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2Department of Mathematics and Engineering, Kumamoto University

2-39-1, Kurokami, Kumamoto 860-8555, Japan
3Department of Mathematics, College of Science and Technology,

Nihon University, Tokyo 101-8308, Japan

Abstract

For a graph G, we denote by δ(G) the minimum degree of G. A graph G is said to be
claw-free if G has no induced subgraph isomorphic to K1,3. In this article, we prove that
every claw-free graph G with minimum degree at least 4 has a 2-factor in which each cycle
contains at least

⌈ δ(G)−1
2

⌉
vertices and every 2-connected claw-free graph G with minimum

degree at least 3 has a 2-factor in which each cycle contains at least δ(G) vertices. For the
case where G is 2-connected, the lower bound on the length of a cycle is best possible.
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1 Introduction

In this paper, we consider finite graphs. For terminology and notation not defined in this paper,

we refer the readers to [6]. A simple graph means an undirected graph without loops or multiple

edges. A multigraph may contain multiple edges but no loops. Let G be a graph. For a vertex v

of G, the degree of v in G is the number of edges incident with v. Let V (G), E(G) and δ(G) be

the vertex set, the edge set and the minimum degree of G, respectively. We refer to the number

of vertices of G as the order of G and denote it by |G|. A graph G is said to be claw-free if

G has no induced subgraph isomorphic to K1,3 (here K1,3 denotes the complete bipartite graph
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with partite sets of cardinalities 1 and 3, respectively). We denote by L(G) the line graph of G.

Obviously a line graph is claw-free. A 2-factor of G is a spanning subgraph of G in which every

component is a cycle.

It is a well-known conjecture that every 4-connected claw-free graph is Hamiltonian due to

Matthews and Sumner [14]. Since a Hamilton cycle is a connected 2-factor, there are many

results on 2-factors of claw-free graphs. For instance, results of both Choudum and Paulraj [5]

and Egawa and Ota [7] imply that a moderate minimum degree condition already guarantees

that a claw-free graph has a 2-factor.

Theorem A ([5, 7]) Every claw-free graph with minimum degree at least 4 has a 2-factor.

Broersma, Kriesel and Ryjáček [2] showed that if there exists a function f(n) of n such

that lim
n→∞

f(n)/n = 0 and every 4-connected claw-free graph of order n has a 2-factor with

at most f(n) components, then every 4-connected claw-free graph is Hamiltonian. Thus, to

solve Matthews and Sumner’s conjecture, it suffices to show the existence of a 2-factor with

small number of components (not necessarily 1 component). Concerning the upper bound on

the number of components, Broersma, Paulusma and the third author [3] and Jackson and

the third author [11] proved the following, respectively (other related results can be found in

[8, 12, 13, 15, 18]).

Theorem B ([3]) Every claw-free graph G with minimum degree at least 4 has a 2-factor with

at most max
{⌊ |G|−3

δ(G)−1

⌋
, 1

}
components.

Theorem C ([11]) Every 2-connected claw-free graph G with minimum degree at least 4 has

a 2-factor with at most
⌊ |G|+1

4

⌋
components.

It could be also another possible approach to study about the lengths of cycles in 2-factors

of claw-free graphs. Our first main result is the following.

Theorem 1 Every 2-connected claw-free graph G with minimum degree at least 3 has a 2-factor

in which each component contains at least δ(G) vertices.

The proof of the above is given in Section 4. As a corollary of Theorem 1, we can get the

following which improve the both of Theorems B and C for 2-connected claw-free graphs.

Corollary 2 Every 2-connected claw-free graph G with minimum degree at least 3 has a 2-

factor with at most
⌊ |G|

δ(G)

⌋
components.
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Figure 1: The graph G1

In Theorem 1, the lower bound on the length of a cycle is best possible because we can

construct a 2-connected claw-free graph G such that for each 2-factor of G, the minimum length

of cycles in it is at most δ(G) as follows: let d ≥ 3 be an integer, and let H1,H2 and H3 be graphs

with the connectivity one and exactly two end blocks such that each block of Hi (1 ≤ i ≤ 3)

is a complete graph of order d + 1. For each 1 ≤ i ≤ 3, let ui and vi be vertices contained in

distinct end blocks of Hi, respectively, and ui and vi are not cut vertices of Hi. Let G1 be the

graph obtained from H1 ∪ H2 ∪ H3 by joining ui and ui+1 for 1 ≤ i ≤ 3 and joining vi and vi+1

for 1 ≤ i ≤ 3, where let u4 = u1 and v4 = v1, see Figure 1 (here Km denotes the complete graph

of order m). Then G1 is a 2-connected claw-free graph which satisfies δ(G1) = d, and for each

2-factor of G1, the minimum length of cycles in it is at most d.

Remark. A path-factor is a spanning subgraph in which every component is a path. Ando et

al. [1] proved that a claw-free graph G has a path-factor in which each component contains at

least δ(G) + 1 vertices. Moreover they conjectured that if G is 2-connected, then there exists a

path-factor in which each component contains at least 3δ(G) + 3 vertices, but this conjecture is

still open unlike the case of 2-factors on 2-connected claw-free graphs.

For claw-free graphs with cut vertices, we can construct an infinite family of examples G in

which every 2-factor contains a cycle of length at most d δ(G)+1
2

⌉
(see Section 6). We conjecture

that the length is also the lower bound.

Conjecture 3 Every claw-free graph G with minimum degree at least 4 has a 2-factor in which

each component contains at least
⌈ δ(G)+1

2

⌉
vertices.

In this paper, we will show a slightly weaker statement.

Theorem 4 Every claw-free graph G with minimum degree at least 4 has a 2-factor in which

each component contains at least
⌈ δ(G)−1

2

⌉
vertices.
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An essential part of the proof of Theorem 4 is that we can divide a claw-free graph into

mutually vertex-disjoint 2-connected claw-free graphs which has large minimum degree, i.e., we

prove the following in Section 5.

Theorem 5 Every claw-free graph G with minimum degree at least 4 has a set G ∗ of mutually

vertex-disjoint subgraphs such that
∪

G∗∈G ∗ V (G∗) = V (G) and each G∗ ∈ G ∗ is a 2-connected

claw-free graph with δ(G∗) ≥
⌈ δ(G)−1

2

⌉
.

A clique-factor is a spanning subgraph in which every component is a clique. Faudree et

al. [9] showed that a line graph with minimum degree at least 7 has a clique-factor in which

each component contains at least 3 vertices. It is known that if H is a tree, then the line graph

L(H) has a clique-factor in which each component contains at least
⌈ δ(L(H))+1

2

⌉
vertices ([4]).

This supports Conjecture 3 in some sense.

It would be natural to consider the case where the connectivity is at least 3 as the next

step. Concerning the number of components of 2-factors in 3-connected claw-free graphs, Kužel

et al. [13] proved that every 3-connected claw-free graph G has a 2-factor with at most max
{⌊ |G|

δ(G)+2

⌋
, 1

}
components. Recently, Ozeki et al. [15] improved the result as follows : every 3-

connected claw-free graph G has a 2-factor with at most
⌊ 4|G|

5(δ(G)+2) + 2
5

⌋
components. In view

of this result, one might expect that the coefficient of δ(G) in the lower bound on the length of

a cycle would be greater than 1 for 3-connected claw-free graphs G.

Problem. Determine f(d) = max{m | every 3-connected non-hamiltonian claw-free graph with

minimum degree d has a 2-factor in which each component contains at least m vertices}. In

particular, is there a constant c > 1 such that f(d) ≥ cd holds?

2 Terminology and notation

In this section, we prepare terminology and notation which we use in subsequent sections. Let

G be a graph. We denote the number of edges of G by e(G). For X ⊆ V (G), we let G[X]

denote the subgraph induced by X in G, and let G − X = G[V (G) \ X]. If H is a subgraph

of G, then let G − H = G − V (H). A subset X of V (G) is called an independent set of G if

G[X] is edgeless. Let H1 and H2 be subgraphs of G or subsets of V (G), respectively. If H1 and

H2 have no common vertex in G, we define EG(H1,H2) to be the set of edges of G between

H1 and H2, and let eG(H1,H2) = |EG(H1,H2)|. For a vertex v of G, we denote by NG(v) and

dG(v) the neighborhood and the degree of v in G, respectively. For a positive integer l, we define

Vl(G) = {v ∈ V (G) | dG(v) = l}, and let V≥l(G) =
∪

m≥l Vm(G) and V≤l(G) =
∪

m≤l Vm(G).
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Let e = uv ∈ E(G). We denote by V (e) the set of end vertices of e, i.e., V (e) = {u, v}. The

edge degree of e in G is defined by the number of edges incident with e, and is denoted by ξG(e),

i.e., ξG(e) = |{f ∈ E(G) | f 6= e, V (f) ∩ V (e) 6= ∅}|. Note that if G is a simple graph, then

ξG(e) = eG(V (e), G − V (e)) = dG(u) + dG(v) − 2. Let ξ(G) be the minimum edge degree of G.

For X ⊆ E(G), G − X means the graph with the vertex set V (G) and the edge set E(G) \ X.

If a graph S consists of a vertex (called a center) and edges incident with the center, S is

called a star. So a star in this paper is not necessary a tree. A connected graph is called a closed

trail if all the vertices have even degree. A closed trail T in a graph H is called a dominating

closed trail if H − T is edgeless.

3 Preparation for the proof of Theorem 1

To prove Theorem 1, we use Ryjáček closure. In [16], Ryjáček introduced the concept of a

closure for claw-free graphs as follows. Let G be a claw-free graph. We call a vertex v of G

locally connected (resp. locally disconnected) if G[NG(v)] is connected (resp. disconnected).

Note that if a vertex v of G is locally disconnected, then G[NG(v)] is a union of two vertex-

disjoint complete graphs (otherwise, G contains a K1,3 as an induced subgraph). For a locally

connected vertex v of G, we add edges joining all pairs of nonadjacent vertices in NG(v). The

closure cl(G) of G is a graph obtained by recursively repeating this operation, as long as this

is possible. In [16], it is shown that the closure of a graph has the following property. (Here a

graph H is said to be triangle-free if H contains no K3.)

Theorem D ([16]) If G is a claw-free graph, then the following hold.

(i) cl(G) is well-defined, (i.e., uniquely defined).

(ii) There exists a triangle-free simple graph H such that L(H) = cl(G).

On the other hand, in [17, Theorem 4], Ryjáček, Saito and Schelp proved that for any vertex-

disjoint cycles D1, . . . , Dq in cl(G), G has vertex-disjoint cycles C1, . . . , Cp with p ≤ q such that∪q
i=1 V (Di) ⊆

∪p
i=1 V (Ci). By modifying the proof, we can improve this result as follows.

Lemma E ([13]) Let G be a claw-free graph. If D1, . . . , Dq are vertex-disjoint cycles in cl(G),

then G has vertex-disjoint cycles C1, . . . , Cp with p ≤ q such that for each j with 1 ≤ j ≤ q,

there exists i with 1 ≤ i ≤ p such that V (Dj) ⊆ V (Ci).

As a corollary of Lemma E, we can easily obtain the following.
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Corollary 6 Let m be an integer. For a claw-free graph G, G has a 2-factor in which each

cycle contains at least m vertices if and only if cl(G) has a 2-factor in which each cycle contains

at least m vertices.

Proof of Corollary 6. The necessity is clear, and so we prove only sufficiency. Suppose that

cl(G) has a 2-factor in which each cycle contains at least m vertices, and let D1, . . . , Dq are

vertex-disjoint cycles in cl(G) such that
∪q

j=1 V (Dj) = V (cl(G)) ( = V (G)) and |Dj | ≥ m for

1 ≤ j ≤ q. Then by Lemma E, G has vertex-disjoint cycles C1, . . . , Cp with p ≤ q such that

for each j with 1 ≤ j ≤ q, there exists i with 1 ≤ i ≤ p such that V (Dj) ⊆ V (Ci), (3.1)

in particular,
∪q

j=1 V (Dj) ⊆
∪p

i=1 V (Ci). Since
∪q

j=1 V (Dj) = V (G), we have that
∪p

i=1 V (Ci) =

V (G), i.e.,
∪p

i=1 Ci forms a 2-factor of G. Since
∪q

j=1 V (Dj) =
∪p

i=1 V (Ci), it follows from (3.1)

that for each i with 1 ≤ i ≤ p, there exists j with 1 ≤ j ≤ q such that V (Ci) ⊇ V (Dj)

(otherwise,
∪q

j=1 V (Dj) (
∪p

i=1 V (Ci), a contradiction). Since |Dj | ≥ m for 1 ≤ j ≤ q, we have

that |Ci| ≥ m for 1 ≤ i ≤ p. Thus
∪p

i=1 Ci is a desired 2-factor of G. �

Now we are ready to state new statement which is equivalent to Theorem 1 (see Proposition

8). Here a multigraph H is called essentially k-edge-connected if e(H) ≥ k + 1 and H − X has

at most one component which contains an edge for every X ⊆ E(H) with |X| < k. It is easy to

see that for a graph H, H is essentially k-edge-connected if and only if L(H) is k-connected.

Theorem 7 Let H be an essentially 2-edge-connected triangle-free simple graph. If δ(L(H)) ≥
3, then L(H) has a 2-factor in which each cycle contains at least δ(L(H)) vertices.

By Theorem D and Corollary 6, we can obtain the following proposition.

Proposition 8 Theorems 1 and 7 are equivalent.

Proof of Proposition 8. It is clear that Theorem 1 implies Theorem 7 because line graphs are

claw-free. So we prove the converse.

Suppose that Theorem 7 is true, and let G be a 2-connected claw-free graph with δ(G) ≥ 3.

We show that G has a 2-factor in which each cycle contains at least δ(G) vertices. By Theorem

D (ii) and since G is 2-connected, there exists an essentially 2-edge-connected triangle-free

simple graph H such that L(H) = cl(G). Note that δ(L(H)) ≥ δ(G), and hence δ(L(H)) ≥ 3.

Therefore, by Theorem 7, L(H) ( = cl(G)) has a 2-factor in which each cycle contains at least

δ(L(H)) vertices. This together with Corollary 6 implies that G has a 2-factor in which each

cycle contains at least δ(L(H)) ( ≥ δ(G)) vertices. �
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4 Proof of Theorem 1

By Proposition 8, it is enough to show Theorem 7 for Theorem 1. Before proving Theorem 7,

we define a few terminologies.

It is well known that for a connected multigraph H with e(H) ≥ 3, L(H) is Hamiltonian if

and only if H is a star or H has a dominating closed trail (see [10]). Obviously if H is a star,

then L(H) is a clique. A set D is called a cover set of E(H) if (i) D is a set of edge-disjoint

connected subgraphs in H such that
∪

D∈D E(D) = E(H), and (ii) for each D ∈ D , D is a star

or D has a dominating closed trail. If all members in a cover set D are stars, then we call D a

star cover set of E(H).

The following fact implies Theorem 7.

Theorem 9 Let H be an essentially 2-edge-connected triangle-free simple graph. If ξ(H) ≥ 3,

then H has a cover set D of E(H) such that e(D) ≥ ξ(H) for all D ∈ D .

Proof of Theorem 7. Let H be an essentially 2-edge-connected triangle-free simple graph, and

suppose that δ(L(H)) ≥ 3. Since ξ(H) = δ(L(H)) ≥ 3, by Theorem 9, H has a cover set D of

E(H) such that e(D) ≥ ξ(H) ( ≥ 3) for all D ∈ D . As D is a star or a connected subgraph which

has a dominating closed trail for each D in D , we have that L(D) has a Hamilton cycle CD for

each D in D (note that |CD| = |L(D)| = e(D) ≥ ξ(H) = δ(L(H))). Since
∪

D∈D E(D) = E(H)

and D is a set of edge-disjoint connected subgraphs, it follows that
∪

D∈D CD forms a desired

2-factor of L(H). �

Hence in the rest of this section, we prove Theorem 9. The following lemma will be used.

Lemma F ([18]) Let H be an essentially 2-edge-connected graph. If ξ(H) ≥ 3, then there

exists a set T of vertex-disjoint closed trails in H such that V≥3(H − V1(H)) ⊆
∪

T∈T V (T ).

Proof of Theorem 9. If H is a star, then {H} is a desired cover set of E(H). Thus we may

assume that H is not a star. Then since H is essentially 2-edge-connected, we have δ(H −
V1(H)) ≥ 2. By Lemma F, there exists a set T of vertex-disjoint closed trails in H such that

V≥3(H − V1(H)) ⊆
∪

T∈T V (T ). Since δ(H − V1(H)) ≥ 2 and V≥3(H − V1(H)) ⊆
∪

T∈T V (T ),

it follows that v ∈ V2(H − V1(H)) for all v ∈ V≥3(H) \
∪

T∈T V (T ). This implies that for each

v ∈ V≥3(H) \
∪

T∈T V (T ),

there exist exactly two vertices u1 and u2 in NH(v) with u1 6= u2

such that ui ∈ V≥2(H) for i = 1, 2 and NH(v) \ {u1, u2} ⊆ V1(H)
(4.1)

(see the left of Figure 2). In particular, NH(v) \ {u1, u2} 6= ∅ since v ∈ V≥3(H), that is,

NH(v) ∩ V1(H) 6= ∅, and hence |NH(v) \ {u1, u2}| ≥ dH(v) − 2 ≥ ξ(H) − 1.

7



T ′

T ′′

H

vT

H∗

T

vT ′

vT ′′

v

u1

u2

v

Figure 2: The graph H∗

Let H∗ be the graph obtained from H by contracting an induced subgraph H[V (T )] of

H to a vertex vT for each T ∈ T (note that H∗ may be a multigraph, see Figure 2). Let

X = {vT | T ∈ T }. Note that |X| = |T | since T is a set of vertex-disjoint closed trails in H.

By the definition of H∗,

dH∗(v) = dH(v) for all v ∈ V (H∗) \ X. (4.2)

By (4.2) and since V1(H) ∩
( ∪

T∈T V (T )
)

= ∅,

V1(H) = V1(H∗) \ X. (4.3)

By the definition of H∗ and (4.2) and since ξ(H) ≥ 3, we also have that V≤2(H∗) \ X is an

independent set of H∗.

To show the existence of a cover set D of E(H), we find a mapping ϕ : E(H∗) → V (H∗) so

that

(M1) ϕ(e) = u or ϕ(e) = v for all e = uv ∈ E(H∗),

(M2) |ϕ−1(v)| = 0 for all v ∈ V≤2(H∗) \ X,

(M3) |ϕ−1(v)| ≥ ξ(H) for all v ∈ V≥3(H∗) \ X,

(M4) |ϕ−1(vT )| + e(H[V (T )]) ≥ ξ(H) for all vT ∈ X.

If there exists such a mapping ϕ, then we can construct a desired cover set as follows. Suppose

that there exists such a mapping ϕ. Let S = {Sv | v ∈ V≥3(H∗) ∪ X} be a set of stars such

that for each Sv ∈ S , Sv is a star consisting of a vertex v (as the center) and the edges in

ϕ−1(v). Then by the conditions (M1) and (M2), S is a star cover set of E(H∗). Furthermore

by the conditions (M3) and (M4), e(Sv) = |ϕ−1(v)| ≥ ξ(H) for each v ∈ V≥3(H∗) \ X and

e(SvT ) = |ϕ−1(vT )| ≥ ξ(H) − e(H[V (T )]) for each vT ∈ X. Hence by the definition of H∗, and

by considering a subset of E(H) corresponding to E(Sv) for each v ∈ V≥3(H∗)∪X and replacing
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vT with H[V (T )] for each vT ∈ X, we can find a cover set D of E(H) such that e(D) ≥ ξ(H)

for all D ∈ D (see Figure 3). Thus it suffices to show the existence of the above mapping ϕ.

Let H ′ = H∗− (V1(H∗)\X). To show the existence of a mapping ϕ satisfying the conditions

(M1)–(M4), we define a mapping ϕ′ : E(H ′) → V (H ′) as follows. Since the number of vertices

of odd degree is even in H ′, there exists a collection of paths P1, . . . , Pl in H ′ such that each

vertex in o(H ′) appears in the set of end vertices of them exactly ones (note that l = |o(H ′)|/2),

where for a graph G, o(G) denotes the set of vertices with odd degree in G. By considering the

symmetric difference of them, we may assume that P1, . . . , Pl are pairwise edge-disjoint. For each

1 ≤ i ≤ l, write Pi = xi
1x

i
2x

i
3 . . . xi

|Pi|−1x
i
|Pi|, and let ei

j = xi
jx

i
j+1 for each 1 ≤ j ≤ |Pi|−1, and we

define ϕ′(ei
j) = xi

j+1 for each 1 ≤ j ≤ |Pi| − 1. Let H ′′ = H ′ −
∪l

i=1 E(Pi). By the definitions of

P1, . . . , Pl, we have o(H ′′) = ∅. Hence the edges of each component of order at least 2 in H ′′ can

be covered by pairwise edge-disjoint cycles. For each cycle, written by y1y2y3 . . . ym−1ym ( = y1),

we define ϕ′(ej) = yj+1, where ej = yjyj+1 for each 1 ≤ j ≤ m − 1. Then by the definition of

ϕ′, for each v ∈ V (H ′),

|ϕ′−1(v)| ≥ (dH′(v) − 1)/2 =
((

dH∗(v) − |(NH∗(v) ∩ V1(H∗)) \ X|
)
− 1

)
/2. (4.4)

Now we define a mapping ϕ : E(H∗) → V (H∗) as follows: for each e = uv ∈ E(H∗), we let

ϕ(e) =

{
u if v ∈ V≤2(H∗) \ X

ϕ′(e) otherwise
.

Since V≤2(H∗)\X is an independent set of H∗, ϕ is well defined. By the definitions of ϕ and ϕ′,

we can easily see that ϕ satisfies the conditions (M1) and (M2). So we show that ϕ satisfies the
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conditions (M3) and (M4). Since (V1(H∗) \ X) ∩ V (H ′) = ∅ by the definition of H ′, it follows

from the definition of ϕ that

|ϕ−1(v)| ≥ |ϕ′−1(v)| + |(NH∗(v) ∩ V1(H∗)) \ X| for all v ∈ X. (4.5)

We first show that ϕ satisfies the condition (M3). Let v ∈ V≥3(H∗) \ X. Then by (4.2) and

the definitions of H∗ and X, v ∈ V≥3(H) \
∪

T∈T V (T ). Hence by (4.1), there exist exactly two

vertices u1, u2 ∈ NH(v) with u1 6= u2 such that ui ∈ V≥2(H) for i = 1, 2, NH(v) \ {u1, u2} ⊆
V1(H) and |NH(v) \ {u1, u2}| ≥ ξ(H) − 1. Therefore by (4.2), (4.3) and the definition of H∗,

there exist distinct two edges vu′
1, vu′

2 ∈ E(H∗) such that u′
i ∈ V≥2(H∗) ∪ X for i = 1, 2,

NH∗(v)\{u′
1, u

′
2} ⊆ V1(H∗)\X and |NH∗(v)\{u′

1, u
′
2}| ≥ ξ(H)−1 (vu′

1 and vu′
2 may be parallel

edges in H∗, e.g., vT = u′
1 = u′

2 in Figure 2). If u′
i ∈ V2(H∗) \ X for some i = 1 or 2, then

by the definition of ϕ, we have |ϕ−1(v)| ≥ |(NH(v) ∩ V1(H∗)) \ X| + |(NH(v) ∩ V2(H∗)) \ X|
≥ |NH∗(v)\{u′

1, u
′
2}|+1 ≥ (ξ(H)−1)+1 = ξ(H). Thus we may assume that u′

i ∈ V≥3(H∗)∪X

for i = 1, 2. Note that by the definition of H ′, u′
i ∈ V (H ′) for i = 1, 2. Since NH∗(v)\{u′

1, u
′
2} ⊆

V1(H∗) \ X, we have v ∈ V2(H ′) (the degree of v in H ′ is even) and vu′
i ∈ E(H ′) for i = 1, 2.

Hence by the definition of ϕ′, ϕ′(vu′
j) = v and ϕ′(vu′

3−j) = u′
3−j for some j with j ∈ {1, 2}.

We may assume that j = 1. Then by the definition of ϕ and since {v, u′
1} ⊆ V≥3(H∗) ∪ X, it

follows that ϕ(vu′
1) = ϕ′(vu′

1) = v. Therefore |ϕ−1(v)| ≥ |(NH(v) ∩ V1(H∗)) \ X| + |{vu′
1}| ≥

|NH∗(v) \ {u′
1, u

′
2}| + 1 ≥ (ξ(H) − 1) + 1 = ξ(H). Thus ϕ satisfies the condition (M3).

We next show that ϕ satisfies the condition (M4). Let T ∈ T . Since H is a triangle-free

simple graph, all cycles which are contained in T have order at least 4. Hence there exist two

independent edges e1 and e2 in T . For each i = 1, 2, let

εi =
∣∣{e ∈ E(H[V (T )]) | e 6= ei, V (e) ∩ V (ei) 6= ∅}

∣∣.
Since H is triangle-free,

∣∣{e ∈ E(H[V (T )]) | V (e) ∩ V (ei) 6= ∅ for i = 1, 2}
∣∣ ≤ 2. Hence by the

definition of εi,

e(H[V (T )]) ≥ (ε1 + ε2) − 2 + |{e1, e2}| = ε1 + ε2. (4.6)

We also have eH(V (ei),H−T ) ≥ ξ(H)−εi for each i = 1, 2. Hence since dH∗(vT ) = eH(T,H−T )

by the definition of H∗ and since EH(V (e1),H − T ) ∩ EH(V (e2),H − T ) = ∅, we obtain

dH∗(vT ) = eH(T,H − T ) ≥ eH(V (e1),H − T ) + eH(V (e2),H − T ) ≥ 2ξ(H) − (ε1 + ε2). (4.7)
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Then by (4.4) through (4.7),

|ϕ−1(vT )| ≥ |ϕ′−1(vT )| + |(NH∗(vT ) ∩ V1(H∗)) \ X|

≥
(
dH∗(vT ) − |(NH∗(vT ) ∩ V1(H∗)) \ X| − 1

)
/2 + |(NH∗(vT ) ∩ V1(H∗)) \ X|

≥
(
2ξ(H) − (ε1 + ε2) − 1

)
/2

= ξ(H) −
(
(ε1 + ε2) + 1

)
/2

≥ ξ(H) −
(
e(H[V (T )]) + 1

)
/2.

Since e(H[V (T )]) ≥ 4, we get |ϕ−1(vT )|+e(H[V (T )]) ≥ ξ(H)−
(
e(H[V (T )])+1

)
/2+e(H[V (T )]) ≥

ξ(H) +
(
e(H[V (T )]) − 1

)
/2 > ξ(H). Thus ϕ satisfies the condition (M4).

This completes the proof of Theorem 9. �

5 Proof of Theorem 4

As mentioned in Section 1, the essential part of the proof of Theorem 4 is Theorem 5, and hence

at first we give the proof. In order to prove this, we use the following lemma.

Lemma 10 Let G be a claw-free graph and B be a block of G. Let u be a vertex in B, and

let x1 and x2 be distinct two cut vertices in G such that x, y ∈ NB(u). If x1x2 /∈ E(G), then

G[NB(u)] has a clique-factor with 2 components.

Proof of Lemma 10. Let Gi = G[NB(xi) ∪ {xi}] for i = 1, 2. Since x1 and x2 are cut

vertices in G, each xi is locally disconnected. This implies that G1 and G2 are complete graphs,

respectively. Suppose that there exists a vertex y in NB(u) \ (V (G1) ∪ V (G2)). Then by the

definitions of G1 and G2, it follows that yxi /∈ E(G) for i = 1, 2. Since x1x2 /∈ E(G), this implies

that G[{u, x1, x2, y}] is isomorphic to K1,3, a contradiction. Thus NB(u) ⊆ V (G1) ∪ V (G2),

and hence G′
1 := G[NB(u) ∩ V (G1)] and G′

2 := G[NB(u) \ V (G′
1)] forms a clique-factor with 2

components in G[NB(u)]. �

Proof of Theorem 5. Let G be a claw-free graph with δ(G) ≥ 4. It suffices to consider the case

where G is connected. If G is 2-connected, then G ∗ = {G} is a desired set. Thus we may assume

that G has a cut vertex. Let B be the set of blocks of G and X be the set of cut vertices of G. We

consider the block cut tree T of G, i.e., V (T ) = B∪X and E(T ) = {Bv | B ∈ B, v ∈ V (B)∩X}.
Since every cut vertex of G is locally disconnected, it follows that for each v ∈ X,

G[NG(v)] is a union of two vertex-disjoint complete graphs. (5.1)
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B0 = {B0}

X0

B1

Bm

X1

Xm−1

T

∈ X

∈ B

(Xm = ∅)

Figure 4: Subsets B0, . . . , Bm and subsets X0, . . . , Xm

Hence dT (v) = 2 for all v ∈ X. Let B0 ∈ B be the root of T . We consider T as an oriented

tree from B0 to leaves, and denote it
−→
T . For each v ∈ X, we let Bv+ (resp. Bv−) denote

a successor (resp. a predecessor) of v along
−→
T (note that Bv+ and Bv− are uniquely defined

because dT (v) = 2, and note also that Bv+ , Bv− ∈ B). For each B ∈ B\{B0}, we let vB denote a

predecessor of B along
−→
T (note that vB is uniquely defined). We define subsets B0, . . . , Bm of B

and subsets X0, . . . , Xm of X inductively by the following procedure. First let B0 = {B0}, and

let X0 = {v ∈ X | Bv− = B0}. Now let i ≥ 1, and assume that we have defined B0, . . . , Bi−1 and

X0, . . . , Xi−1. If Xi−1 6= ∅, then let Bi = {Bv+ | v ∈ Xi−1}, and let Xi = {v ∈ X | Bv− ∈ Bi};
if Xi−1 = ∅, we let m = i − 1 and terminate the procedure (see Figure 4). Then it follows from

the definitions of B0, . . . , Bm and X0, . . . , Xm that B is disjoint union of B0, . . . , Bm and X is

disjoint union of X0, . . . , Xm−1.

We define a mapping ϕ : X → B inductively as follows. First for each v ∈ X0, let

ϕ(v) =

{
Bv− ( = B0) if |NG(v) ∩ V (Bv−)| ≥ δ(G)

2

Bv+ otherwise
.

Now let i ≥ 1, and assume that we have defined ϕ(v) for each v ∈ Xl with 1 ≤ l ≤ i − 1. If

i ≤ m − 1, then for each v ∈ Xi, let

ϕ(v) =


Bv− if ϕ(vBv−

) = Bv− and |NG(v) ∩ V (Bv−)| ≥ δ(G)
2

Bv− if ϕ(vBv−
) 6= Bv− and |NG(v) ∩ V (Bv−)| ≥ δ(G)+1

2

Bv− if ϕ(vBv−
) 6= Bv− , |NG(v) ∩ V (Bv−)| = δ(G)

2 and vvBv−
/∈ E(G)

Bv+ otherwise

;
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Bv−

Bv+

v

vBv−

≥ δ(G)/2

Bv−

Bv+

v
≥ (δ(G) + 1)/2

Bv−

Bv+

v
= δ(G)/2

Bv−

Bv+

v
≤ δ(G)/2

Xi−1
vBv− vBv−

Xi−1
vBv−vBv−

Xi−1
vBv− vBv−

Xi−1
vBv−

(i) (ii) (iii) other than (i)–(iii)

Figure 5: The definition of ϕ

if i = m, then we terminate the procedure (see Figure 5). Let

G ∗ = {G[(V (B) \ X) ∪ ϕ−1(B)] | B ∈ B}.

We show that G ∗ is a desired set. By the definition of G ∗, it is easy to check that G ∗ is a set

of vertex-disjoint subgraphs in G such that
∪

G∗∈G ∗ V (G∗) = V (G) and G∗ is a claw-free graph

for all G∗ ∈ G ∗. Let G∗ ∈ G ∗, and let G∗ = G[(V (B) \ X) ∪ ϕ−1(B)] for some B ∈ Bi with

0 ≤ i ≤ m.

Let u ∈ V (G∗). We first show that dG∗(u) ≥
⌈ δ(G)−1

2

⌉
.

Case 1. u ∈ ϕ−1(B) and B ∈ B0, i.e., B = B0.

Then by the definition of ϕ, |NG(u)∩ V (B0)| ≥ δ(G)
2 . Since G[NG(u)∩ V (B0)] is a complete

graph by (5.1), |NG(v) ∩ V (B0)| ≥ |(NG(u) ∩ V (B0)) \ {v}| + |{u}| ≥ δ(G)
2 for all v ∈ NG(u) ∩

V (B0). Hence by the definition of ϕ, ϕ(v) = B0 for all v ∈ NG(u) ∩ V (B0) ∩ X. Since

G∗ = G[(V (B0) \ X) ∪ ϕ−1(B0)], this implies that (NG(u) ∩ V (B0)) ∪ {u} ⊆ V (G∗), and hence

dG∗(u) = |NG(u) ∩ V (B0)| ≥ δ(G)
2 .

Case 2. u ∈ ϕ−1(B) and B ∈ Bi with 1 ≤ i ≤ m.

Assume for the moment that u = vB, or u 6= vB and ϕ(vB) = B. Then by the definition of ϕ,

|NG(u)∩V (B)| ≥ δ(G)
2 . Since G[NG(u)∩V (B)] is a complete graph by (5.1), |NG(v)∩V (B)| ≥

δ(G)
2 for all v ∈ NG(u) ∩ V (B). Since ϕ(vB) = B, it follows from the definition of ϕ that

ϕ(v) = B for all v ∈ NG(u)∩ V (B)∩X. Since G∗ = G[(V (B) \X)∪ ϕ−1(B)], this implies that

(NG(u) ∩ V (B)) ∪ {u} ⊆ V (G∗), and hence dG∗(u) = |NG(u) ∩ V (B)| ≥ δ(G)
2 . Thus we may

assume that u 6= vB and ϕ(vB) 6= B. Then by the definition of ϕ, (i) |NG(u) ∩ V (B)| ≥ δ(G)+1
2

or (ii) |NG(u) ∩ V (B)| = δ(G)
2 and uvB /∈ E(G). Since G[NG(u) ∩ V (B)] is a complete graph

by (5.1), it follows that for each v ∈ NG(u) ∩ V (B), either (i’) |NG(v) ∩ V (B)| ≥ δ(G)+1
2 or

(ii’) |NG(v) ∩ V (B)| = δ(G)
2 and vvB /∈ E(G) holds. Hence by the definition of ϕ, ϕ(v) = B

for all v ∈ NG(u) ∩ V (B) ∩ (X \ {vB}). Since G∗ = G[(V (B) \ X) ∪ ϕ−1(B)], this implies that
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(
(NG(u) ∩ V (B)) ∪ {u}

)
\ {vB} ⊆ V (G∗) (note that if (ii) holds, then (NG(u) ∩ V (B)) ∪ {u} ⊆

V (G∗)), and hence dG∗(u) ≥ |(NG(u) ∩ V (B)) \ {vB}| ≥ δ(G)−1
2 .

Case 3. u /∈ ϕ−1(B), i.e., u ∈ V (B) \ X.

Since u ∈ V (B) \ X, dB(u) = dG(u) ≥ δ(G). If |NB(u) \ X| ≥ δ(G)−1
2 , then G∗ = G[(V (B) \

X)∪ ϕ−1(B)] implies that dG∗(u) ≥ |NB(u) \X| ≥ δ(G)−1
2 . Thus we may assume that |NB(u) \

X| ≤ δ(G)−2
2 , that is, |NB(u) ∩ X| ≥ δ(G)+2

2 ( ≥ 3). In the rest of Case 3, we let v∗ = vB if

B 6= B0; otherwise, let v∗ be an arbitrary vertex in G − B.

Suppose that G[NB(u) ∩ X] is a complete graph. Then |NG(v) ∩ V (B)| ≥ |(NB(u) ∩ X) \
{v}| + |{u}| ≥ δ(G)+2

2 for all v ∈ NB(u) ∩ X. Hence by the definition of ϕ, ϕ(v) = B for all

v ∈ (NB(u)∩X)\{v∗}. Since G∗ = G[(V (B)\X)∪ϕ−1(B)], this implies that (NB(u)∩X)\{v∗} ⊆
V (G∗), and hence dG∗(u) ≥ δ(G)

2 . Thus we may assume that G[NB(u) ∩ X] is not complete.

Then by Lemma 10, there exists a complete subgraph F of B[NB(u) ∪ {u}] such that (i)

u ∈ V (F ) and |F | ≥ δ(G)+3
2 or (ii) u ∈ V (F ), |F | = δ(G)+2

2 and v∗ /∈ V (F ). Then since F is a

complete graph, it follows that for each v ∈ V (F ), either (i’) |NG(v) ∩ V (B)| ≥ δ(G)+1
2 or (ii’)

|NG(v) ∩ V (B)| = δ(G)
2 and vv∗ /∈ E(G) holds. Hence by the definition of ϕ, ϕ(v) = B for all

v ∈ (V (F )∩X)\{v∗}. Since G∗ = G[(V (B)\X)∪ϕ−1(B)], this implies that V (F )\{v∗} ⊆ V (G∗)

(note that if (ii) holds, then V (F ) ⊆ V (G∗)), and hence dG∗(u) ≥ |V (F ) \ {u, v∗}| ≥ δ(G)−1
2 .

By Cases 1–3, dG∗(u) ≥
⌈ δ(G)−1

2

⌉
. Since u is an arbitrary vertex in G∗, δ(G∗) ≥

⌈ δ(G)−1
2

⌉
.

We next show that G∗ is 2-connected. Suppose that G∗ is not 2-connected. Since δ(G∗) ≥⌈ δ(G)−1
2

⌉
≥ 2, |G∗| ≥ 3. Hence there exist distinct two subgraphs F1 and F2 of G∗ such that

V (Fj) \ V (F3−j) 6= ∅ for j = 1, 2, and |V (F1) ∩ V (F2)| ≤ 1, V (G∗) = V (F1) ∪ V (F2) and

EG(F1 − F2, F2 − F1) = ∅. Since |B| ≥ |G∗| ≥ 3, we also have that B is 2-connected. Hence

V (B − G∗) = (V (B) ∩ X) \ ϕ−1(B) 6= ∅. Let w ∈ V (F1) ∩ V (F2) if V (F1) ∩ V (F2) 6= ∅;
otherwise, let w be an arbitrary vertex in B −G∗. Let U = {u ∈ V (B −G∗) | NG(u)∩ (V (F1) \
{w}) 6= ∅}. Since B is 2-connected, U 6= ∅. If there exists u ∈ U such that NG(u) ∩ (V (F2) \
{w}) 6= ∅, then G[V (F1 ∪ F2 ∪ Bu+) ∪ {u}] contains K1,3 as an induced subgraph of G because

EG(V (F1) \ {w}, V (F2) \ {w}) = ∅ and EG(B − {u}, Bu+ − {u}) = ∅, a contradiction. Thus

NG(u) ∩ (V (F2) \ {w}) = ∅ for all u ∈ U . Hence since B is 2-connected, there exist u ∈ U and

v ∈ V (B) \ (V (G∗) ∪ U) such that uv ∈ E(G). Then G[V (F1 ∪ Bu+) ∪ {u, v}] contains K1,3 as

an induced subgraph of G because NG(v)∩ (V (F1) \{w}) = ∅ and EG(B−{u}, Bu+ −{u}) = ∅,
a contradiction again. Thus G∗ is 2-connected.

This completes the proof of Theorem 5. �

Proof of Theorem 4. Let G be a claw-free graph with δ(G) ≥ 4. We show that G has a

2-factor in which each component contains at least
⌈ δ(G)−1

2

⌉
vertices. By Theorem A, we may
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assume that δ(G) ≥ 6. Then by applying Theorem 5, we have that there exists a set G ∗ of

vertex-disjoint subgraphs in G such that
∪

G∗∈G ∗ V (G∗) = V (G), and G∗ is a 2-connected claw-

free graph and δ(G∗) ≥
⌈ δ(G)−1

2

⌉
≥ 3 for all G∗ ∈ G ∗. Hence by Theorem 1, each graph G∗

in G ∗ has a 2-factor in which each cycle contains at least δ(G∗)
(

≥
⌈ δ(G)−1

2

⌉)
vertices. Since

V (G) =
∪

G∗∈G ∗ V (G∗) (disjoint union), this implies that G has a desired 2-factor. �

6 Sharpness of Conjecture 3 and Theorem 5

We give a graph showing the sharpness of the lower bound on the length of a cycle in Conjecture

3. The graph G2 illustrated in Figure 6 (here, in Figure 6, “+” means the join of vertices) is a

claw-free graph with minimum degree d (≥ 4), and for each 2-factor of G2, the minimum length

of cycles in it is at most
⌈

d+1
2

⌉
, and G2 has a 2-factor such that the minimum length of cycles in

it is just
⌈

d+1
2

⌉
. To see this, let C be a set of vertex-disjoint cycles in G2 such that

∪
C∈C C is a

2-factor of G2. If x ∈ X and y ∈ Y are contained in same cycle in C , then by the definition of

G2, the maximum size of the cycle containing both x and y is
⌈

d+1
2

⌉
. Hence by the symmetry,

we may assume that for all x ∈ X ∪X ′ and all y ∈ Y ∪ Y ′, the cycle containing x and the cycle

containing y in C are distinct. Then by the definition of G2, there exists a subset C ′ of C such

that
∪

C∈C ′ V (C) = X or
∪

C∈C ′ V (C) = X ′. Since |X| = |X ′| =
⌈

d+1
2

⌉
, the minimum length of

cycles in C is at most
⌈

d+1
2

⌉
. Moreover, by these arguments, we can take a set C so that the

minimum length of cycles in C is just
⌈

d+1
2

⌉
. (Note that by adding X, Y , X ′ and Y ′ iteratively,

we can construct a sufficiently large graph.)

Obviously the above example also shows the sharpness of the lower bound of δ(G∗) in The-

orem 5.

References

[1] K. Ando, Y. Egawa, A. Kaneko, K. Kawarabayashi and H. Matsuda, Path factors in claw-

free graphs, Discrete Math. 243 (2002) 195–200.
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