Conjecture
2, see [1, 4, 9] and also a survey [2]. For example, Fleischner and Jackson [4] showed
that Conjecture 2 is equivalent to the conjecture by Thomassen [11] stating that every
4-connected line graph is Hamiltonian. The conjecture by Matthews and Sumner [7]
stating that every 4-connected claw-free graph is Hamiltonian is also known to be
equivalent to Conjecture 2, see [9].

As a possible approach to Conjecture 2, in [6], the following conjecture was posed.
Let N+ 3 = {4, 5, 6, · · · }.

Conjecture 3 (Kaiser and Škrekovski [6]) The set N+ 3 is coverable.

As mentioned in [6], if Conjecture 3 is true, then together with many equivalent
conjectures, Conjecture 2 is also true. A result of Thomassen [10] implies that Con-
jecture 3 is true for the class of planar graphs. However, there is a counterexample to
Conjecture 3 and the main purpose of this paper is to construct it. Indeed, we show
the following.

Theorem 4 There exist infinitely many cubic graphs which are not {4, 5}-coverable.
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Figure 1: The graphs used in the proof of Theorem 4.

2 Proof of Theorem 4

Here we define some terminology needed for the proof of Theorem 4. A graph G is
called cyclically k-edge-connected if it contains no cut of size at most k − 1 such that
after removing all edges in it from G, both of the two resulting components contain a
cycle. A 2-factor of a graph G is a spanning subgraph of G in which every vertex has
degree exactly two. A connected cycle is said to be a circuit.

We use the following lemma, which was shown by Jackson and Yoshimoto [5]. Note
that they only mentioned in Section 4 in [5] that the graphs they constructed are
cyclically 4-edge-connected graphs in which every 2-factor has a circuit of order at
most five. Although they did not explicitly mention other properties in Lemma 5, it is
clear from their construction that we can find infinitely many graphs with the desired
properties. Notice also that Lukot’ka, Máčajová, Mazák and Škoviera [8] independently
showed Lemma 5.

Lemma 5 There exist infinitely many cyclically 4-edge-connected cubic graphs in

which every 2-factor has a circuit of order exactly five.

Proof of Theorem 4.
Let H ′ be a 3-edge-connected graph having a cut {e1, e2, e3} of size exactly three.

Subdivide all of the three edges e1, e2 and e3, and let v1, v2 and v3 be the vertices
obtained by the subdivision of e1, e2 and e3, respectively. Adding an edge to each of
v1, v2 and v3, we obtain the graph H. (We do not specify the other end vertex of the
edges yet.) See Figure 1 (a).

By Lemma 5, there exist infinitely many cyclically 4-edge-connected cubic graphs
G in which every 2-factor has a circuit of order exactly five. We replace each vertex x
of G with a copy of H, say Hx, and regard the three edges incident to x in G as the
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three (half) edges in Hx incident to v1, v2 and v3, respectively. Let G̃ be the obtained
graph. See Figures 1 (b) and (c). In order to complete the proof of Theorem 4, it

suffices to show that G̃ is not {4, 5}-coverable.
Suppose, for a contradiction, that G̃ is {4, 5}-coverable. Then G̃ has a {4, 5}-

covering cycle C̃, that is, C̃ intersects all cuts T in G̃ with |T | ∈ {4, 5}. Let C be the

cycle obtained from C̃ by contracting each subgraph Hx of G̃ to the vertex x. Now we
regard C as a spanning subgraph of G. Since G is cubic, every vertex of G has degree
zero or two in C.

Suppose that there exists no vertex of degree zero in C. Then all vertices of G have
degree two in C, and hence C is a 2-factor of G. By the choice of G, C has a circuit
D of order exactly five. Since G is cyclically 4-edge-connected, D has no chords, and
hence there are exactly five edges leaving from D (recall that G is cubic). Let T be
the set consisting of such five edges. Then T is a cut in G which does not intersect
C. Furthermore, T is also a cut in G̃ of size exactly five which does not intersect C̃,
contradicting the assumption that C̃ is a {4, 5}-covering cycle of G̃.

Hence there exists a vertex, say x, of degree zero in C. Now we restrict C̃ to Hx.
Since x has degree zero in C, Cx = C̃ ∩Hx is also a cycle of Hx. On the other hand,
since {e1, e2, e3} is a cut of H ′ of odd size, at least one of the three vertices v1, v2 and
v3 has degree zero in Cx. By symmetry, we may assume that v3 has degree zero in Cx.
Then letting g1 (resp. g2) be the edge in G̃ connecting v1 (resp. v2) and the outside
of Hx, and f1 and f2 be the two edges in Hx obtained by the subdivision of e3 in H ′,
{g1, g2, f1, f2} is a cut of G̃ of size four which does not intersect C̃, a contradiction. See
Figure 1 (d). This completes the proof of Theorem 4. □

3 Concluding remarks

In this paper, we have disproved Conjecture 3, showing that there exist infinitely many
cubic graphs which are not {4, 5}-coverable, therefore not

(
N + 3

)
-coverable. Since

our construction depends on cyclic 3-cuts in a crucial way, we here pose two new
conjectures.

Conjecture 6 Every cyclically 4-edge-connected cubic graph is
(
N+ 3

)
-coverable.

Conjecture 7 Every cyclically 4-edge-connected cubic graph is {4, 5}-coverable.

As mentioned in [6], for a cyclically 4-edge-connected cubic graph G, a circuit is
dominating in G if and only if it is

(
N+3

)
-covering. This implies that Conjecture 6 is

equivalent to Conjecture 2. On the other hand, Conjecture 6 easily implies Conjecture
7, and hence attacking Conjecture 7 before Conjectures 2 and 6 might be helpful when
we try to resolve them.
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