# A 2-factor in which each cycle has long length in claw-free graphs<sup>\*</sup>

Roman Čada<sup>1†</sup> Shuya Chiba<sup>2‡</sup>

Kiyoshi Yoshimoto<sup>3§</sup>

 <sup>1</sup>Department of Mathematics, University of West Bohemia Univerzitní 8, 306 14 Plzeň, Czech Republic
 <sup>2</sup>Department of Mathematics and Engineering, Kumamoto University 2-39-1, Kurokami, Kumamoto 860-8555, Japan
 <sup>3</sup>Department of Mathematics, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan

#### Abstract

For a graph G, we denote by  $\delta(G)$  the minimum degree of G. A graph G is said to be claw-free if G has no induced subgraph isomorphic to  $K_{1,3}$ . In this article, we prove that every claw-free graph G with minimum degree at least 4 has a 2-factor in which each cycle contains at least  $\left\lceil \frac{\delta(G)-1}{2} \right\rceil$  vertices and every 2-connected claw-free graph G with minimum degree at least 3 has a 2-factor in which each cycle contains at least  $\delta(G)$  vertices. For the case where G is 2-connected, the lower bound on the length of a cycle is best possible.

*Keywords*: 2-factor, Claw-free graph, Minimum degree *AMS Subject Classification*: 05C70

# 1 Introduction

In this paper, we consider finite graphs. For terminology and notation not defined in this paper, we refer the readers to [6]. A simple graph means an undirected graph without loops or multiple edges. A multigraph may contain multiple edges but no loops. Let G be a graph. For a vertex v of G, the degree of v in G is the number of edges incident with v. Let V(G), E(G) and  $\delta(G)$  be the vertex set, the edge set and the minimum degree of G, respectively. We refer to the number of vertices of G as the order of G and denote it by |G|. A graph G is said to be claw-free if G has no induced subgraph isomorphic to  $K_{1,3}$  (here  $K_{1,3}$  denotes the complete bipartite graph

 $<sup>^*\</sup>mbox{An}$  extended abstract has been published in EuroComb2011, Electronic Notes in Discrete Mathematics Vol. 38 (2011) 213–219.

<sup>&</sup>lt;sup>†</sup>Email address: cadar@kma.zcu.cz

This work was partially supported by Grant CE-ITI P202/12/G061 of Grant Agency of Czech Republic

<sup>&</sup>lt;sup>‡</sup>Email address: schiba@kumamoto-u.ac.jp

This work was partially supported by JSPS KAKENHI grant 23740087

<sup>§</sup>Email address: yosimoto@math.cst.nihon-u.ac.jp

This work was partially supported by JSPS KAKENHI grant 22540152

with partite sets of cardinalities 1 and 3, respectively). We denote by L(G) the line graph of G. Obviously a line graph is claw-free. A 2-factor of G is a spanning subgraph of G in which every component is a cycle.

It is a well-known conjecture that every 4-connected claw-free graph is Hamiltonian due to Matthews and Sumner [14]. Since a Hamilton cycle is a connected 2-factor, there are many results on 2-factors of claw-free graphs. For instance, results of both Choudum and Paulraj [5] and Egawa and Ota [7] imply that a moderate minimum degree condition already guarantees that a claw-free graph has a 2-factor.

#### **Theorem A** ([5, 7]) Every claw-free graph with minimum degree at least 4 has a 2-factor.

Broersma, Kriesel and Ryjáček [2] showed that if there exists a function f(n) of n such that  $\lim_{n\to\infty} f(n)/n = 0$  and every 4-connected claw-free graph of order n has a 2-factor with at most f(n) components, then every 4-connected claw-free graph is Hamiltonian. Thus, to solve Matthews and Summer's conjecture, it suffices to show the existence of a 2-factor with small number of components (not necessarily 1 component). Concerning the upper bound on the number of components, Broersma, Paulusma and the third author [3] and Jackson and the third author [11] proved the following, respectively (other related results can be found in [8, 12, 13, 15, 18]).

**Theorem B** ([3]) Every claw-free graph G with minimum degree at least 4 has a 2-factor with at most max  $\left\{ \lfloor \frac{|G|-3}{\delta(G)-1} \rfloor, 1 \right\}$  components.

**Theorem C ([11])** Every 2-connected claw-free graph G with minimum degree at least 4 has a 2-factor with at most  $\lfloor \frac{|G|+1}{4} \rfloor$  components.

It could be also another possible approach to study about the lengths of cycles in 2-factors of claw-free graphs. Our first main result is the following.

**Theorem 1** Every 2-connected claw-free graph G with minimum degree at least 3 has a 2-factor in which each component contains at least  $\delta(G)$  vertices.

The proof of the above is given in Section 4. As a corollary of Theorem 1, we can get the following which improve the both of Theorems B and C for 2-connected claw-free graphs.

**Corollary 2** Every 2-connected claw-free graph G with minimum degree at least 3 has a 2-factor with at most  $\lfloor \frac{|G|}{\delta(G)} \rfloor$  components.



Figure 1: The graph  $G_1$ 

In Theorem 1, the lower bound on the length of a cycle is best possible because we can construct a 2-connected claw-free graph G such that for each 2-factor of G, the minimum length of cycles in it is at most  $\delta(G)$  as follows: let  $d \geq 3$  be an integer, and let  $H_1, H_2$  and  $H_3$  be graphs with the connectivity one and exactly two end blocks such that each block of  $H_i$   $(1 \leq i \leq 3)$ is a complete graph of order d + 1. For each  $1 \leq i \leq 3$ , let  $u_i$  and  $v_i$  be vertices contained in distinct end blocks of  $H_i$ , respectively, and  $u_i$  and  $v_i$  are not cut vertices of  $H_i$ . Let  $G_1$  be the graph obtained from  $H_1 \cup H_2 \cup H_3$  by joining  $u_i$  and  $u_{i+1}$  for  $1 \leq i \leq 3$  and joining  $v_i$  and  $v_{i+1}$ for  $1 \leq i \leq 3$ , where let  $u_4 = u_1$  and  $v_4 = v_1$ , see Figure 1 (here  $K_m$  denotes the complete graph of order m). Then  $G_1$  is a 2-connected claw-free graph which satisfies  $\delta(G_1) = d$ , and for each 2-factor of  $G_1$ , the minimum length of cycles in it is at most d.

**Remark.** A path-factor is a spanning subgraph in which every component is a path. Ando et al. [1] proved that a claw-free graph G has a path-factor in which each component contains at least  $\delta(G) + 1$  vertices. Moreover they conjectured that if G is 2-connected, then there exists a path-factor in which each component contains at least  $3\delta(G) + 3$  vertices, but this conjecture is still open unlike the case of 2-factors on 2-connected claw-free graphs.

For claw-free graphs with cut vertices, we can construct an infinite family of examples G in which every 2-factor contains a cycle of length at most  $\lceil \frac{\delta(G)+1}{2} \rceil$  (see Section 6). We conjecture that the length is also the lower bound.

**Conjecture 3** Every claw-free graph G with minimum degree at least 4 has a 2-factor in which each component contains at least  $\left\lceil \frac{\delta(G)+1}{2} \right\rceil$  vertices.

In this paper, we will show a slightly weaker statement.

**Theorem 4** Every claw-free graph G with minimum degree at least 4 has a 2-factor in which each component contains at least  $\left\lceil \frac{\delta(G)-1}{2} \right\rceil$  vertices.

An essential part of the proof of Theorem 4 is that we can divide a claw-free graph into mutually vertex-disjoint 2-connected claw-free graphs which has large minimum degree, i.e., we prove the following in Section 5.

**Theorem 5** Every claw-free graph G with minimum degree at least 4 has a set  $\mathscr{G}^*$  of mutually vertex-disjoint subgraphs such that  $\bigcup_{G^* \in \mathscr{G}^*} V(G^*) = V(G)$  and each  $G^* \in \mathscr{G}^*$  is a 2-connected claw-free graph with  $\delta(G^*) \geq \left\lceil \frac{\delta(G)-1}{2} \right\rceil$ .

A clique-factor is a spanning subgraph in which every component is a clique. Faudree et al. [9] showed that a line graph with minimum degree at least 7 has a clique-factor in which each component contains at least 3 vertices. It is known that if H is a tree, then the line graph L(H) has a clique-factor in which each component contains at least  $\left\lceil \frac{\delta(L(H))+1}{2} \right\rceil$  vertices ([4]). This supports Conjecture 3 in some sense.

It would be natural to consider the case where the connectivity is at least 3 as the next step. Concerning the number of components of 2-factors in 3-connected claw-free graphs, Kužel et al. [13] proved that every 3-connected claw-free graph G has a 2-factor with at most max  $\left\{ \lfloor \frac{|G|}{\delta(G)+2} \rfloor, 1 \right\}$  components. Recently, Ozeki et al. [15] improved the result as follows : every 3-connected claw-free graph G has a 2-factor with at most  $\left\lfloor \frac{4|G|}{5(\delta(G)+2)} + \frac{2}{5} \right\rfloor$  components. In view of this result, one might expect that the coefficient of  $\delta(G)$  in the lower bound on the length of a cycle would be greater than 1 for 3-connected claw-free graphs G.

Problem. Determine  $f(d) = \max\{m \mid \text{every 3-connected non-hamiltonian claw-free graph with minimum degree d has a 2-factor in which each component contains at least m vertices}. In particular, is there a constant <math>c > 1$  such that  $f(d) \ge cd$  holds?

## 2 Terminology and notation

In this section, we prepare terminology and notation which we use in subsequent sections. Let G be a graph. We denote the number of edges of G by e(G). For  $X \subseteq V(G)$ , we let G[X] denote the subgraph induced by X in G, and let  $G - X = G[V(G) \setminus X]$ . If H is a subgraph of G, then let G - H = G - V(H). A subset X of V(G) is called an *independent set* of G if G[X] is edgeless. Let  $H_1$  and  $H_2$  be subgraphs of G or subsets of V(G), respectively. If  $H_1$  and  $H_2$  have no common vertex in G, we define  $E_G(H_1, H_2)$  to be the set of edges of G between  $H_1$  and  $H_2$ , and let  $e_G(H_1, H_2) = |E_G(H_1, H_2)|$ . For a vertex v of G, we denote by  $N_G(v)$  and  $d_G(v)$  the neighborhood and the degree of v in G, respectively. For a positive integer l, we define  $V_l(G) = \{v \in V(G) \mid d_G(v) = l\}$ , and let  $V_{\geq l}(G) = \bigcup_{m \geq l} V_m(G)$  and  $V_{\leq l}(G) = \bigcup_{m \leq l} V_m(G)$ .

Let  $e = uv \in E(G)$ . We denote by V(e) the set of end vertices of e, i.e.,  $V(e) = \{u, v\}$ . The edge degree of e in G is defined by the number of edges incident with e, and is denoted by  $\xi_G(e)$ , i.e.,  $\xi_G(e) = |\{f \in E(G) \mid f \neq e, V(f) \cap V(e) \neq \emptyset\}|$ . Note that if G is a simple graph, then  $\xi_G(e) = e_G(V(e), G - V(e)) = d_G(u) + d_G(v) - 2$ . Let  $\xi(G)$  be the minimum edge degree of G. For  $X \subseteq E(G), G - X$  means the graph with the vertex set V(G) and the edge set  $E(G) \setminus X$ .

If a graph S consists of a vertex (called a *center*) and edges incident with the center, S is called a *star*. So a star in this paper is not necessary a tree. A connected graph is called a *closed* trail if all the vertices have even degree. A closed trail T in a graph H is called a *dominating* closed trail if H - T is edgeless.

## **3** Preparation for the proof of Theorem 1

To prove Theorem 1, we use Ryjáček closure. In [16], Ryjáček introduced the concept of a closure for claw-free graphs as follows. Let G be a claw-free graph. We call a vertex v of G locally connected (resp. locally disconnected) if  $G[N_G(v)]$  is connected (resp. disconnected). Note that if a vertex v of G is locally disconnected, then  $G[N_G(v)]$  is a union of two vertex-disjoint complete graphs (otherwise, G contains a  $K_{1,3}$  as an induced subgraph). For a locally connected vertex v of G, we add edges joining all pairs of nonadjacent vertices in  $N_G(v)$ . The closure cl(G) of G is a graph obtained by recursively repeating this operation, as long as this is possible. In [16], it is shown that the closure of a graph has the following property. (Here a graph H is said to be triangle-free if H contains no  $K_3$ .)

**Theorem D** ([16]) If G is a claw-free graph, then the following hold.

- (i) cl(G) is well-defined, (i.e., uniquely defined).
- (ii) There exists a triangle-free simple graph H such that L(H) = cl(G).

On the other hand, in [17, Theorem 4], Ryjáček, Saito and Schelp proved that for any vertexdisjoint cycles  $D_1, \ldots, D_q$  in cl(G), G has vertex-disjoint cycles  $C_1, \ldots, C_p$  with  $p \leq q$  such that  $\bigcup_{i=1}^q V(D_i) \subseteq \bigcup_{i=1}^p V(C_i)$ . By modifying the proof, we can improve this result as follows.

**Lemma E** ([13]) Let G be a claw-free graph. If  $D_1, \ldots, D_q$  are vertex-disjoint cycles in cl(G), then G has vertex-disjoint cycles  $C_1, \ldots, C_p$  with  $p \leq q$  such that for each j with  $1 \leq j \leq q$ , there exists i with  $1 \leq i \leq p$  such that  $V(D_j) \subseteq V(C_i)$ .

As a corollary of Lemma E, we can easily obtain the following.

**Corollary 6** Let m be an integer. For a claw-free graph G, G has a 2-factor in which each cycle contains at least m vertices if and only if cl(G) has a 2-factor in which each cycle contains at least m vertices.

**Proof of Corollary 6.** The necessity is clear, and so we prove only sufficiency. Suppose that cl(G) has a 2-factor in which each cycle contains at least m vertices, and let  $D_1, \ldots, D_q$  are vertex-disjoint cycles in cl(G) such that  $\bigcup_{j=1}^q V(D_j) = V(cl(G))$  (= V(G)) and  $|D_j| \ge m$  for  $1 \le j \le q$ . Then by Lemma E, G has vertex-disjoint cycles  $C_1, \ldots, C_p$  with  $p \le q$  such that

for each j with  $1 \le j \le q$ , there exists i with  $1 \le i \le p$  such that  $V(D_j) \subseteq V(C_i)$ , (3.1)

in particular,  $\bigcup_{j=1}^{q} V(D_j) \subseteq \bigcup_{i=1}^{p} V(C_i)$ . Since  $\bigcup_{j=1}^{q} V(D_j) = V(G)$ , we have that  $\bigcup_{i=1}^{p} V(C_i) = V(G)$ , i.e.,  $\bigcup_{i=1}^{p} C_i$  forms a 2-factor of G. Since  $\bigcup_{j=1}^{q} V(D_j) = \bigcup_{i=1}^{p} V(C_i)$ , it follows from (3.1) that for each i with  $1 \leq i \leq p$ , there exists j with  $1 \leq j \leq q$  such that  $V(C_i) \supseteq V(D_j)$  (otherwise,  $\bigcup_{j=1}^{q} V(D_j) \subsetneq \bigcup_{i=1}^{p} V(C_i)$ , a contradiction). Since  $|D_j| \geq m$  for  $1 \leq j \leq q$ , we have that  $|C_i| \geq m$  for  $1 \leq i \leq p$ . Thus  $\bigcup_{i=1}^{p} C_i$  is a desired 2-factor of G.  $\Box$ 

Now we are ready to state new statement which is equivalent to Theorem 1 (see Proposition 8). Here a multigraph H is called *essentially k-edge-connected* if  $e(H) \ge k + 1$  and H - X has at most one component which contains an edge for every  $X \subseteq E(H)$  with |X| < k. It is easy to see that for a graph H, H is essentially k-edge-connected if and only if L(H) is k-connected.

**Theorem 7** Let *H* be an essentially 2-edge-connected triangle-free simple graph. If  $\delta(L(H)) \geq 3$ , then L(H) has a 2-factor in which each cycle contains at least  $\delta(L(H))$  vertices.

By Theorem D and Corollary 6, we can obtain the following proposition.

#### **Proposition 8** Theorems 1 and 7 are equivalent.

**Proof of Proposition 8.** It is clear that Theorem 1 implies Theorem 7 because line graphs are claw-free. So we prove the converse.

Suppose that Theorem 7 is true, and let G be a 2-connected claw-free graph with  $\delta(G) \geq 3$ . We show that G has a 2-factor in which each cycle contains at least  $\delta(G)$  vertices. By Theorem D (ii) and since G is 2-connected, there exists an essentially 2-edge-connected triangle-free simple graph H such that  $L(H) = \operatorname{cl}(G)$ . Note that  $\delta(L(H)) \geq \delta(G)$ , and hence  $\delta(L(H)) \geq 3$ . Therefore, by Theorem 7, L(H) ( $= \operatorname{cl}(G)$ ) has a 2-factor in which each cycle contains at least  $\delta(L(H))$  vertices. This together with Corollary 6 implies that G has a 2-factor in which each cycle contains at least  $\delta(L(H))$  ( $\geq \delta(G)$ ) vertices.  $\Box$ 

### 4 Proof of Theorem 1

By Proposition 8, it is enough to show Theorem 7 for Theorem 1. Before proving Theorem 7, we define a few terminologies.

It is well known that for a connected multigraph H with  $e(H) \ge 3$ , L(H) is Hamiltonian if and only if H is a star or H has a dominating closed trail (see [10]). Obviously if H is a star, then L(H) is a clique. A set  $\mathscr{D}$  is called a *cover set* of E(H) if (i)  $\mathscr{D}$  is a set of edge-disjoint connected subgraphs in H such that  $\bigcup_{D \in \mathscr{D}} E(D) = E(H)$ , and (ii) for each  $D \in \mathscr{D}$ , D is a star or D has a dominating closed trail. If all members in a cover set  $\mathscr{D}$  are stars, then we call  $\mathscr{D}$  a star cover set of E(H).

The following fact implies Theorem 7.

**Theorem 9** Let *H* be an essentially 2-edge-connected triangle-free simple graph. If  $\xi(H) \ge 3$ , then *H* has a cover set  $\mathscr{D}$  of E(H) such that  $e(D) \ge \xi(H)$  for all  $D \in \mathscr{D}$ .

**Proof of Theorem 7.** Let H be an essentially 2-edge-connected triangle-free simple graph, and suppose that  $\delta(L(H)) \geq 3$ . Since  $\xi(H) = \delta(L(H)) \geq 3$ , by Theorem 9, H has a cover set  $\mathscr{D}$  of E(H) such that  $e(D) \geq \xi(H)$  ( $\geq 3$ ) for all  $D \in \mathscr{D}$ . As D is a star or a connected subgraph which has a dominating closed trail for each D in  $\mathscr{D}$ , we have that L(D) has a Hamilton cycle  $C_D$  for each D in  $\mathscr{D}$  (note that  $|C_D| = |L(D)| = e(D) \geq \xi(H) = \delta(L(H))$ ). Since  $\bigcup_{D \in \mathscr{D}} E(D) = E(H)$ and  $\mathscr{D}$  is a set of edge-disjoint connected subgraphs, it follows that  $\bigcup_{D \in \mathscr{D}} C_D$  forms a desired 2-factor of L(H).  $\Box$ 

Hence in the rest of this section, we prove Theorem 9. The following lemma will be used.

**Lemma F** ([18]) Let H be an essentially 2-edge-connected graph. If  $\xi(H) \geq 3$ , then there exists a set  $\mathscr{T}$  of vertex-disjoint closed trails in H such that  $V_{\geq 3}(H - V_1(H)) \subseteq \bigcup_{T \in \mathscr{T}} V(T)$ .

**Proof of Theorem 9.** If H is a star, then  $\{H\}$  is a desired cover set of E(H). Thus we may assume that H is not a star. Then since H is essentially 2-edge-connected, we have  $\delta(H - V_1(H)) \geq 2$ . By Lemma F, there exists a set  $\mathscr{T}$  of vertex-disjoint closed trails in H such that  $V_{\geq 3}(H - V_1(H)) \subseteq \bigcup_{T \in \mathscr{T}} V(T)$ . Since  $\delta(H - V_1(H)) \geq 2$  and  $V_{\geq 3}(H - V_1(H)) \subseteq \bigcup_{T \in \mathscr{T}} V(T)$ , it follows that  $v \in V_2(H - V_1(H))$  for all  $v \in V_{\geq 3}(H) \setminus \bigcup_{T \in \mathscr{T}} V(T)$ . This implies that for each  $v \in V_{\geq 3}(H) \setminus \bigcup_{T \in \mathscr{T}} V(T)$ ,

there exist exactly two vertices  $u_1$  and  $u_2$  in  $N_H(v)$  with  $u_1 \neq u_2$ such that  $u_i \in V_{\geq 2}(H)$  for i = 1, 2 and  $N_H(v) \setminus \{u_1, u_2\} \subseteq V_1(H)$  (4.1)

(see the left of Figure 2). In particular,  $N_H(v) \setminus \{u_1, u_2\} \neq \emptyset$  since  $v \in V_{\geq 3}(H)$ , that is,  $N_H(v) \cap V_1(H) \neq \emptyset$ , and hence  $|N_H(v) \setminus \{u_1, u_2\}| \geq d_H(v) - 2 \geq \xi(H) - 1$ .



Figure 2: The graph  $H^*$ 

Let  $H^*$  be the graph obtained from H by contracting an induced subgraph H[V(T)] of H to a vertex  $v_T$  for each  $T \in \mathscr{T}$  (note that  $H^*$  may be a multigraph, see Figure 2). Let  $X = \{v_T \mid T \in \mathscr{T}\}$ . Note that  $|X| = |\mathscr{T}|$  since  $\mathscr{T}$  is a set of vertex-disjoint closed trails in H. By the definition of  $H^*$ ,

$$d_{H^*}(v) = d_H(v) \text{ for all } v \in V(H^*) \setminus X.$$

$$(4.2)$$

By (4.2) and since  $V_1(H) \cap \left(\bigcup_{T \in \mathscr{T}} V(T)\right) = \emptyset$ ,

$$V_1(H) = V_1(H^*) \setminus X. \tag{4.3}$$

By the definition of  $H^*$  and (4.2) and since  $\xi(H) \geq 3$ , we also have that  $V_{\leq 2}(H^*) \setminus X$  is an independent set of  $H^*$ .

To show the existence of a cover set  $\mathscr{D}$  of E(H), we find a mapping  $\varphi: E(H^*) \to V(H^*)$  so that

- (M1)  $\varphi(e) = u \text{ or } \varphi(e) = v \text{ for all } e = uv \in E(H^*),$ (M2)  $|\varphi^{-1}(v)| = 0 \text{ for all } v \in V_{\leq 2}(H^*) \setminus X,$ (M3)  $|\varphi^{-1}(v)| \ge \xi(H) \text{ for all } v \in V_{\geq 3}(H^*) \setminus X,$
- (M4)  $|\varphi^{-1}(v_T)| + e(H[V(T)]) \ge \xi(H)$  for all  $v_T \in X$ .

If there exists such a mapping  $\varphi$ , then we can construct a desired cover set as follows. Suppose that there exists such a mapping  $\varphi$ . Let  $\mathscr{S} = \{S_v \mid v \in V_{\geq 3}(H^*) \cup X\}$  be a set of stars such that for each  $S_v \in \mathscr{S}$ ,  $S_v$  is a star consisting of a vertex v (as the center) and the edges in  $\varphi^{-1}(v)$ . Then by the conditions (M1) and (M2),  $\mathscr{S}$  is a star cover set of  $E(H^*)$ . Furthermore by the conditions (M3) and (M4),  $e(S_v) = |\varphi^{-1}(v)| \geq \xi(H)$  for each  $v \in V_{\geq 3}(H^*) \setminus X$  and  $e(S_{v_T}) = |\varphi^{-1}(v_T)| \geq \xi(H) - e(H[V(T)])$  for each  $v_T \in X$ . Hence by the definition of  $H^*$ , and by considering a subset of E(H) corresponding to  $E(S_v)$  for each  $v \in V_{\geq 3}(H^*) \cup X$  and replacing



Figure 3: The desired cover set of E(H)

 $v_T$  with H[V(T)] for each  $v_T \in X$ , we can find a cover set  $\mathscr{D}$  of E(H) such that  $e(D) \ge \xi(H)$  for all  $D \in \mathscr{D}$  (see Figure 3). Thus it suffices to show the existence of the above mapping  $\varphi$ .

Let  $H' = H^* - (V_1(H^*) \setminus X)$ . To show the existence of a mapping  $\varphi$  satisfying the conditions (M1)-(M4), we define a mapping  $\varphi' : E(H') \to V(H')$  as follows. Since the number of vertices of odd degree is even in H', there exists a collection of paths  $P_1, \ldots, P_l$  in H' such that each vertex in o(H') appears in the set of end vertices of them exactly ones (note that l = |o(H')|/2), where for a graph G, o(G) denotes the set of vertices with odd degree in G. By considering the symmetric difference of them, we may assume that  $P_1, \ldots, P_l$  are pairwise edge-disjoint. For each  $1 \leq i \leq l$ , write  $P_i = x_1^i x_2^i x_3^i \ldots x_{|P_i|-1}^i x_{|P_i|}^i$ , and let  $e_j^i = x_j^i x_{j+1}^i$  for each  $1 \leq j \leq |P_i| - 1$ , and we define  $\varphi'(e_j^i) = x_{j+1}^i$  for each  $1 \leq j \leq |P_i| - 1$ . Let  $H'' = H' - \bigcup_{i=1}^l E(P_i)$ . By the definitions of  $P_1, \ldots, P_l$ , we have  $o(H'') = \emptyset$ . Hence the edges of each component of order at least 2 in H'' can be covered by pairwise edge-disjoint cycles. For each  $1 \leq j \leq m - 1$ . Then by the definition of  $\varphi'$ , for each  $v \in V(H')$ ,

$$|\varphi'^{-1}(v)| \ge (d_{H'}(v) - 1)/2 = \left( \left( d_{H^*}(v) - |(N_{H^*}(v) \cap V_1(H^*)) \setminus X| \right) - 1 \right)/2.$$
(4.4)

Now we define a mapping  $\varphi: E(H^*) \to V(H^*)$  as follows: for each  $e = uv \in E(H^*)$ , we let

$$\varphi(e) = \begin{cases} u & \text{if } v \in V_{\leq 2}(H^*) \setminus X \\ \varphi'(e) & \text{otherwise} \end{cases}$$

Since  $V_{\leq 2}(H^*) \setminus X$  is an independent set of  $H^*$ ,  $\varphi$  is well defined. By the definitions of  $\varphi$  and  $\varphi'$ , we can easily see that  $\varphi$  satisfies the conditions (M1) and (M2). So we show that  $\varphi$  satisfies the

conditions (M3) and (M4). Since  $(V_1(H^*) \setminus X) \cap V(H') = \emptyset$  by the definition of H', it follows from the definition of  $\varphi$  that

$$|\varphi^{-1}(v)| \ge |\varphi'^{-1}(v)| + |(N_{H^*}(v) \cap V_1(H^*)) \setminus X| \text{ for all } v \in X.$$
(4.5)

We first show that  $\varphi$  satisfies the condition (M3). Let  $v \in V_{\geq 3}(H^*) \setminus X$ . Then by (4.2) and the definitions of  $H^*$  and  $X, v \in V_{\geq 3}(H) \setminus \bigcup_{T \in \mathscr{T}} V(T)$ . Hence by (4.1), there exist exactly two vertices  $u_1, u_2 \in N_H(v)$  with  $u_1 \neq u_2$  such that  $u_i \in V_{\geq 2}(H)$  for  $i = 1, 2, N_H(v) \setminus \{u_1, u_2\} \subseteq$  $V_1(H)$  and  $|N_H(v) \setminus \{u_1, u_2\}| \geq \xi(H) - 1$ . Therefore by (4.2), (4.3) and the definition of  $H^*$ , there exist distinct two edges  $vu'_1, vu'_2 \in E(H^*)$  such that  $u'_i \in V_{\geq 2}(H^*) \cup X$  for i = 1, 2, $N_{H^*}(v) \setminus \{u'_1, u'_2\} \subseteq V_1(H^*) \setminus X$  and  $|N_{H^*}(v) \setminus \{u'_1, u'_2\}| \geq \xi(H) - 1$  ( $vu'_1$  and  $vu'_2$  may be parallel edges in  $H^*$ , e.g.,  $v_T = u'_1 = u'_2$  in Figure 2). If  $u'_i \in V_2(H^*) \setminus X$  for some i = 1 or 2, then by the definition of  $\varphi$ , we have  $|\varphi^{-1}(v)| \geq |(N_H(v) \cap V_1(H^*)) \setminus X| + |(N_H(v) \cap V_2(H^*)) \setminus X|$  $\geq |N_{H^*}(v) \setminus \{u'_1, u'_2\}| + 1 \geq (\xi(H) - 1) + 1 = \xi(H)$ . Thus we may assume that  $u'_i \in V_{\geq 3}(H^*) \cup X$ for i = 1, 2. Note that by the definition of  $H', u'_i \in V(H')$  for i = 1, 2. Since  $N_{H^*}(v) \setminus \{u'_1, u'_2\} \subseteq$  $V_1(H^*) \setminus X$ , we have  $v \in V_2(H')$  (the degree of v in H' is even) and  $vu'_i \in E(H')$  for i = 1, 2. Hence by the definition of  $\varphi', \varphi'(vu'_j) = v$  and  $\varphi'(vu'_{3-j}) = u'_{3-j}$  for some j with  $j \in \{1, 2\}$ . We may assume that j = 1. Then by the definition of  $\varphi$  and since  $\{v, u'_1\} \subseteq V_{\geq 3}(H^*) \cup X$ , it follows that  $\varphi(vu'_1) = \varphi'(vu'_1) = v$ . Therefore  $|\varphi^{-1}(v)| \geq |(N_H(v) \cap V_1(H^*)) \setminus X| + |\{vu'_1\}| \geq |N_{H^*}(v) \setminus \{u'_1, u'_2\}| + 1 \geq (\xi(H) - 1) + 1 = \xi(H)$ . Thus  $\varphi$  satisfies the condition (M3).

We next show that  $\varphi$  satisfies the condition (M4). Let  $T \in \mathscr{T}$ . Since H is a triangle-free simple graph, all cycles which are contained in T have order at least 4. Hence there exist two independent edges  $e_1$  and  $e_2$  in T. For each i = 1, 2, let

$$\epsilon_i = \big| \{ e \in E(H[V(T)]) \mid e \neq e_i, V(e) \cap V(e_i) \neq \emptyset \} \big|.$$

Since *H* is triangle-free,  $|\{e \in E(H[V(T)]) \mid V(e) \cap V(e_i) \neq \emptyset \text{ for } i = 1, 2\}| \leq 2$ . Hence by the definition of  $\epsilon_i$ ,

$$e(H[V(T)]) \ge (\epsilon_1 + \epsilon_2) - 2 + |\{e_1, e_2\}| = \epsilon_1 + \epsilon_2.$$
(4.6)

We also have  $e_H(V(e_i), H-T) \ge \xi(H) - \epsilon_i$  for each i = 1, 2. Hence since  $d_{H^*}(v_T) = e_H(T, H-T)$  by the definition of  $H^*$  and since  $E_H(V(e_1), H-T) \cap E_H(V(e_2), H-T) = \emptyset$ , we obtain

$$d_{H^*}(v_T) = e_H(T, H - T) \ge e_H(V(e_1), H - T) + e_H(V(e_2), H - T) \ge 2\xi(H) - (\epsilon_1 + \epsilon_2).$$
(4.7)

Then by (4.4) through (4.7),

$$\begin{aligned} |\varphi^{-1}(v_T)| &\ge |\varphi'^{-1}(v_T)| + |(N_{H^*}(v_T) \cap V_1(H^*)) \setminus X| \\ &\ge (d_{H^*}(v_T) - |(N_{H^*}(v_T) \cap V_1(H^*)) \setminus X| - 1)/2 + |(N_{H^*}(v_T) \cap V_1(H^*)) \setminus X| \\ &\ge (2\xi(H) - (\epsilon_1 + \epsilon_2) - 1)/2 \\ &= \xi(H) - ((\epsilon_1 + \epsilon_2) + 1)/2 \\ &\ge \xi(H) - (e(H[V(T)]) + 1)/2. \end{aligned}$$

Since  $e(H[V(T)]) \ge 4$ , we get  $|\varphi^{-1}(v_T)| + e(H[V(T)]) \ge \xi(H) - (e(H[V(T)]) + 1)/2 + e(H[V(T)]) \ge \xi(H) + (e(H[V(T)]) - 1)/2 > \xi(H)$ . Thus  $\varphi$  satisfies the condition (M4).

This completes the proof of Theorem 9.  $\Box$ 

### 5 Proof of Theorem 4

As mentioned in Section 1, the essential part of the proof of Theorem 4 is Theorem 5, and hence at first we give the proof. In order to prove this, we use the following lemma.

**Lemma 10** Let G be a claw-free graph and B be a block of G. Let u be a vertex in B, and let  $x_1$  and  $x_2$  be distinct two cut vertices in G such that  $x, y \in N_B(u)$ . If  $x_1x_2 \notin E(G)$ , then  $G[N_B(u)]$  has a clique-factor with 2 components.

**Proof of Lemma 10.** Let  $G_i = G[N_B(x_i) \cup \{x_i\}]$  for i = 1, 2. Since  $x_1$  and  $x_2$  are cut vertices in G, each  $x_i$  is locally disconnected. This implies that  $G_1$  and  $G_2$  are complete graphs, respectively. Suppose that there exists a vertex y in  $N_B(u) \setminus (V(G_1) \cup V(G_2))$ . Then by the definitions of  $G_1$  and  $G_2$ , it follows that  $yx_i \notin E(G)$  for i = 1, 2. Since  $x_1x_2 \notin E(G)$ , this implies that  $G[\{u, x_1, x_2, y\}]$  is isomorphic to  $K_{1,3}$ , a contradiction. Thus  $N_B(u) \subseteq V(G_1) \cup V(G_2)$ , and hence  $G'_1 := G[N_B(u) \cap V(G_1)]$  and  $G'_2 := G[N_B(u) \setminus V(G'_1)]$  forms a clique-factor with 2 components in  $G[N_B(u)]$ .  $\Box$ 

**Proof of Theorem 5.** Let G be a claw-free graph with  $\delta(G) \ge 4$ . It suffices to consider the case where G is connected. If G is 2-connected, then  $\mathscr{G}^* = \{G\}$  is a desired set. Thus we may assume that G has a cut vertex. Let  $\mathscr{B}$  be the set of blocks of G and X be the set of cut vertices of G. We consider the block cut tree T of G, i.e.,  $V(T) = \mathscr{B} \cup X$  and  $E(T) = \{Bv \mid B \in \mathscr{B}, v \in V(B) \cap X\}$ . Since every cut vertex of G is locally disconnected, it follows that for each  $v \in X$ ,

$$G[N_G(v)]$$
 is a union of two vertex-disjoint complete graphs. (5.1)



Figure 4: Subsets  $\mathscr{B}_0, \ldots, \mathscr{B}_m$  and subsets  $X_0, \ldots, X_m$ 

Hence  $d_T(v) = 2$  for all  $v \in X$ . Let  $B_0 \in \mathscr{B}$  be the root of T. We consider T as an oriented tree from  $B_0$  to leaves, and denote it  $\overrightarrow{T}$ . For each  $v \in X$ , we let  $B_{v^+}$  (resp.  $B_{v^-}$ ) denote a successor (resp. a predecessor) of v along  $\overrightarrow{T}$  (note that  $B_{v^+}$  and  $B_{v^-}$  are uniquely defined because  $d_T(v) = 2$ , and note also that  $B_{v^+}, B_{v^-} \in \mathscr{B}$ ). For each  $B \in \mathscr{B} \setminus \{B_0\}$ , we let  $v_B$  denote a predecessor of B along  $\overrightarrow{T}$  (note that  $v_B$  is uniquely defined). We define subsets  $\mathscr{B}_0, \ldots, \mathscr{B}_m$  of  $\mathscr{B}$ and subsets  $X_0, \ldots, X_m$  of X inductively by the following procedure. First let  $\mathscr{B}_0 = \{B_0\}$ , and let  $X_0 = \{v \in X \mid B_{v^-} = B_0\}$ . Now let  $i \ge 1$ , and assume that we have defined  $\mathscr{B}_0, \ldots, \mathscr{B}_{i-1}$  and  $X_0, \ldots, X_{i-1}$ . If  $X_{i-1} \ne \emptyset$ , then let  $\mathscr{B}_i = \{B_{v^+} \mid v \in X_{i-1}\}$ , and let  $X_i = \{v \in X \mid B_{v^-} \in \mathscr{B}_i\}$ ; if  $X_{i-1} = \emptyset$ , we let m = i - 1 and terminate the procedure (see Figure 4). Then it follows from the definitions of  $\mathscr{B}_0, \ldots, \mathscr{B}_m$  and  $X_0, \ldots, X_m$  that  $\mathscr{B}$  is disjoint union of  $\mathscr{B}_0, \ldots, \mathscr{B}_m$  and X is disjoint union of  $X_0, \ldots, X_{m-1}$ .

We define a mapping  $\varphi: X \to \mathscr{B}$  inductively as follows. First for each  $v \in X_0$ , let

$$\varphi(v) = \begin{cases} B_{v^-} \ (=B_0) & \text{if } |N_G(v) \cap V(B_{v^-})| \ge \frac{\delta(G)}{2} \\ B_{v^+} & \text{otherwise} \end{cases}$$

Now let  $i \ge 1$ , and assume that we have defined  $\varphi(v)$  for each  $v \in X_l$  with  $1 \le l \le i - 1$ . If  $i \le m - 1$ , then for each  $v \in X_i$ , let

$$\varphi(v) = \begin{cases} B_{v^-} & \text{if } \varphi(v_{B_{v^-}}) = B_{v^-} \text{ and } |N_G(v) \cap V(B_{v^-})| \ge \frac{\delta(G)}{2} \\ B_{v^-} & \text{if } \varphi(v_{B_{v^-}}) \neq B_{v^-} \text{ and } |N_G(v) \cap V(B_{v^-})| \ge \frac{\delta(G)+1}{2} \\ B_{v^-} & \text{if } \varphi(v_{B_{v^-}}) \neq B_{v^-}, |N_G(v) \cap V(B_{v^-})| = \frac{\delta(G)}{2} \text{ and } vv_{B_{v^-}} \notin E(G) \\ B_{v^+} & \text{otherwise} \end{cases};$$



Figure 5: The definition of  $\varphi$ 

if i = m, then we terminate the procedure (see Figure 5). Let

$$\mathscr{G}^* = \{ G[(V(B) \setminus X) \cup \varphi^{-1}(B)] \mid B \in \mathscr{B} \}.$$

We show that  $\mathscr{G}^*$  is a desired set. By the definition of  $\mathscr{G}^*$ , it is easy to check that  $\mathscr{G}^*$  is a set of vertex-disjoint subgraphs in G such that  $\bigcup_{G^* \in \mathscr{G}^*} V(G^*) = V(G)$  and  $G^*$  is a claw-free graph for all  $G^* \in \mathscr{G}^*$ . Let  $G^* \in \mathscr{G}^*$ , and let  $G^* = G[(V(B) \setminus X) \cup \varphi^{-1}(B)]$  for some  $B \in \mathscr{B}_i$  with  $0 \le i \le m$ .

Let  $u \in V(G^*)$ . We first show that  $d_{G^*}(u) \ge \left\lceil \frac{\delta(G)-1}{2} \right\rceil$ .

Case 1.  $u \in \varphi^{-1}(B)$  and  $B \in \mathscr{B}_0$ , i.e.,  $B = B_0$ .

Then by the definition of  $\varphi$ ,  $|N_G(u) \cap V(B_0)| \geq \frac{\delta(G)}{2}$ . Since  $G[N_G(u) \cap V(B_0)]$  is a complete graph by (5.1),  $|N_G(v) \cap V(B_0)| \geq |(N_G(u) \cap V(B_0)) \setminus \{v\}| + |\{u\}| \geq \frac{\delta(G)}{2}$  for all  $v \in N_G(u) \cap V(B_0)$ . Hence by the definition of  $\varphi$ ,  $\varphi(v) = B_0$  for all  $v \in N_G(u) \cap V(B_0) \cap X$ . Since  $G^* = G[(V(B_0) \setminus X) \cup \varphi^{-1}(B_0)]$ , this implies that  $(N_G(u) \cap V(B_0)) \cup \{u\} \subseteq V(G^*)$ , and hence  $d_{G^*}(u) = |N_G(u) \cap V(B_0)| \geq \frac{\delta(G)}{2}$ .

Case 2.  $u \in \varphi^{-1}(B)$  and  $B \in \mathscr{B}_i$  with  $1 \leq i \leq m$ .

Assume for the moment that  $u = v_B$ , or  $u \neq v_B$  and  $\varphi(v_B) = B$ . Then by the definition of  $\varphi$ ,  $|N_G(u) \cap V(B)| \geq \frac{\delta(G)}{2}$ . Since  $G[N_G(u) \cap V(B)]$  is a complete graph by (5.1),  $|N_G(v) \cap V(B)| \geq \frac{\delta(G)}{2}$  for all  $v \in N_G(u) \cap V(B)$ . Since  $\varphi(v_B) = B$ , it follows from the definition of  $\varphi$  that  $\varphi(v) = B$  for all  $v \in N_G(u) \cap V(B) \cap X$ . Since  $G^* = G[(V(B) \setminus X) \cup \varphi^{-1}(B)]$ , this implies that  $(N_G(u) \cap V(B)) \cup \{u\} \subseteq V(G^*)$ , and hence  $d_{G^*}(u) = |N_G(u) \cap V(B)| \geq \frac{\delta(G)}{2}$ . Thus we may assume that  $u \neq v_B$  and  $\varphi(v_B) \neq B$ . Then by the definition of  $\varphi$ , (i)  $|N_G(u) \cap V(B)| \geq \frac{\delta(G)+1}{2}$ or (ii)  $|N_G(u) \cap V(B)| = \frac{\delta(G)}{2}$  and  $uv_B \notin E(G)$ . Since  $G[N_G(u) \cap V(B)]$  is a complete graph by (5.1), it follows that for each  $v \in N_G(u) \cap V(B)$ , either (i')  $|N_G(v) \cap V(B)| \geq \frac{\delta(G)+1}{2}$  or (ii')  $|N_G(v) \cap V(B)| = \frac{\delta(G)}{2}$  and  $vv_B \notin E(G)$  holds. Hence by the definition of  $\varphi$ ,  $\varphi(v) = B$ for all  $v \in N_G(u) \cap V(B) \cap (X \setminus \{v_B\})$ . Since  $G^* = G[(V(B) \setminus X) \cup \varphi^{-1}(B)]$ , this implies that  $\left( (N_G(u) \cap V(B)) \cup \{u\} \right) \setminus \{v_B\} \subseteq V(G^*) \text{ (note that if (ii) holds, then } (N_G(u) \cap V(B)) \cup \{u\} \subseteq V(G^*)), \text{ and hence } d_{G^*}(u) \ge |(N_G(u) \cap V(B)) \setminus \{v_B\}| \ge \frac{\delta(G)-1}{2}.$ 

Case 3.  $u \notin \varphi^{-1}(B)$ , i.e.,  $u \in V(B) \setminus X$ .

Since  $u \in V(B) \setminus X$ ,  $d_B(u) = d_G(u) \ge \delta(G)$ . If  $|N_B(u) \setminus X| \ge \frac{\delta(G)-1}{2}$ , then  $G^* = G[(V(B) \setminus X) \cup \varphi^{-1}(B)]$  implies that  $d_{G^*}(u) \ge |N_B(u) \setminus X| \ge \frac{\delta(G)-1}{2}$ . Thus we may assume that  $|N_B(u) \setminus X| \le \frac{\delta(G)-2}{2}$ , that is,  $|N_B(u) \cap X| \ge \frac{\delta(G)+2}{2}$  ( $\ge 3$ ). In the rest of Case 3, we let  $v^* = v_B$  if  $B \ne B_0$ ; otherwise, let  $v^*$  be an arbitrary vertex in G - B.

Suppose that  $G[N_B(u) \cap X]$  is a complete graph. Then  $|N_G(v) \cap V(B)| \ge |(N_B(u) \cap X) \setminus \{v\}| + |\{u\}| \ge \frac{\delta(G)+2}{2}$  for all  $v \in N_B(u) \cap X$ . Hence by the definition of  $\varphi$ ,  $\varphi(v) = B$  for all  $v \in (N_B(u) \cap X) \setminus \{v^*\}$ . Since  $G^* = G[(V(B) \setminus X) \cup \varphi^{-1}(B)]$ , this implies that  $(N_B(u) \cap X) \setminus \{v^*\} \subseteq V(G^*)$ , and hence  $d_{G^*}(u) \ge \frac{\delta(G)}{2}$ . Thus we may assume that  $G[N_B(u) \cap X]$  is not complete.

Then by Lemma 10, there exists a complete subgraph F of  $B[N_B(u) \cup \{u\}]$  such that (i)  $u \in V(F)$  and  $|F| \geq \frac{\delta(G)+3}{2}$  or (ii)  $u \in V(F)$ ,  $|F| = \frac{\delta(G)+2}{2}$  and  $v^* \notin V(F)$ . Then since F is a complete graph, it follows that for each  $v \in V(F)$ , either (i')  $|N_G(v) \cap V(B)| \geq \frac{\delta(G)+1}{2}$  or (ii')  $|N_G(v) \cap V(B)| = \frac{\delta(G)}{2}$  and  $vv^* \notin E(G)$  holds. Hence by the definition of  $\varphi$ ,  $\varphi(v) = B$  for all  $v \in (V(F) \cap X) \setminus \{v^*\}$ . Since  $G^* = G[(V(B) \setminus X) \cup \varphi^{-1}(B)]$ , this implies that  $V(F) \setminus \{v^*\} \subseteq V(G^*)$  (note that if (ii) holds, then  $V(F) \subseteq V(G^*)$ ), and hence  $d_{G^*}(u) \geq |V(F) \setminus \{u, v^*\}| \geq \frac{\delta(G)-1}{2}$ .

By Cases 1–3,  $d_{G^*}(u) \ge \left\lceil \frac{\delta(G)-1}{2} \right\rceil$ . Since u is an arbitrary vertex in  $G^*$ ,  $\delta(G^*) \ge \left\lceil \frac{\delta(G)-1}{2} \right\rceil$ .

We next show that  $G^*$  is 2-connected. Suppose that  $G^*$  is not 2-connected. Since  $\delta(G^*) \geq \left\lceil \frac{\delta(G)-1}{2} \right\rceil \geq 2$ ,  $|G^*| \geq 3$ . Hence there exist distinct two subgraphs  $F_1$  and  $F_2$  of  $G^*$  such that  $V(F_j) \setminus V(F_{3-j}) \neq \emptyset$  for j = 1, 2, and  $|V(F_1) \cap V(F_2)| \leq 1$ ,  $V(G^*) = V(F_1) \cup V(F_2)$  and  $E_G(F_1 - F_2, F_2 - F_1) = \emptyset$ . Since  $|B| \geq |G^*| \geq 3$ , we also have that B is 2-connected. Hence  $V(B - G^*) = (V(B) \cap X) \setminus \varphi^{-1}(B) \neq \emptyset$ . Let  $w \in V(F_1) \cap V(F_2)$  if  $V(F_1) \cap V(F_2) \neq \emptyset$ ; otherwise, let w be an arbitrary vertex in  $B - G^*$ . Let  $U = \{u \in V(B - G^*) \mid N_G(u) \cap (V(F_1) \setminus \{w\}) \neq \emptyset$ . Since B is 2-connected,  $U \neq \emptyset$ . If there exists  $u \in U$  such that  $N_G(u) \cap (V(F_2) \setminus \{w\}) \neq \emptyset$ , then  $G[V(F_1 \cup F_2 \cup B_{u^+}) \cup \{u\}]$  contains  $K_{1,3}$  as an induced subgraph of G because  $E_G(V(F_1) \setminus \{w\}, V(F_2) \setminus \{w\}) = \emptyset$  and  $E_G(B - \{u\}, B_{u^+} - \{u\}) = \emptyset$ , a contradiction. Thus  $N_G(u) \cap (V(G^*) \cup U)$  such that  $uv \in E(G)$ . Then  $G[V(F_1 \cup B_{u^+}) \cup \{u,v\}]$  contains  $K_{1,3}$  as an induced subgraph of G because  $N_G(v) \cap (V(F_1) \setminus \{w\}) = \emptyset$  and  $E_G(B - \{u\}, B_{u^+} - \{u\}) = \emptyset$ , a contradiction. Thus a an induced subgraph of G because  $N_G(v) \cap (V(F_1) \setminus \{w\}) = \emptyset$  and  $E_G(B - \{u\}, B_{u^+} - \{u\}) = \emptyset$ , a contradiction  $K_{1,3}$  as an induced subgraph of G because  $N_G(v) \cap (V(F_1) \setminus \{w\}) = \emptyset$  and  $E_G(B - \{u\}, B_{u^+} - \{u\}) = \emptyset$ , a contradiction  $K_{1,3}$  as an induced subgraph of G because  $N_G(v) \cap (V(F_1) \setminus \{w\}) = \emptyset$  and  $E_G(B - \{u\}, B_{u^+} - \{u\}) = \emptyset$ , a contradiction again. Thus  $G^*$  is 2-connected.

This completes the proof of Theorem 5.  $\Box$ 

**Proof of Theorem 4.** Let G be a claw-free graph with  $\delta(G) \ge 4$ . We show that G has a 2-factor in which each component contains at least  $\left\lceil \frac{\delta(G)-1}{2} \right\rceil$  vertices. By Theorem A, we may

assume that  $\delta(G) \geq 6$ . Then by applying Theorem 5, we have that there exists a set  $\mathscr{G}^*$  of vertex-disjoint subgraphs in G such that  $\bigcup_{G^* \in \mathscr{G}^*} V(G^*) = V(G)$ , and  $G^*$  is a 2-connected claw-free graph and  $\delta(G^*) \geq \left\lceil \frac{\delta(G)-1}{2} \right\rceil \geq 3$  for all  $G^* \in \mathscr{G}^*$ . Hence by Theorem 1, each graph  $G^*$  in  $\mathscr{G}^*$  has a 2-factor in which each cycle contains at least  $\delta(G^*)$  ( $\geq \left\lceil \frac{\delta(G)-1}{2} \right\rceil$ ) vertices. Since  $V(G) = \bigcup_{G^* \in \mathscr{G}^*} V(G^*)$  (disjoint union), this implies that G has a desired 2-factor.  $\Box$ 

## 6 Sharpness of Conjecture 3 and Theorem 5

We give a graph showing the sharpness of the lower bound on the length of a cycle in Conjecture 3. The graph  $G_2$  illustrated in Figure 6 (here, in Figure 6, "+" means the join of vertices) is a claw-free graph with minimum degree  $d (\geq 4)$ , and for each 2-factor of  $G_2$ , the minimum length of cycles in it is at most  $\left\lceil \frac{d+1}{2} \right\rceil$ , and  $G_2$  has a 2-factor such that the minimum length of cycles in it is just  $\left\lceil \frac{d+1}{2} \right\rceil$ . To see this, let  $\mathscr{C}$  be a set of vertex-disjoint cycles in  $G_2$  such that  $\bigcup_{C \in \mathscr{C}} C$  is a 2-factor of  $G_2$ . If  $x \in X$  and  $y \in Y$  are contained in same cycle in  $\mathscr{C}$ , then by the definition of  $G_2$ , the maximum size of the cycle containing both x and y is  $\left\lceil \frac{d+1}{2} \right\rceil$ . Hence by the symmetry, we may assume that for all  $x \in X \cup X'$  and all  $y \in Y \cup Y'$ , the cycle containing x and the cycle containing y in  $\mathscr{C}$  are distinct. Then by the definition of  $G_2$ , there exists a subset  $\mathscr{C}'$  of  $\mathscr{C}$  such that  $\bigcup_{C \in \mathscr{C}'} V(C) = X$  or  $\bigcup_{C \in \mathscr{C}'} V(C) = X'$ . Since  $|X| = |X'| = \left\lceil \frac{d+1}{2} \right\rceil$ , the minimum length of cycles in  $\mathscr{C}$  is at most  $\left\lceil \frac{d+1}{2} \right\rceil$ . Moreover, by these arguments, we can take a set  $\mathscr{C}$  so that the minimum length of cycles in  $\mathscr{C}$  is just  $\left\lceil \frac{d+1}{2} \right\rceil$ . (Note that by adding X, Y, X' and Y' iteratively, we can construct a sufficiently large graph.)

Obviously the above example also shows the sharpness of the lower bound of  $\delta(G^*)$  in Theorem 5.

### References

- K. Ando, Y. Egawa, A. Kaneko, K. Kawarabayashi and H. Matsuda, Path factors in clawfree graphs, Discrete Math. 243 (2002) 195–200.
- H.J. Broersma, M. Kriesell and Z. Ryjáček, On factors of 4-connected claw-free graphs, J. Graph Theory 37 (2001), 125–136.
- [3] H.J. Broersma, D. Paulusma and K. Yoshimoto, Sharp upper bounds for the minimum number of components of 2-factors in claw-free graphs, Graphs Combin. **25** (2009) 427-460
- [4] R. Cada, S. Chiba and K. Yoshimoto, private communications



Figure 6: The graph  $G_2$ 

- [5] S.A. Choudum and M.S. Paulraj, Regular factors in  $K_{1,3}$ -free graphs, J. Graph Theory 15 (1991) 259–265.
- [6] R. Diestel, Graph Theory, Fourth edition. Graduate Texts in Mathematics, 173, Springer, Heidelberg, 2010.
- [7] Y. Egawa and K. Ota, Regular factors in  $K_{1,n}$ -free graphs, J. Graph Theory **15** (1991) 337–344.
- [8] R.J. Faudree, O. Favaron, E. Flandrin, H. Li and Z. Liu, On 2-factors in claw-free graphs, Discrete Math. 206 (1999) 131–137.
- [9] R. J. Faudree, C. Magnant, K. Ozeki and K. Yoshimoto, Claw-Free Graphs and 2-Factors that Separate Independent Vertices, J. Graph Theory 69 (2012) 251-263
- [10] F. Harary and C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Can. Math. Bull. 8 (1965) 701–710.
- [11] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2-factors of line graphs, Discrete Math. 307 (2007) 2775–2785.
- B. Jackson and K. Yoshimoto, Spanning even subgraphs of 3-edge-connected graphs, J. Graph Theory 62 (2009) 37–47.

- [13] R. Kužel, K. Ozeki and K. Yoshimoto, 2-factors and independent sets on claw-free graphs, Discrete Math. **312** (2012), 202–206.
- [14] M.M. Matthews and D.P. Sumner, Hamiltonian results in  $K_{1,3}$ -free graphs, J. Graph Theory 8 (1984) 139–146.
- [15] K. Ozeki, Z. Ryjáček and K. Yoshimoto, 2-factors with bounded number of components in claw-free graphs, submitted.
- [16] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217–224.
- [17] Z. Ryjáček, A. Saito, and R.H. Schelp, Closure, 2-factors, and cycle coverings in claw-free graphs, J. Graph Theory **32** (1999) 109–117.
- [18] K. Yoshimoto, On the number of components in 2-factors of claw-free graphs, Discrete Math. 307 (2007) 2808–2819.