A 2 -factor in which each cycle has long length in claw-free graphs*

Roman Čada ${ }^{1 \dagger} \quad$ Shuya Chiba ${ }^{2 \ddagger}$
Kiyoshi Yoshimoto ${ }^{38}$
${ }^{1}$ Department of Mathematics, University of West Bohemia Univerzitní 8, 30614 Plzeň, Czech Republic
${ }^{2}$ Department of Mathematics and Engineering, Kumamoto University
2-39-1, Kurokami, Kumamoto 860-8555, Japan
${ }^{3}$ Department of Mathematics, College of Science and Technology,
Nihon University, Tokyo 101-8308, Japan

Abstract

For a graph G, we denote by $\delta(G)$ the minimum degree of G. A graph G is said to be claw-free if G has no induced subgraph isomorphic to $K_{1,3}$. In this article, we prove that every claw-free graph G with minimum degree at least 4 has a 2 -factor in which each cycle contains at least $\left\lceil\frac{\delta(G)-1}{2}\right\rceil$ vertices and every 2 -connected claw-free graph G with minimum degree at least 3 has a 2 -factor in which each cycle contains at least $\delta(G)$ vertices. For the case where G is 2 -connected, the lower bound on the length of a cycle is best possible.

Keywords: 2-factor, Claw-free graph, Minimum degree
AMS Subject Classification: 05C70

1 Introduction

In this paper, we consider finite graphs. For terminology and notation not defined in this paper, we refer the readers to [6]. A simple graph means an undirected graph without loops or multiple edges. A multigraph may contain multiple edges but no loops. Let G be a graph. For a vertex v of G, the degree of v in G is the number of edges incident with v. Let $V(G), E(G)$ and $\delta(G)$ be the vertex set, the edge set and the minimum degree of G, respectively. We refer to the number of vertices of G as the order of G and denote it by $|G|$. A graph G is said to be claw-free if G has no induced subgraph isomorphic to $K_{1,3}$ (here $K_{1,3}$ denotes the complete bipartite graph

[^0]with partite sets of cardinalities 1 and 3 , respectively). We denote by $L(G)$ the line graph of G. Obviously a line graph is claw-free. A 2-factor of G is a spanning subgraph of G in which every component is a cycle.

It is a well-known conjecture that every 4-connected claw-free graph is Hamiltonian due to Matthews and Sumner [14]. Since a Hamilton cycle is a connected 2-factor, there are many results on 2-factors of claw-free graphs. For instance, results of both Choudum and Paulraj [5] and Egawa and Ota [7] imply that a moderate minimum degree condition already guarantees that a claw-free graph has a 2 -factor.

Theorem A ([5, 7]) Every claw-free graph with minimum degree at least 4 has a 2-factor.
Broersma, Kriesel and Ryjáček [2] showed that if there exists a function $f(n)$ of n such that $\lim _{n \rightarrow \infty} f(n) / n=0$ and every 4-connected claw-free graph of order n has a 2 -factor with at most $f(n)$ components, then every 4-connected claw-free graph is Hamiltonian. Thus, to solve Matthews and Sumner's conjecture, it suffices to show the existence of a 2 -factor with small number of components (not necessarily 1 component). Concerning the upper bound on the number of components, Broersma, Paulusma and the third author [3] and Jackson and the third author [11] proved the following, respectively (other related results can be found in $[8,12,13,15,18])$.

Theorem B ([3]) Every claw-free graph G with minimum degree at least 4 has a 2 -factor with at most $\max \left\{\left\lfloor\frac{|G|-3}{\delta(G)-1}\right\rfloor, 1\right\}$ components.

Theorem C ([11]) Every 2-connected claw-free graph G with minimum degree at least 4 has a 2 -factor with at most $\left\lfloor\frac{\lfloor G \mid+1}{4}\right\rfloor$ components.

It could be also another possible approach to study about the lengths of cycles in 2-factors of claw-free graphs. Our first main result is the following.

Theorem 1 Every 2-connected claw-free graph G with minimum degree at least 3 has a 2-factor in which each component contains at least $\delta(G)$ vertices.

The proof of the above is given in Section 4. As a corollary of Theorem 1, we can get the following which improve the both of Theorems B and C for 2-connected claw-free graphs.

Corollary 2 Every 2-connected claw-free graph G with minimum degree at least 3 has a 2factor with at most $\left\lfloor\frac{|G|}{\delta(G)}\right\rfloor$ components.

Figure 1: The graph G_{1}

In Theorem 1, the lower bound on the length of a cycle is best possible because we can construct a 2-connected claw-free graph G such that for each 2-factor of G, the minimum length of cycles in it is at most $\delta(G)$ as follows: let $d \geq 3$ be an integer, and let H_{1}, H_{2} and H_{3} be graphs with the connectivity one and exactly two end blocks such that each block of $H_{i}(1 \leq i \leq 3)$ is a complete graph of order $d+1$. For each $1 \leq i \leq 3$, let u_{i} and v_{i} be vertices contained in distinct end blocks of H_{i}, respectively, and u_{i} and v_{i} are not cut vertices of H_{i}. Let G_{1} be the graph obtained from $H_{1} \cup H_{2} \cup H_{3}$ by joining u_{i} and u_{i+1} for $1 \leq i \leq 3$ and joining v_{i} and v_{i+1} for $1 \leq i \leq 3$, where let $u_{4}=u_{1}$ and $v_{4}=v_{1}$, see Figure 1 (here K_{m} denotes the complete graph of order m). Then G_{1} is a 2-connected claw-free graph which satisfies $\delta\left(G_{1}\right)=d$, and for each 2-factor of G_{1}, the minimum length of cycles in it is at most d.

Remark. A path-factor is a spanning subgraph in which every component is a path. Ando et al. [1] proved that a claw-free graph G has a path-factor in which each component contains at least $\delta(G)+1$ vertices. Moreover they conjectured that if G is 2 -connected, then there exists a path-factor in which each component contains at least $3 \delta(G)+3$ vertices, but this conjecture is still open unlike the case of 2 -factors on 2 -connected claw-free graphs.

For claw-free graphs with cut vertices, we can construct an infinite family of examples G in which every 2 -factor contains a cycle of length at most $\left\lceil\frac{\delta(G)+1}{2}\right\rceil$ (see Section 6). We conjecture that the length is also the lower bound.

Conjecture 3 Every claw-free graph G with minimum degree at least 4 has a 2-factor in which each component contains at least $\left\lceil\frac{\delta(G)+1}{2}\right\rceil$ vertices.

In this paper, we will show a slightly weaker statement.
Theorem 4 Every claw-free graph G with minimum degree at least 4 has a 2 -factor in which each component contains at least $\left\lceil\frac{\delta(G)-1}{2}\right\rceil$ vertices.

An essential part of the proof of Theorem 4 is that we can divide a claw-free graph into mutually vertex-disjoint 2 -connected claw-free graphs which has large minimum degree, i.e., we prove the following in Section 5.

Theorem 5 Every claw-free graph G with minimum degree at least 4 has a set \mathscr{G}^{*} of mutually vertex-disjoint subgraphs such that $\bigcup_{G^{*} \in \mathscr{G}^{*}} V\left(G^{*}\right)=V(G)$ and each $G^{*} \in \mathscr{G}^{*}$ is a 2-connected claw-free graph with $\delta\left(G^{*}\right) \geq\left\lceil\frac{\delta(G)-1}{2}\right\rceil$.

A clique-factor is a spanning subgraph in which every component is a clique. Faudree et al. [9] showed that a line graph with minimum degree at least 7 has a clique-factor in which each component contains at least 3 vertices. It is known that if H is a tree, then the line graph $L(H)$ has a clique-factor in which each component contains at least $\left\lceil\frac{\delta(L(H))+1}{2}\right\rceil$ vertices ([4]). This supports Conjecture 3 in some sense.

It would be natural to consider the case where the connectivity is at least 3 as the next step. Concerning the number of components of 2 -factors in 3 -connected claw-free graphs, Kužel et al. [13] proved that every 3 -connected claw-free graph G has a 2 -factor with at most max $\{$ $\left.\left\lfloor\frac{|G|}{\delta(G)+2}\right\rfloor, 1\right\}$ components. Recently, Ozeki et al. [15] improved the result as follows : every 3connected claw-free graph G has a 2 -factor with at most $\left\lfloor\frac{4|G|}{5(\delta(G)+2)}+\frac{2}{5}\right\rfloor$ components. In view of this result, one might expect that the coefficient of $\delta(G)$ in the lower bound on the length of a cycle would be greater than 1 for 3 -connected claw-free graphs G.

Problem. Determine $f(d)=\max \{m \mid$ every 3 -connected non-hamiltonian claw-free graph with minimum degree d has a 2 -factor in which each component contains at least m vertices\}. In particular, is there a constant $c>1$ such that $f(d) \geq c d$ holds?

2 Terminology and notation

In this section, we prepare terminology and notation which we use in subsequent sections. Let G be a graph. We denote the number of edges of G by $e(G)$. For $X \subseteq V(G)$, we let $G[X]$ denote the subgraph induced by X in G, and let $G-X=G[V(G) \backslash X]$. If H is a subgraph of G, then let $G-H=G-V(H)$. A subset X of $V(G)$ is called an independent set of G if $G[X]$ is edgeless. Let H_{1} and H_{2} be subgraphs of G or subsets of $V(G)$, respectively. If H_{1} and H_{2} have no common vertex in G, we define $E_{G}\left(H_{1}, H_{2}\right)$ to be the set of edges of G between H_{1} and H_{2}, and let $e_{G}\left(H_{1}, H_{2}\right)=\left|E_{G}\left(H_{1}, H_{2}\right)\right|$. For a vertex v of G, we denote by $N_{G}(v)$ and $d_{G}(v)$ the neighborhood and the degree of v in G, respectively. For a positive integer l, we define $V_{l}(G)=\left\{v \in V(G) \mid d_{G}(v)=l\right\}$, and let $V_{\geq l}(G)=\bigcup_{m \geq l} V_{m}(G)$ and $V_{\leq l}(G)=\bigcup_{m \leq l} V_{m}(G)$.

Let $e=u v \in E(G)$. We denote by $V(e)$ the set of end vertices of e, i.e., $V(e)=\{u, v\}$. The edge degree of e in G is defined by the number of edges incident with e, and is denoted by $\xi_{G}(e)$, i.e., $\xi_{G}(e)=|\{f \in E(G) \mid f \neq e, V(f) \cap V(e) \neq \emptyset\}|$. Note that if G is a simple graph, then $\xi_{G}(e)=e_{G}(V(e), G-V(e))=d_{G}(u)+d_{G}(v)-2$. Let $\xi(G)$ be the minimum edge degree of G. For $X \subseteq E(G), G-X$ means the graph with the vertex set $V(G)$ and the edge set $E(G) \backslash X$.

If a graph S consists of a vertex (called a center) and edges incident with the center, S is called a star. So a star in this paper is not necessary a tree. A connected graph is called a closed trail if all the vertices have even degree. A closed trail T in a graph H is called a dominating closed trail if $H-T$ is edgeless.

3 Preparation for the proof of Theorem 1

To prove Theorem 1, we use Ryjáček closure. In [16], Ryjáček introduced the concept of a closure for claw-free graphs as follows. Let G be a claw-free graph. We call a vertex v of G locally connected (resp. locally disconnected) if $G\left[N_{G}(v)\right]$ is connected (resp. disconnected). Note that if a vertex v of G is locally disconnected, then $G\left[N_{G}(v)\right]$ is a union of two vertexdisjoint complete graphs (otherwise, G contains a $K_{1,3}$ as an induced subgraph). For a locally connected vertex v of G, we add edges joining all pairs of nonadjacent vertices in $N_{G}(v)$. The closure $\operatorname{cl}(G)$ of G is a graph obtained by recursively repeating this operation, as long as this is possible. In [16], it is shown that the closure of a graph has the following property. (Here a graph H is said to be triangle-free if H contains no K_{3}.)

Theorem \mathbf{D} ([16]) If G is a claw-free graph, then the following hold.
(i) $\operatorname{cl}(G)$ is well-defined, (i.e., uniquely defined).
(ii) There exists a triangle-free simple graph H such that $L(H)=\operatorname{cl}(G)$.

On the other hand, in [17, Theorem 4], Ryjáček, Saito and Schelp proved that for any vertexdisjoint cycles D_{1}, \ldots, D_{q} in $\operatorname{cl}(G), G$ has vertex-disjoint cycles C_{1}, \ldots, C_{p} with $p \leq q$ such that $\bigcup_{i=1}^{q} V\left(D_{i}\right) \subseteq \bigcup_{i=1}^{p} V\left(C_{i}\right)$. By modifying the proof, we can improve this result as follows.

Lemma \mathbf{E} ([13]) Let G be a claw-free graph. If D_{1}, \ldots, D_{q} are vertex-disjoint cycles in $\operatorname{cl}(G)$, then G has vertex-disjoint cycles C_{1}, \ldots, C_{p} with $p \leq q$ such that for each j with $1 \leq j \leq q$, there exists i with $1 \leq i \leq p$ such that $V\left(D_{j}\right) \subseteq V\left(C_{i}\right)$.

As a corollary of Lemma E, we can easily obtain the following.

Corollary 6 Let m be an integer. For a claw-free graph G, G has a 2 -factor in which each cycle contains at least m vertices if and only if $\operatorname{cl}(G)$ has a 2 -factor in which each cycle contains at least m vertices.

Proof of Corollary 6. The necessity is clear, and so we prove only sufficiency. Suppose that $\operatorname{cl}(G)$ has a 2-factor in which each cycle contains at least m vertices, and let D_{1}, \ldots, D_{q} are vertex-disjoint cycles in $\operatorname{cl}(G)$ such that $\bigcup_{j=1}^{q} V\left(D_{j}\right)=V(\operatorname{cl}(G))(=V(G))$ and $\left|D_{j}\right| \geq m$ for $1 \leq j \leq q$. Then by Lemma E, G has vertex-disjoint cycles C_{1}, \ldots, C_{p} with $p \leq q$ such that

$$
\begin{equation*}
\text { for each } j \text { with } 1 \leq j \leq q, \text { there exists } i \text { with } 1 \leq i \leq p \text { such that } V\left(D_{j}\right) \subseteq V\left(C_{i}\right) \tag{3.1}
\end{equation*}
$$

in particular, $\bigcup_{j=1}^{q} V\left(D_{j}\right) \subseteq \bigcup_{i=1}^{p} V\left(C_{i}\right)$. Since $\bigcup_{j=1}^{q} V\left(D_{j}\right)=V(G)$, we have that $\bigcup_{i=1}^{p} V\left(C_{i}\right)=$ $V(G)$, i.e., $\bigcup_{i=1}^{p} C_{i}$ forms a 2-factor of G. Since $\bigcup_{j=1}^{q} V\left(D_{j}\right)=\bigcup_{i=1}^{p} V\left(C_{i}\right)$, it follows from (3.1) that for each i with $1 \leq i \leq p$, there exists j with $1 \leq j \leq q$ such that $V\left(C_{i}\right) \supseteq V\left(D_{j}\right)$ (otherwise, $\bigcup_{j=1}^{q} V\left(D_{j}\right) \subsetneq \bigcup_{i=1}^{p} V\left(C_{i}\right)$, a contradiction). Since $\left|D_{j}\right| \geq m$ for $1 \leq j \leq q$, we have that $\left|C_{i}\right| \geq m$ for $1 \leq i \leq p$. Thus $\bigcup_{i=1}^{p} C_{i}$ is a desired 2-factor of G.

Now we are ready to state new statement which is equivalent to Theorem 1 (see Proposition 8). Here a multigraph H is called essentially k-edge-connected if $e(H) \geq k+1$ and $H-X$ has at most one component which contains an edge for every $X \subseteq E(H)$ with $|X|<k$. It is easy to see that for a graph H, H is essentially k-edge-connected if and only if $L(H)$ is k-connected.

Theorem 7 Let H be an essentially 2-edge-connected triangle-free simple graph. If $\delta(L(H)) \geq$ 3, then $L(H)$ has a 2-factor in which each cycle contains at least $\delta(L(H))$ vertices.

By Theorem D and Corollary 6, we can obtain the following proposition.

Proposition 8 Theorems 1 and 7 are equivalent.
Proof of Proposition 8. It is clear that Theorem 1 implies Theorem 7 because line graphs are claw-free. So we prove the converse.

Suppose that Theorem 7 is true, and let G be a 2-connected claw-free graph with $\delta(G) \geq 3$. We show that G has a 2 -factor in which each cycle contains at least $\delta(G)$ vertices. By Theorem D (ii) and since G is 2-connected, there exists an essentially 2-edge-connected triangle-free simple graph H such that $L(H)=\operatorname{cl}(G)$. Note that $\delta(L(H)) \geq \delta(G)$, and hence $\delta(L(H)) \geq 3$. Therefore, by Theorem $7, L(H)(=\operatorname{cl}(G))$ has a 2-factor in which each cycle contains at least $\delta(L(H))$ vertices. This together with Corollary 6 implies that G has a 2 -factor in which each cycle contains at least $\delta(L(H))(\geq \delta(G))$ vertices.

4 Proof of Theorem 1

By Proposition 8, it is enough to show Theorem 7 for Theorem 1. Before proving Theorem 7, we define a few terminologies.

It is well known that for a connected multigraph H with $e(H) \geq 3, L(H)$ is Hamiltonian if and only if H is a star or H has a dominating closed trail (see [10]). Obviously if H is a star, then $L(H)$ is a clique. A set \mathscr{D} is called a cover set of $E(H)$ if (i) \mathscr{D} is a set of edge-disjoint connected subgraphs in H such that $\bigcup_{D \in \mathscr{D}} E(D)=E(H)$, and (ii) for each $D \in \mathscr{D}, D$ is a star or D has a dominating closed trail. If all members in a cover set \mathscr{D} are stars, then we call \mathscr{D} a star cover set of $E(H)$.

The following fact implies Theorem 7.
Theorem 9 Let H be an essentially 2-edge-connected triangle-free simple graph. If $\xi(H) \geq 3$, then H has a cover set \mathscr{D} of $E(H)$ such that $e(D) \geq \xi(H)$ for all $D \in \mathscr{D}$.

Proof of Theorem 7. Let H be an essentially 2 -edge-connected triangle-free simple graph, and suppose that $\delta(L(H)) \geq 3$. Since $\xi(H)=\delta(L(H)) \geq 3$, by Theorem $9, H$ has a cover set \mathscr{D} of $E(H)$ such that $e(D) \geq \xi(H)(\geq 3)$ for all $D \in \mathscr{D}$. As D is a star or a connected subgraph which has a dominating closed trail for each D in \mathscr{D}, we have that $L(D)$ has a Hamilton cycle C_{D} for each D in \mathscr{D} (note that $\left|C_{D}\right|=|L(D)|=e(D) \geq \xi(H)=\delta(L(H))$). Since $\bigcup_{D \in \mathscr{D}} E(D)=E(H)$ and \mathscr{D} is a set of edge-disjoint connected subgraphs, it follows that $\bigcup_{D \in \mathscr{D}} C_{D}$ forms a desired 2-factor of $L(H)$.

Hence in the rest of this section, we prove Theorem 9. The following lemma will be used.
Lemma \mathbf{F} ([18]) Let H be an essentially 2-edge-connected graph. If $\xi(H) \geq 3$, then there exists a set \mathscr{T} of vertex-disjoint closed trails in H such that $V_{\geq 3}\left(H-V_{1}(H)\right) \subseteq \bigcup_{T \in \mathscr{T}} V(T)$.

Proof of Theorem 9. If H is a star, then $\{H\}$ is a desired cover set of $E(H)$. Thus we may assume that H is not a star. Then since H is essentially 2-edge-connected, we have $\delta(H-$ $\left.V_{1}(H)\right) \geq 2$. By Lemma F , there exists a set \mathscr{T} of vertex-disjoint closed trails in H such that $V_{\geq 3}\left(H-V_{1}(H)\right) \subseteq \bigcup_{T \in \mathscr{T}} V(T)$. Since $\delta\left(H-V_{1}(H)\right) \geq 2$ and $V_{\geq 3}\left(H-V_{1}(H)\right) \subseteq \bigcup_{T \in \mathscr{T}} V(T)$, it follows that $v \in V_{2}\left(H-V_{1}(H)\right)$ for all $v \in V_{\geq 3}(H) \backslash \bigcup_{T \in \mathscr{T}} V(T)$. This implies that for each $v \in V_{\geq 3}(H) \backslash \bigcup_{T \in \mathscr{T}} V(T)$,
there exist exactly two vertices u_{1} and u_{2} in $N_{H}(v)$ with $u_{1} \neq u_{2}$

$$
\begin{equation*}
\text { such that } u_{i} \in V_{\geq 2}(H) \text { for } i=1,2 \text { and } N_{H}(v) \backslash\left\{u_{1}, u_{2}\right\} \subseteq V_{1}(H) \tag{4.1}
\end{equation*}
$$

(see the left of Figure 2). In particular, $N_{H}(v) \backslash\left\{u_{1}, u_{2}\right\} \neq \emptyset$ since $v \in V_{\geq 3}(H)$, that is, $N_{H}(v) \cap V_{1}(H) \neq \emptyset$, and hence $\left|N_{H}(v) \backslash\left\{u_{1}, u_{2}\right\}\right| \geq d_{H}(v)-2 \geq \xi(H)-1$.

Figure 2: The graph H^{*}

Let H^{*} be the graph obtained from H by contracting an induced subgraph $H[V(T)]$ of H to a vertex v_{T} for each $T \in \mathscr{T}$ (note that H^{*} may be a multigraph, see Figure 2). Let $X=\left\{v_{T} \mid T \in \mathscr{T}\right\}$. Note that $|X|=|\mathscr{T}|$ since \mathscr{T} is a set of vertex-disjoint closed trails in H. By the definition of H^{*},

$$
\begin{equation*}
d_{H^{*}}(v)=d_{H}(v) \text { for all } v \in V\left(H^{*}\right) \backslash X . \tag{4.2}
\end{equation*}
$$

By (4.2) and since $V_{1}(H) \cap\left(\bigcup_{T \in \mathscr{T}} V(T)\right)=\emptyset$,

$$
\begin{equation*}
V_{1}(H)=V_{1}\left(H^{*}\right) \backslash X . \tag{4.3}
\end{equation*}
$$

By the definition of H^{*} and (4.2) and since $\xi(H) \geq 3$, we also have that $V_{\leq 2}\left(H^{*}\right) \backslash X$ is an independent set of H^{*}.

To show the existence of a cover set \mathscr{D} of $E(H)$, we find a mapping $\varphi: E\left(H^{*}\right) \rightarrow V\left(H^{*}\right)$ so that
(M1) $\varphi(e)=u$ or $\varphi(e)=v$ for all $e=u v \in E\left(H^{*}\right)$,
(M2) $\left|\varphi^{-1}(v)\right|=0$ for all $v \in V_{\leq 2}\left(H^{*}\right) \backslash X$,
(M3) $\left|\varphi^{-1}(v)\right| \geq \xi(H)$ for all $v \in V_{\geq 3}\left(H^{*}\right) \backslash X$,
(M4) $\left|\varphi^{-1}\left(v_{T}\right)\right|+e(H[V(T)]) \geq \xi(H)$ for all $v_{T} \in X$.
If there exists such a mapping φ, then we can construct a desired cover set as follows. Suppose that there exists such a mapping φ. Let $\mathscr{S}=\left\{S_{v} \mid v \in V_{\geq 3}\left(H^{*}\right) \cup X\right\}$ be a set of stars such that for each $S_{v} \in \mathscr{S}, S_{v}$ is a star consisting of a vertex v (as the center) and the edges in $\varphi^{-1}(v)$. Then by the conditions (M1) and (M2), \mathscr{S} is a star cover set of $E\left(H^{*}\right)$. Furthermore by the conditions (M3) and (M4),e(Sv) $\left|\varphi^{-1}(v)\right| \geq \xi(H)$ for each $v \in V_{\geq 3}\left(H^{*}\right) \backslash X$ and $e\left(S_{v_{T}}\right)=\left|\varphi^{-1}\left(v_{T}\right)\right| \geq \xi(H)-e(H[V(T)])$ for each $v_{T} \in X$. Hence by the definition of H^{*}, and by considering a subset of $E(H)$ corresponding to $E\left(S_{v}\right)$ for each $v \in V_{\geq 3}\left(H^{*}\right) \cup X$ and replacing

$v \in V_{\geq 3}\left(H^{*}\right) \backslash X$
D^{\prime} is also a star

Figure 3: The desired cover set of $E(H)$
v_{T} with $H[V(T)]$ for each $v_{T} \in X$, we can find a cover set \mathscr{D} of $E(H)$ such that $e(D) \geq \xi(H)$ for all $D \in \mathscr{D}$ (see Figure 3). Thus it suffices to show the existence of the above mapping φ.

Let $H^{\prime}=H^{*}-\left(V_{1}\left(H^{*}\right) \backslash X\right)$. To show the existence of a mapping φ satisfying the conditions (M1)-(M4), we define a mapping $\varphi^{\prime}: E\left(H^{\prime}\right) \rightarrow V\left(H^{\prime}\right)$ as follows. Since the number of vertices of odd degree is even in H^{\prime}, there exists a collection of paths P_{1}, \ldots, P_{l} in H^{\prime} such that each vertex in $o\left(H^{\prime}\right)$ appears in the set of end vertices of them exactly ones (note that $l=\left|o\left(H^{\prime}\right)\right| / 2$), where for a graph $G, o(G)$ denotes the set of vertices with odd degree in G. By considering the symmetric difference of them, we may assume that P_{1}, \ldots, P_{l} are pairwise edge-disjoint. For each $1 \leq i \leq l$, write $P_{i}=x_{1}^{i} x_{2}^{i} x_{3}^{i} \ldots x_{\left|P_{i}\right|-1}^{i} x_{\left|P_{i}\right|}^{i}$, and let $e_{j}^{i}=x_{j}^{i} x_{j+1}^{i}$ for each $1 \leq j \leq\left|P_{i}\right|-1$, and we define $\varphi^{\prime}\left(e_{j}^{i}\right)=x_{j+1}^{i}$ for each $1 \leq j \leq\left|P_{i}\right|-1$. Let $H^{\prime \prime}=H^{\prime}-\bigcup_{i=1}^{l} E\left(P_{i}\right)$. By the definitions of P_{1}, \ldots, P_{l}, we have $o\left(H^{\prime \prime}\right)=\emptyset$. Hence the edges of each component of order at least 2 in $H^{\prime \prime}$ can be covered by pairwise edge-disjoint cycles. For each cycle, written by $y_{1} y_{2} y_{3} \ldots y_{m-1} y_{m}\left(=y_{1}\right)$, we define $\varphi^{\prime}\left(e_{j}\right)=y_{j+1}$, where $e_{j}=y_{j} y_{j+1}$ for each $1 \leq j \leq m-1$. Then by the definition of φ^{\prime}, for each $v \in V\left(H^{\prime}\right)$,

$$
\begin{equation*}
\left|\varphi^{\prime-1}(v)\right| \geq\left(d_{H^{\prime}}(v)-1\right) / 2=\left(\left(d_{H^{*}}(v)-\left|\left(N_{H^{*}}(v) \cap V_{1}\left(H^{*}\right)\right) \backslash X\right|\right)-1\right) / 2 \tag{4.4}
\end{equation*}
$$

Now we define a mapping $\varphi: E\left(H^{*}\right) \rightarrow V\left(H^{*}\right)$ as follows: for each $e=u v \in E\left(H^{*}\right)$, we let

$$
\varphi(e)= \begin{cases}u & \text { if } v \in V_{\leq 2}\left(H^{*}\right) \backslash X \\ \varphi^{\prime}(e) & \text { otherwise }\end{cases}
$$

Since $V_{\leq 2}\left(H^{*}\right) \backslash X$ is an independent set of H^{*}, φ is well defined. By the definitions of φ and φ^{\prime}, we can easily see that φ satisfies the conditions (M1) and (M2). So we show that φ satisfies the
conditions (M3) and (M4). Since $\left(V_{1}\left(H^{*}\right) \backslash X\right) \cap V\left(H^{\prime}\right)=\emptyset$ by the definition of H^{\prime}, it follows from the definition of φ that

$$
\begin{equation*}
\left|\varphi^{-1}(v)\right| \geq\left|\varphi^{\prime-1}(v)\right|+\left|\left(N_{H^{*}}(v) \cap V_{1}\left(H^{*}\right)\right) \backslash X\right| \text { for all } v \in X . \tag{4.5}
\end{equation*}
$$

We first show that φ satisfies the condition (M3). Let $v \in V_{\geq 3}\left(H^{*}\right) \backslash X$. Then by (4.2) and the definitions of H^{*} and $X, v \in V_{\geq 3}(H) \backslash \bigcup_{T \in \mathscr{T}} V(T)$. Hence by (4.1), there exist exactly two vertices $u_{1}, u_{2} \in N_{H}(v)$ with $u_{1} \neq u_{2}$ such that $u_{i} \in V_{\geq 2}(H)$ for $i=1,2, N_{H}(v) \backslash\left\{u_{1}, u_{2}\right\} \subseteq$ $V_{1}(H)$ and $\left|N_{H}(v) \backslash\left\{u_{1}, u_{2}\right\}\right| \geq \xi(H)-1$. Therefore by (4.2), (4.3) and the definition of H^{*}, there exist distinct two edges $v u_{1}^{\prime}, v u_{2}^{\prime} \in E\left(H^{*}\right)$ such that $u_{i}^{\prime} \in V_{\geq 2}\left(H^{*}\right) \cup X$ for $i=1,2$, $N_{H^{*}}(v) \backslash\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\} \subseteq V_{1}\left(H^{*}\right) \backslash X$ and $\left|N_{H^{*}}(v) \backslash\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}\right| \geq \xi(H)-1\left(v u_{1}^{\prime}\right.$ and $v u_{2}^{\prime}$ may be parallel edges in H^{*}, e.g., $v_{T}=u_{1}^{\prime}=u_{2}^{\prime}$ in Figure 2). If $u_{i}^{\prime} \in V_{2}\left(H^{*}\right) \backslash X$ for some $i=1$ or 2, then by the definition of φ, we have $\left|\varphi^{-1}(v)\right| \geq\left|\left(N_{H}(v) \cap V_{1}\left(H^{*}\right)\right) \backslash X\right|+\left|\left(N_{H}(v) \cap V_{2}\left(H^{*}\right)\right) \backslash X\right|$ $\geq\left|N_{H^{*}}(v) \backslash\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}\right|+1 \geq(\xi(H)-1)+1=\xi(H)$. Thus we may assume that $u_{i}^{\prime} \in V_{\geq 3}\left(H^{*}\right) \cup X$ for $i=1,2$. Note that by the definition of $H^{\prime}, u_{i}^{\prime} \in V\left(H^{\prime}\right)$ for $i=1,2$. Since $N_{H^{*}}(v) \backslash\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\} \subseteq$ $V_{1}\left(H^{*}\right) \backslash X$, we have $v \in V_{2}\left(H^{\prime}\right)$ (the degree of v in H^{\prime} is even) and $v u_{i}^{\prime} \in E\left(H^{\prime}\right)$ for $i=1,2$. Hence by the definition of $\varphi^{\prime}, \varphi^{\prime}\left(v u_{j}^{\prime}\right)=v$ and $\varphi^{\prime}\left(v u_{3-j}^{\prime}\right)=u_{3-j}^{\prime}$ for some j with $j \in\{1,2\}$. We may assume that $j=1$. Then by the definition of φ and since $\left\{v, u_{1}^{\prime}\right\} \subseteq V_{\geq 3}\left(H^{*}\right) \cup X$, it follows that $\varphi\left(v u_{1}^{\prime}\right)=\varphi^{\prime}\left(v u_{1}^{\prime}\right)=v$. Therefore $\left|\varphi^{-1}(v)\right| \geq\left|\left(N_{H}(v) \cap V_{1}\left(H^{*}\right)\right) \backslash X\right|+\left|\left\{v u_{1}^{\prime}\right\}\right| \geq$ $\left|N_{H^{*}}(v) \backslash\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}\right|+1 \geq(\xi(H)-1)+1=\xi(H)$. Thus φ satisfies the condition (M3).

We next show that φ satisfies the condition (M4). Let $T \in \mathscr{T}$. Since H is a triangle-free simple graph, all cycles which are contained in T have order at least 4. Hence there exist two independent edges e_{1} and e_{2} in T. For each $i=1,2$, let

$$
\epsilon_{i}=\left|\left\{e \in E(H[V(T)]) \mid e \neq e_{i}, V(e) \cap V\left(e_{i}\right) \neq \emptyset\right\}\right| .
$$

Since H is triangle-free, $\mid\left\{e \in E(H[V(T)]) \mid V(e) \cap V\left(e_{i}\right) \neq \emptyset\right.$ for $\left.i=1,2\right\} \mid \leq 2$. Hence by the definition of ϵ_{i},

$$
\begin{equation*}
e(H[V(T)]) \geq\left(\epsilon_{1}+\epsilon_{2}\right)-2+\left|\left\{e_{1}, e_{2}\right\}\right|=\epsilon_{1}+\epsilon_{2} . \tag{4.6}
\end{equation*}
$$

We also have $e_{H}\left(V\left(e_{i}\right), H-T\right) \geq \xi(H)-\epsilon_{i}$ for each $i=1,2$. Hence since $d_{H^{*}}\left(v_{T}\right)=e_{H}(T, H-T)$ by the definition of H^{*} and since $E_{H}\left(V\left(e_{1}\right), H-T\right) \cap E_{H}\left(V\left(e_{2}\right), H-T\right)=\emptyset$, we obtain

$$
\begin{equation*}
d_{H^{*}}\left(v_{T}\right)=e_{H}(T, H-T) \geq e_{H}\left(V\left(e_{1}\right), H-T\right)+e_{H}\left(V\left(e_{2}\right), H-T\right) \geq 2 \xi(H)-\left(\epsilon_{1}+\epsilon_{2}\right) . \tag{4.7}
\end{equation*}
$$

Then by (4.4) through (4.7),

$$
\begin{aligned}
\left|\varphi^{-1}\left(v_{T}\right)\right| & \geq\left|\varphi^{\prime-1}\left(v_{T}\right)\right|+\left|\left(N_{H^{*}}\left(v_{T}\right) \cap V_{1}\left(H^{*}\right)\right) \backslash X\right| \\
& \geq\left(d_{H^{*}}\left(v_{T}\right)-\left|\left(N_{H^{*}}\left(v_{T}\right) \cap V_{1}\left(H^{*}\right)\right) \backslash X\right|-1\right) / 2+\left|\left(N_{H^{*}}\left(v_{T}\right) \cap V_{1}\left(H^{*}\right)\right) \backslash X\right| \\
& \geq\left(2 \xi(H)-\left(\epsilon_{1}+\epsilon_{2}\right)-1\right) / 2 \\
& =\xi(H)-\left(\left(\epsilon_{1}+\epsilon_{2}\right)+1\right) / 2 \\
& \geq \xi(H)-(e(H[V(T)])+1) / 2 .
\end{aligned}
$$

Since $e(H[V(T)]) \geq 4$, we get $\left|\varphi^{-1}\left(v_{T}\right)\right|+e(H[V(T)]) \geq \xi(H)-(e(H[V(T)])+1) / 2+e(H[V(T)]) \geq$ $\xi(H)+(e(H[V(T)])-1) / 2>\xi(H)$. Thus φ satisfies the condition (M4).

This completes the proof of Theorem 9.

5 Proof of Theorem 4

As mentioned in Section 1, the essential part of the proof of Theorem 4 is Theorem 5, and hence at first we give the proof. In order to prove this, we use the following lemma.

Lemma 10 Let G be a claw-free graph and B be a block of G. Let u be a vertex in B, and let x_{1} and x_{2} be distinct two cut vertices in G such that $x, y \in N_{B}(u)$. If $x_{1} x_{2} \notin E(G)$, then $G\left[N_{B}(u)\right]$ has a clique-factor with 2 components.

Proof of Lemma 10. Let $G_{i}=G\left[N_{B}\left(x_{i}\right) \cup\left\{x_{i}\right\}\right]$ for $i=1,2$. Since x_{1} and x_{2} are cut vertices in G, each x_{i} is locally disconnected. This implies that G_{1} and G_{2} are complete graphs, respectively. Suppose that there exists a vertex y in $N_{B}(u) \backslash\left(V\left(G_{1}\right) \cup V\left(G_{2}\right)\right)$. Then by the definitions of G_{1} and G_{2}, it follows that $y x_{i} \notin E(G)$ for $i=1,2$. Since $x_{1} x_{2} \notin E(G)$, this implies that $G\left[\left\{u, x_{1}, x_{2}, y\right\}\right]$ is isomorphic to $K_{1,3}$, a contradiction. Thus $N_{B}(u) \subseteq V\left(G_{1}\right) \cup V\left(G_{2}\right)$, and hence $G_{1}^{\prime}:=G\left[N_{B}(u) \cap V\left(G_{1}\right)\right]$ and $G_{2}^{\prime}:=G\left[N_{B}(u) \backslash V\left(G_{1}^{\prime}\right)\right]$ forms a clique-factor with 2 components in $G\left[N_{B}(u)\right]$.

Proof of Theorem 5. Let G be a claw-free graph with $\delta(G) \geq 4$. It suffices to consider the case where G is connected. If G is 2 -connected, then $\mathscr{G}^{*}=\{G\}$ is a desired set. Thus we may assume that G has a cut vertex. Let \mathscr{B} be the set of blocks of G and X be the set of cut vertices of G. We consider the block cut tree T of G, i.e., $V(T)=\mathscr{B} \cup X$ and $E(T)=\{B v \mid B \in \mathscr{B}, v \in V(B) \cap X\}$. Since every cut vertex of G is locally disconnected, it follows that for each $v \in X$,

$$
\begin{equation*}
G\left[N_{G}(v)\right] \text { is a union of two vertex-disjoint complete graphs. } \tag{5.1}
\end{equation*}
$$

Figure 4: Subsets $\mathscr{B}_{0}, \ldots, \mathscr{B}_{m}$ and subsets X_{0}, \ldots, X_{m}

Hence $d_{T}(v)=2$ for all $v \in X$. Let $B_{0} \in \mathscr{B}$ be the root of T. We consider T as an oriented tree from B_{0} to leaves, and denote it \vec{T}. For each $v \in X$, we let $B_{v^{+}}$(resp. $B_{v^{-}}$) denote a successor (resp. a predecessor) of v along \vec{T} (note that $B_{v^{+}}$and $B_{v^{-}}$are uniquely defined because $d_{T}(v)=2$, and note also that $\left.B_{v^{+}}, B_{v^{-}} \in \mathscr{B}\right)$. For each $B \in \mathscr{B} \backslash\left\{B_{0}\right\}$, we let v_{B} denote a predecessor of B along \vec{T} (note that v_{B} is uniquely defined). We define subsets $\mathscr{B}_{0}, \ldots, \mathscr{B}_{m}$ of \mathscr{B} and subsets X_{0}, \ldots, X_{m} of X inductively by the following procedure. First let $\mathscr{B}_{0}=\left\{B_{0}\right\}$, and let $X_{0}=\left\{v \in X \mid B_{v^{-}}=B_{0}\right\}$. Now let $i \geq 1$, and assume that we have defined $\mathscr{B}_{0}, \ldots, \mathscr{B}_{i-1}$ and X_{0}, \ldots, X_{i-1}. If $X_{i-1} \neq \emptyset$, then let $\mathscr{B}_{i}=\left\{B_{v^{+}} \mid v \in X_{i-1}\right\}$, and let $X_{i}=\left\{v \in X \mid B_{v^{-}} \in \mathscr{B}_{i}\right\} ;$ if $X_{i-1}=\emptyset$, we let $m=i-1$ and terminate the procedure (see Figure 4). Then it follows from the definitions of $\mathscr{B}_{0}, \ldots, \mathscr{B}_{m}$ and X_{0}, \ldots, X_{m} that \mathscr{B} is disjoint union of $\mathscr{B}_{0}, \ldots, \mathscr{B}_{m}$ and X is disjoint union of X_{0}, \ldots, X_{m-1}.

We define a mapping $\varphi: X \rightarrow \mathscr{B}$ inductively as follows. First for each $v \in X_{0}$, let

$$
\varphi(v)= \begin{cases}B_{v^{-}}\left(=B_{0}\right) & \text { if }\left|N_{G}(v) \cap V\left(B_{v^{-}}\right)\right| \geq \frac{\delta(G)}{2} \\ B_{v^{+}} & \text {otherwise }\end{cases}
$$

Now let $i \geq 1$, and assume that we have defined $\varphi(v)$ for each $v \in X_{l}$ with $1 \leq l \leq i-1$. If $i \leq m-1$, then for each $v \in X_{i}$, let

$$
\varphi(v)=\left\{\begin{array}{ll}
B_{v^{-}} & \text {if } \varphi\left(v_{B_{v^{-}}}\right)=B_{v^{-}} \text {and }\left|N_{G}(v) \cap V\left(B_{v^{-}}\right)\right| \geq \frac{\delta(G)}{2} \\
B_{v^{-}} & \text {if } \varphi\left(v_{B_{v^{-}}}\right) \neq B_{v^{-}} \text {and }\left|N_{G}(v) \cap V\left(B_{v^{-}}\right)\right| \geq \frac{\delta(G)+1}{2} \\
B_{v^{-}} & \text {if } \varphi\left(v_{B_{v^{-}}}\right) \neq B_{v^{-}},\left|N_{G}(v) \cap V\left(B_{v^{-}}\right)\right|=\frac{\delta(G)}{2} \text { and } v v_{B_{v^{-}}} \notin E(G) \\
B_{v^{+}} & \text {otherwise }
\end{array} ;\right.
$$

Figure 5: The definition of φ
if $i=m$, then we terminate the procedure (see Figure 5). Let

$$
\mathscr{G}^{*}=\left\{G\left[(V(B) \backslash X) \cup \varphi^{-1}(B)\right] \mid B \in \mathscr{B}\right\}
$$

We show that \mathscr{G}^{*} is a desired set. By the definition of \mathscr{G}^{*}, it is easy to check that \mathscr{G}^{*} is a set of vertex-disjoint subgraphs in G such that $\bigcup_{G^{*} \in \mathscr{G}^{*}} V\left(G^{*}\right)=V(G)$ and G^{*} is a claw-free graph for all $G^{*} \in \mathscr{G}^{*}$. Let $G^{*} \in \mathscr{G}^{*}$, and let $G^{*}=G\left[(V(B) \backslash X) \cup \varphi^{-1}(B)\right]$ for some $B \in \mathscr{B}_{i}$ with $0 \leq i \leq m$.

Let $u \in V\left(G^{*}\right)$. We first show that $d_{G^{*}}(u) \geq\left\lceil\frac{\delta(G)-1}{2}\right\rceil$.
Case 1. $u \in \varphi^{-1}(B)$ and $B \in \mathscr{B}_{0}$, i.e., $B=B_{0}$.
Then by the definition of $\varphi,\left|N_{G}(u) \cap V\left(B_{0}\right)\right| \geq \frac{\delta(G)}{2}$. Since $G\left[N_{G}(u) \cap V\left(B_{0}\right)\right]$ is a complete graph by (5.1), $\left|N_{G}(v) \cap V\left(B_{0}\right)\right| \geq\left|\left(N_{G}(u) \cap V\left(B_{0}\right)\right) \backslash\{v\}\right|+|\{u\}| \geq \frac{\delta(G)}{2}$ for all $v \in N_{G}(u) \cap$ $V\left(B_{0}\right)$. Hence by the definition of $\varphi, \varphi(v)=B_{0}$ for all $v \in N_{G}(u) \cap V\left(B_{0}\right) \cap X$. Since $G^{*}=G\left[\left(V\left(B_{0}\right) \backslash X\right) \cup \varphi^{-1}\left(B_{0}\right)\right]$, this implies that $\left(N_{G}(u) \cap V\left(B_{0}\right)\right) \cup\{u\} \subseteq V\left(G^{*}\right)$, and hence $d_{G^{*}}(u)=\left|N_{G}(u) \cap V\left(B_{0}\right)\right| \geq \frac{\delta(G)}{2}$.

Case 2. $u \in \varphi^{-1}(B)$ and $B \in \mathscr{B}_{i}$ with $1 \leq i \leq m$.
Assume for the moment that $u=v_{B}$, or $u \neq v_{B}$ and $\varphi\left(v_{B}\right)=B$. Then by the definition of φ, $\left|N_{G}(u) \cap V(B)\right| \geq \frac{\delta(G)}{2}$. Since $G\left[N_{G}(u) \cap V(B)\right]$ is a complete graph by $(5.1),\left|N_{G}(v) \cap V(B)\right| \geq$ $\frac{\delta(G)}{2}$ for all $v \in N_{G}(u) \cap V(B)$. Since $\varphi\left(v_{B}\right)=B$, it follows from the definition of φ that $\varphi(v)=B$ for all $v \in N_{G}(u) \cap V(B) \cap X$. Since $G^{*}=G\left[(V(B) \backslash X) \cup \varphi^{-1}(B)\right]$, this implies that $\left(N_{G}(u) \cap V(B)\right) \cup\{u\} \subseteq V\left(G^{*}\right)$, and hence $d_{G^{*}}(u)=\left|N_{G}(u) \cap V(B)\right| \geq \frac{\delta(G)}{2}$. Thus we may assume that $u \neq v_{B}$ and $\varphi\left(v_{B}\right) \neq B$. Then by the definition of φ, (i) $\left|N_{G}(u) \cap V(B)\right| \geq \frac{\delta(G)+1}{2}$ or (ii) $\left|N_{G}(u) \cap V(B)\right|=\frac{\delta(G)}{2}$ and $u v_{B} \notin E(G)$. Since $G\left[N_{G}(u) \cap V(B)\right]$ is a complete graph by (5.1), it follows that for each $v \in N_{G}(u) \cap V(B)$, either (i') $\left|N_{G}(v) \cap V(B)\right| \geq \frac{\delta(G)+1}{2}$ or (ii') $\left|N_{G}(v) \cap V(B)\right|=\frac{\delta(G)}{2}$ and $v v_{B} \notin E(G)$ holds. Hence by the definition of $\varphi, \varphi(v)=B$ for all $v \in N_{G}(u) \cap V(B) \cap\left(X \backslash\left\{v_{B}\right\}\right)$. Since $G^{*}=G\left[(V(B) \backslash X) \cup \varphi^{-1}(B)\right]$, this implies that
$\left(\left(N_{G}(u) \cap V(B)\right) \cup\{u\}\right) \backslash\left\{v_{B}\right\} \subseteq V\left(G^{*}\right)$ (note that if (ii) holds, then $\left(N_{G}(u) \cap V(B)\right) \cup\{u\} \subseteq$ $V\left(G^{*}\right)$), and hence $d_{G^{*}}(u) \geq\left|\left(N_{G}(u) \cap V(B)\right) \backslash\left\{v_{B}\right\}\right| \geq \frac{\delta(G)-1}{2}$.
Case 3. $u \notin \varphi^{-1}(B)$, i.e., $u \in V(B) \backslash X$.
Since $u \in V(B) \backslash X, d_{B}(u)=d_{G}(u) \geq \delta(G)$. If $\left|N_{B}(u) \backslash X\right| \geq \frac{\delta(G)-1}{2}$, then $G^{*}=G[(V(B) \backslash$ $\left.X) \cup \varphi^{-1}(B)\right]$ implies that $d_{G^{*}}(u) \geq\left|N_{B}(u) \backslash X\right| \geq \frac{\delta(G)-1}{2}$. Thus we may assume that $\left|N_{B}(u)\right|$ $X \left\lvert\, \leq \frac{\delta(G)-2}{2}\right.$, that is, $\left|N_{B}(u) \cap X\right| \geq \frac{\delta(G)+2}{2}(\geq 3)$. In the rest of Case 3 , we let $v^{*}=v_{B}$ if $B \neq B_{0}$; otherwise, let v^{*} be an arbitrary vertex in $G-B$.

Suppose that $G\left[N_{B}(u) \cap X\right]$ is a complete graph. Then $\left|N_{G}(v) \cap V(B)\right| \geq \mid\left(N_{B}(u) \cap X\right) \backslash$ $\{v\}\left|+|\{u\}| \geq \frac{\delta(G)+2}{2}\right.$ for all $v \in N_{B}(u) \cap X$. Hence by the definition of $\varphi, \varphi(v)=B$ for all $v \in\left(N_{B}(u) \cap X\right) \backslash\left\{v^{*}\right\}$. Since $G^{*}=G\left[(V(B) \backslash X) \cup \varphi^{-1}(B)\right]$, this implies that $\left(N_{B}(u) \cap X\right) \backslash\left\{v^{*}\right\} \subseteq$ $V\left(G^{*}\right)$, and hence $d_{G^{*}}(u) \geq \frac{\delta(G)}{2}$. Thus we may assume that $G\left[N_{B}(u) \cap X\right]$ is not complete.

Then by Lemma 10, there exists a complete subgraph F of $B\left[N_{B}(u) \cup\{u\}\right]$ such that (i) $u \in V(F)$ and $|F| \geq \frac{\delta(G)+3}{2}$ or (ii) $u \in V(F),|F|=\frac{\delta(G)+2}{2}$ and $v^{*} \notin V(F)$. Then since F is a complete graph, it follows that for each $v \in V(F)$, either (i') $\left|N_{G}(v) \cap V(B)\right| \geq \frac{\delta(G)+1}{2}$ or (ii') $\left|N_{G}(v) \cap V(B)\right|=\frac{\delta(G)}{2}$ and $v v^{*} \notin E(G)$ holds. Hence by the definition of $\varphi, \varphi(v)=B$ for all $v \in(V(F) \cap X) \backslash\left\{v^{*}\right\}$. Since $G^{*}=G\left[(V(B) \backslash X) \cup \varphi^{-1}(B)\right]$, this implies that $V(F) \backslash\left\{v^{*}\right\} \subseteq V\left(G^{*}\right)$ (note that if (ii) holds, then $V(F) \subseteq V\left(G^{*}\right)$), and hence $d_{G^{*}}(u) \geq\left|V(F) \backslash\left\{u, v^{*}\right\}\right| \geq \frac{\delta(G)-1}{2}$.

By Cases $1-3, d_{G^{*}}(u) \geq\left\lceil\frac{\delta(G)-1}{2}\right\rceil$. Since u is an arbitrary vertex in $G^{*}, \delta\left(G^{*}\right) \geq\left\lceil\frac{\delta(G)-1}{2}\right\rceil$.
We next show that G^{*} is 2-connected. Suppose that G^{*} is not 2 -connected. Since $\delta\left(G^{*}\right) \geq$ $\left\lceil\frac{\delta(G)-1}{2}\right\rceil \geq 2,\left|G^{*}\right| \geq 3$. Hence there exist distinct two subgraphs F_{1} and F_{2} of G^{*} such that $V\left(F_{j}\right) \backslash V\left(F_{3-j}\right) \neq \emptyset$ for $j=1,2$, and $\left|V\left(F_{1}\right) \cap V\left(F_{2}\right)\right| \leq 1, V\left(G^{*}\right)=V\left(F_{1}\right) \cup V\left(F_{2}\right)$ and $E_{G}\left(F_{1}-F_{2}, F_{2}-F_{1}\right)=\emptyset$. Since $|B| \geq\left|G^{*}\right| \geq 3$, we also have that B is 2-connected. Hence $V\left(B-G^{*}\right)=(V(B) \cap X) \backslash \varphi^{-1}(B) \neq \emptyset$. Let $w \in V\left(F_{1}\right) \cap V\left(F_{2}\right)$ if $V\left(F_{1}\right) \cap V\left(F_{2}\right) \neq \emptyset ;$ otherwise, let w be an arbitrary vertex in $B-G^{*}$. Let $U=\left\{u \in V\left(B-G^{*}\right) \mid N_{G}(u) \cap\left(V\left(F_{1}\right) \backslash\right.\right.$ $\{w\}) \neq \emptyset\}$. Since B is 2-connected, $U \neq \emptyset$. If there exists $u \in U$ such that $N_{G}(u) \cap\left(V\left(F_{2}\right) \backslash\right.$ $\{w\}) \neq \emptyset$, then $G\left[V\left(F_{1} \cup F_{2} \cup B_{u^{+}}\right) \cup\{u\}\right]$ contains $K_{1,3}$ as an induced subgraph of G because $E_{G}\left(V\left(F_{1}\right) \backslash\{w\}, V\left(F_{2}\right) \backslash\{w\}\right)=\emptyset$ and $E_{G}\left(B-\{u\}, B_{u^{+}}-\{u\}\right)=\emptyset$, a contradiction. Thus $N_{G}(u) \cap\left(V\left(F_{2}\right) \backslash\{w\}\right)=\emptyset$ for all $u \in U$. Hence since B is 2-connected, there exist $u \in U$ and $v \in V(B) \backslash\left(V\left(G^{*}\right) \cup U\right)$ such that $u v \in E(G)$. Then $G\left[V\left(F_{1} \cup B_{u^{+}}\right) \cup\{u, v\}\right]$ contains $K_{1,3}$ as an induced subgraph of G because $N_{G}(v) \cap\left(V\left(F_{1}\right) \backslash\{w\}\right)=\emptyset$ and $E_{G}\left(B-\{u\}, B_{u^{+}}-\{u\}\right)=\emptyset$, a contradiction again. Thus G^{*} is 2 -connected.

This completes the proof of Theorem 5.

Proof of Theorem 4. Let G be a claw-free graph with $\delta(G) \geq 4$. We show that G has a 2 -factor in which each component contains at least $\left\lceil\frac{\delta(G)-1}{2}\right\rceil$ vertices. By Theorem A, we may
assume that $\delta(G) \geq 6$. Then by applying Theorem 5 , we have that there exists a set \mathscr{G}^{*} of vertex-disjoint subgraphs in G such that $\bigcup_{G^{*} \in \mathscr{G} *} V\left(G^{*}\right)=V(G)$, and G^{*} is a 2-connected clawfree graph and $\delta\left(G^{*}\right) \geq\left\lceil\frac{\delta(G)-1}{2}\right\rceil \geq 3$ for all $G^{*} \in \mathscr{G}^{*}$. Hence by Theorem 1, each graph G^{*} in \mathscr{G}^{*} has a 2 -factor in which each cycle contains at least $\delta\left(G^{*}\right)\left(\geq\left\lceil\frac{\delta(G)-1}{2}\right\rceil\right)$ vertices. Since $V(G)=\bigcup_{G^{*} \in \mathscr{G}^{*}} V\left(G^{*}\right)$ (disjoint union), this implies that G has a desired 2-factor.

6 Sharpness of Conjecture 3 and Theorem 5

We give a graph showing the sharpness of the lower bound on the length of a cycle in Conjecture 3. The graph G_{2} illustrated in Figure 6 (here, in Figure 6, " + " means the join of vertices) is a claw-free graph with minimum degree $d(\geq 4)$, and for each 2 -factor of G_{2}, the minimum length of cycles in it is at most $\left\lceil\frac{d+1}{2}\right\rceil$, and G_{2} has a 2 -factor such that the minimum length of cycles in it is just $\left\lceil\frac{d+1}{2}\right\rceil$. To see this, let \mathscr{C} be a set of vertex-disjoint cycles in G_{2} such that $\bigcup_{C \in \mathscr{C}} C$ is a 2-factor of G_{2}. If $x \in X$ and $y \in Y$ are contained in same cycle in \mathscr{C}, then by the definition of G_{2}, the maximum size of the cycle containing both x and y is $\left\lceil\frac{d+1}{2}\right\rceil$. Hence by the symmetry, we may assume that for all $x \in X \cup X^{\prime}$ and all $y \in Y \cup Y^{\prime}$, the cycle containing x and the cycle containing y in \mathscr{C} are distinct. Then by the definition of G_{2}, there exists a subset \mathscr{C}^{\prime} of \mathscr{C} such that $\bigcup_{C \in \mathscr{C}}{ }^{\prime} V(C)=X$ or $\bigcup_{C \in \mathscr{C}}{ }^{\prime} V(C)=X^{\prime}$. Since $|X|=\left|X^{\prime}\right|=\left\lceil\frac{d+1}{2}\right\rceil$, the minimum length of cycles in \mathscr{C} is at most $\left\lceil\frac{d+1}{2}\right\rceil$. Moreover, by these arguments, we can take a set \mathscr{C} so that the minimum length of cycles in \mathscr{C} is just $\left\lceil\frac{d+1}{2}\right\rceil$. (Note that by adding X, Y, X^{\prime} and Y^{\prime} iteratively, we can construct a sufficiently large graph.)

Obviously the above example also shows the sharpness of the lower bound of $\delta\left(G^{*}\right)$ in Theorem 5.

References

[1] K. Ando, Y. Egawa, A. Kaneko, K. Kawarabayashi and H. Matsuda, Path factors in clawfree graphs, Discrete Math. 243 (2002) 195-200.
[2] H.J. Broersma, M. Kriesell and Z. Ryjáček, On factors of 4-connected claw-free graphs, J. Graph Theory 37 (2001), 125-136.
[3] H.J. Broersma, D. Paulusma and K. Yoshimoto, Sharp upper bounds for the minimum number of components of 2-factors in claw-free graphs, Graphs Combin. 25 (2009) 427-460
[4] R. Čada, S. Chiba and K. Yoshimoto, private communications

Figure 6: The graph G_{2}
[5] S.A. Choudum and M.S. Paulraj, Regular factors in $K_{1,3}$-free graphs, J. Graph Theory 15 (1991) 259-265.
[6] R. Diestel, Graph Theory, Fourth edition. Graduate Texts in Mathematics, 173, Springer, Heidelberg, 2010.
[7] Y. Egawa and K. Ota, Regular factors in $K_{1, n}$-free graphs, J. Graph Theory 15 (1991) 337-344.
[8] R.J. Faudree, O. Favaron, E. Flandrin, H. Li and Z. Liu, On 2-factors in claw-free graphs, Discrete Math. 206 (1999) 131-137.
[9] R. J. Faudree, C. Magnant, K. Ozeki and K. Yoshimoto, Claw-Free Graphs and 2-Factors that Separate Independent Vertices, J. Graph Theory 69 (2012) 251-263
[10] F. Harary and C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Can. Math. Bull. 8 (1965) 701-710.
[11] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2-factors of line graphs, Discrete Math. 307 (2007) 2775-2785.
[12] B. Jackson and K. Yoshimoto, Spanning even subgraphs of 3-edge-connected graphs, J. Graph Theory 62 (2009) 37-47.
[13] R. Kužel, K. Ozeki and K. Yoshimoto, 2-factors and independent sets on claw-free graphs, Discrete Math. 312 (2012), 202-206.
[14] M.M. Matthews and D.P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984) 139-146.
[15] K. Ozeki, Z. Ryjáček and K. Yoshimoto, 2-factors with bounded number of components in claw-free graphs, submitted.
[16] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217-224.
[17] Z. Ryjáček, A. Saito, and R.H. Schelp, Closure, 2-factors, and cycle coverings in claw-free graphs, J. Graph Theory 32 (1999) 109-117.
[18] K. Yoshimoto, On the number of components in 2-factors of claw-free graphs, Discrete Math. 307 (2007) 2808-2819.

[^0]: *An extended abstract has been published in EuroComb2011, Electronic Notes in Discrete Mathematics Vol. 38 (2011) 213-219.
 ${ }^{\dagger}$ Email address: cadar@kma.zcu.cz
 This work was partially supported by Grant CE-ITI P202/12/G061 of Grant Agency of Czech Republic
 ${ }^{\ddagger}$ Email address: schiba@kumamoto-u.ac.jp
 This work was partially supported by JSPS KAKENHI grant 23740087
 ${ }^{\text {§ }}$ Email address: yosimoto@math.cst.nihon-u.ac.jp
 This work was partially supported by JSPS KAKENHI grant 22540152

