2-factors and independent sets on claw-free graphs

Roman Kuzel ${ }^{1}$
Department of Mathematics, The University of West Bohemia
Pilsen, Czech Republic
rkuzel@kma.zcu.cz
Kenta Ozeki ${ }^{2}$
Department of Mathematics, Keio University
Yokohama 223-0061, Japan
ozeki@comb.math.keio.ac.jp
and
Kiyoshi Yoshimoto ${ }^{3}$
Department of Mathematics
College of Science and Technology, Nihon University
Tokyo 101-8308, Japan
yoshimoto.kiyoshi@nihon-u.ac.jp

Abstract

In this paper, we show that if G is an l-connected claw-free graph with minimum degree at least three and $l \in\{2,3\}$, then for any maximum independent set S, there exists a 2 -factor in which each cycle contains at least $l-1$ vertices in S.

1 Introduction

In this paper, we consider finite graphs. If no ambiguity can arise, we denote simply the order $|G|$ of G by n, the minimum degree $\delta(G)$ by δ and the independence number $\alpha(G)$ by α. All notation and terminology not explained in this paper is given in [4] or [1].

A 2-factor of a graph G is a spanning 2-regular subgraph of G. Choudum and Paulraj [3] and Egawa and Ota [5] independently showed that every claw-free graph with $\delta \geq 4$ has a 2 -factor. For the upper bound of the number of cycles in 2 -factors, Broersma, Paulusma and Yoshimoto [2] proved that a claw-free graph with $\delta \geq 4$

[^0]has a 2 -factor with at most $\max \left\{\frac{n-3}{\delta-1}, 1\right\}$ cycles. This upper bound is almost best possible. (See [17].) Faudree et al. [6] studied a pair of a maximum independent set and a 2 -factor of a claw-free graph G which together dominate G and showed that if G is a claw-free graph with $\delta \geq \frac{2 n}{\alpha}-2$ and $n \geq \frac{3 \alpha^{3}}{2}$, then for any maximum independent set S, G has a 2 -factor with α cycles such that each cycle contains exactly one vertex in S. The following problems were posed in their article.

Conjecture A ([6]). Let G be a claw-free graph.

1. If $\delta \geq \frac{n}{\alpha} \geq 5$, then there exist a maximum independent set S and a 2-factor with α cycles such that each cycle contains a vertex of S.
2. If $\delta \geq \alpha+1$, then for any maximum independent set S, there exists a 2-factor with α cycles such that each cycle contains a vertex in S.

In this paper, we study 2 -factors which just separate a given maximum independent set S, i.e., we require that every cycle contains at least one vertex of S, and so the number of cycles in a 2 -factor can be smaller than α. This question was posed by Kaiser when the third author gave a lecture at University of West Bohemia. However, in general still we need the condition $\delta \geq n / \alpha$ because for any positive integer δ with $\frac{n}{\alpha}-\frac{1}{2 \delta}<\delta<\frac{n}{\alpha}$, there exists an infinite family of line graphs with minimum degree δ whose every 2 -factor contains more than α cycles (see [6], [17]). However 2-connectivity decreases the lower bound of minimum degrees. Our main result of this paper is the following.

Theorem 1. If G is an l-connected claw-free graph with $\delta \geq 3$ and $l \in\{2,3\}$, then for any maximum independent set S, G has a 2-factor such that each cycle contains at least $l-1$ vertices in S.

We will show this in Section 2. Since a 3-connected claw-free graph has a 2 -factor in which each cycle contains at least two vertices in a given maximum independent set by Theorem 1, the number of the cycles in the 2 -factor is at most $\frac{\alpha}{2}$. It is well known that the independence number of a claw-free graph is at most $\frac{2 n}{\delta+2}$ (for instance, see [6]), and so we obtain the following.

Corollary 2. A 3-connected claw-free graph has a 2-factor with at most $\frac{\alpha}{2} \leq \frac{n}{\delta+2}$ cycles.

Finally we give some additional definitions and notation. A connected graph in which every vertex has even degree is called a circuit. A subgraph D is dominating a graph G if $G-V(D)$ is edgeless. The degree of a vertex u in G is denoted by $d_{G}(u)$ and we denote the set of all the vertices of degree at least k in G by $V_{\geq k}(G)$, and $V_{k}(G)=\left\{d_{G}(u)=k \mid u \in G\right\}$. The edge-degree of an edge $x y$ is defined as $d_{G}(x)+d_{G}(y)-2$. An edge subset E_{0} is called independent if no pair of edges in E_{0} are adjacent. We denote the subgraph induced by the vertex set of a subgraph B in G by $G[B]$. A graph G is essentially k-edge-connected if for any edge set E_{0} of at most $k-1$ edges, $G \backslash E_{0}$ contains at most one component with edges.

2 Proof of Theorem 1

Let G_{0} be an l-connected claw-free graph with $\delta \geq 3$ and $l \in\{2,3\}$ and S_{0} be any maximum independent set of G_{0}. We look for a 2-factor in G_{0} in which each cycle contains at least $l-1$ vertices in S_{0}.

We use Ryjáček closure of a claw-free graph G which is defined as follows: for each vertex x of $G, N_{G}(x)$ induces a subgraph $G\left[N_{G}(x)\right]$ with at most two components; otherwise there is an induced claw. If $G\left[N_{G}(x)\right]$ has two components, both of them must be cliques. In the case that $G\left[N_{G}(x)\right]$ is connected, we add edges joining all pairs of nonadjacent vertices in $N_{G}(x)$. The $\operatorname{closure} \operatorname{cl}(G)$ of G is a graph obtained by recursively repeating this operation, as long as this is possible. Ryjacek [15] showed that the closure $\operatorname{cl}(G)$ is uniquely determined and G is hamiltonian if and only if $\operatorname{cl}(G)$ is hamiltonian.

Ryjáček, Saito and Schelp [16, Theorem 4] proved that for any mutually vertexdisjoint cycles D_{1}, \ldots, D_{p} in $c l(G)$, a claw-free graph G has mutually vertex disjoint cycles $C_{1}, \ldots C_{q}$ with $p \geq q$ such that $\bigcup_{i=1}^{p} V\left(D_{i}\right) \subset \bigcup_{j=1}^{q} V\left(C_{j}\right)$. By modifying the proof, easily we can improve this result as follows:

Lemma 3. If G is a claw-free graph and D_{1}, \ldots, D_{p} are mutually vertex-disjoint cycles in $\operatorname{cl}(G)$, then G has mutually vertex disjoint cycles $C_{1}, \ldots C_{q}$ with $p \geq q$ such that for each D_{i}, there exists C_{j} such that $V\left(D_{i}\right) \subset V\left(C_{j}\right)$.

If $c l\left(G_{0}\right)$ has a 2-factor $\bigcup_{i=1}^{p} D_{i}$ in which each cycle D_{i} contains at least $l-1$ vertices in S_{0}, then by the above lemma, G_{0} has a vertex disjoint cycles C_{1}, \ldots, C_{q} such that for each D_{i}, there exists C_{j} such that $V\left(D_{i}\right) \subset V\left(C_{j}\right)$. Since

$$
\left|C_{j} \cap S_{0}\right| \geq\left|D_{i} \cap S_{0}\right| \geq l-1 \text { and } \bigcup_{i=1}^{p} V\left(D_{i}\right)=V\left(c l\left(G_{0}\right)\right)=V\left(G_{0}\right),
$$

$\bigcup_{j=1}^{q} C_{j}$ is a required 2-factor of G_{0}. We rephrase moreover the above statement using the following result.

Lemma B (Ryjáček [15]). For any claw-free graph G, there exists a triangle-free graph H such that $L(H)=\operatorname{cl}(G)$.

Let H_{0} be a triangle-free graph such that $L\left(H_{0}\right)=c l\left(G_{0}\right)$. By the above facts, for Theorem 1, it is sufficient to show that:

$$
\begin{align*}
& L\left(H_{0}\right) \text { has a 2-factor in which each cycle contains } \\
& \text { at least } l-1 \text { vertices in } S_{0} . \tag{1}
\end{align*}
$$

Let H be a graph and \mathcal{D} a set of mutually edge-disjoint circuits and stars in H. If every star has at least three edges and every edge in $E(G) \backslash \bigcup_{D \in \mathcal{D}} E(D)$ is incident to a circuit in \mathcal{D}, then \mathcal{D} is called a system that dominates H. Gould and Hynds [11] showed that the line graph $L(H)$ has a 2-factor with c cycles if and only if there exists a system that dominates H with c elements. Hence, we look for a system that dominates H_{0} such that the corresponding 2-factor of $L\left(H_{0}\right)$ satisfies (1).

The set in H_{0} corresponding to S_{0} is an edge set. We denote the edge set also by S_{0}. Notice that S_{0} is independent in G_{0}, but S_{0} is not always independent in $L\left(H_{0}\right)=\operatorname{cl}\left(G_{0}\right)$, i.e.,
S_{0} is possibly not independent in H_{0}.

In either case, it is sufficient to prove the following claim for (1) because the set of hamilton cycles of $L\left(F_{1}\right), \ldots, L\left(F_{p}\right)$ constructs a desired 2-factor of $L\left(H_{0}\right)$.

Claim 1. There exist edge-disjoint subgraphs F_{1}, \ldots, F_{p} in H_{0} such that

1. $\bigcup_{i=1}^{p} E\left(F_{i}\right)=E\left(H_{0}\right)$,
2. $L\left(F_{i}\right)$ is hamiltonian for all $i \leq p$ and
3. F_{i} contains at least $l-1$ edges in S_{0} for all $i \leq p$.

Proof of Claim 1.

Because $L\left(H_{0}\right)$ is l-connected and has minimum degree at least three, H_{0} is essentially l-edge-connected and the minimum edge-degree of H_{0} is at least three. Since $l \in\{2,3\}$, we can use the following lemma.

Lemma C (Yoshimoto [17]). If H is an essentially 2-edge-connected graph with minimum edge-degree at least three, then there exists a system \mathcal{D} that dominates H such that every vertex in $V_{\geq 3}\left(H-V_{1}(H)\right)$ is in a circuit in \mathcal{D}.

Let $\mathcal{D}_{0}=\left\{B_{1}, \ldots, B_{p}\right\}$ be such a system that dominates H_{0} such that the number p of the elements in the system is smallest.

Suppose there exists a star B_{i} in \mathcal{D}_{0}. If the center of B_{i} is in $V_{\geq 3}\left(H_{0}-V_{1}\left(H_{0}\right)\right)$, then there exists a circuit $B_{j} \in \mathcal{D}_{0}$ which passes through the center. As every edge in B_{i} is dominated by B_{j}, we can remove B_{i} from \mathcal{D}_{0}. This contradicts the assumption of \mathcal{D}_{0}, and hence the center of B_{i} is in $V_{2}\left(H_{0}-V_{1}\left(H_{0}\right)\right)$. Since the minimum edge-degree is at least three,

$$
\begin{equation*}
\text { a star } B_{i} \in \mathcal{D}_{0} \text { contains at least two pendant edges of } H_{0} \text {. } \tag{2}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\text { if } H_{0} \text { is essentially 3-edge-connected, then there is no star in } \mathcal{D}_{0} \text {. } \tag{3}
\end{equation*}
$$

We construct desired subgraphs F_{1}, \ldots, F_{p} from \mathcal{D}_{0} by distributing edges which are not used in $\bigcup_{i=1}^{p} B_{i}$. At first we modify all stars in \mathcal{D}_{0}. Let B_{i}^{\prime} be the star which is constructed by all the pendant edges of H_{0} in B_{i}. For a circuit $B_{i} \in \mathcal{D}_{0}$, we let $B_{i}^{\prime}=B_{i}$ and $\mathcal{D}_{0}^{\prime}=\left\{B_{1}^{\prime}, \ldots, B_{p}^{\prime}\right\}$.

For each $B_{i}^{\prime} \in \mathcal{D}_{0}^{\prime}$, let

$$
S_{i}=E\left(H_{0}\left[B_{i}^{\prime}\right]\right) \cap S_{0} \text { and } \widetilde{S}=S_{0} \backslash \bigcup_{i=1}^{p} S_{i}
$$

and

$$
T_{i} \text { be a maximum independent edge set of } H_{0}\left[B_{i}^{\prime}\right]-V\left(S_{i}\right) \text {, }
$$

where $V\left(S_{i}\right)=\left\{x, y \mid x y \in S_{i}\right\}$. Notice that there is a natural bijection between $V\left(G_{0}\right)$ and $E\left(H_{0}\right)$. Since the vertex subset in G_{0} corresponding to $\bigcup_{i=1}^{p}\left(S_{i} \cup T_{i}\right)$ is independent,

$$
\begin{equation*}
\text { for any edge } f \in \bigcup_{i=1}^{p} T_{i} \text {, there exists an edge } e \in \widetilde{S} \text { adjacent to } f ; \tag{4}
\end{equation*}
$$

otherwise the vertex subset in G_{0} corresponding to $\widetilde{S} \cup \bigcup_{i=1}^{p} S_{i} \cup\{f\}$ is an independent set of G_{0} which is larger than S_{0}.

Let R be the bipartite graph with partite sets $\bigcup_{i=1}^{p} T_{i}$ and \widetilde{S} obtained by joining all $f \in \bigcup_{i=1}^{p} T_{i}$ and $e \in \widetilde{S}$ which are adjacent in H_{0}. By (4),

$$
d_{R}(f) \geq 1 \text { for all } f \in \bigcup_{i=1}^{p} T_{i}
$$

As $\bigcup_{i=1}^{p} T_{i}$ is independent in H_{0},

$$
d_{R}(e) \leq 2 \text { for all } e \in \widetilde{S}
$$

We can show that R has a matching covering $\bigcup_{i=1}^{p} T_{i}$. Let R_{j} be a component of R containing an element of $\bigcup_{i=1}^{p} T_{i}$ and R_{j}^{\prime} a spanning tree of R_{j}. If every $e \in \widetilde{S} \cap R_{j}$ has degree two in R_{j}^{\prime}, then $\left|\left(\bigcup_{i=1}^{p} T_{i}\right) \cap R_{j}\right|=\left|\widetilde{S} \cap R_{j}\right|+1$. Since R_{j} is a component in R, there is no edge joining $\left(\bigcup_{i=1}^{p} T_{i}\right) \cap R_{j}$ and $\widetilde{S} \backslash\left(\widetilde{S} \cap R_{j}\right)$ in R. Therefore, the vertex subset in G_{0} corresponding to $\left(S_{0}-\widetilde{S} \cap R_{j}\right) \cup\left(\left(\bigcup_{i=1}^{p} T_{i}\right) \cap R_{j}\right)$ is independent and the order is $\left|S_{0}\right|+1$. This contradicts the maximality of S_{0}, and so R_{j}^{\prime} contains an end $e_{j} \in \widetilde{S} \cap R_{j}$.

We give a direction to $E\left(R_{j}^{\prime}\right)$ from the root e_{j} to leaves. For any $f \in\left(\bigcup_{i=1}^{p} T_{i}\right) \cap$ R_{j}, there exists only one $e_{f} \in \widetilde{S} \cap R_{j}$ which is the origin of f on this direction. We define a mapping $\phi: \bigcup_{i=1}^{p} T_{i} \rightarrow \widetilde{S}$ by $\phi(f)=e_{f}$. As the degree of $\phi(f) \in \widetilde{S}$ is at
most two, ϕ is a one-to-one correspondence, and so $\left\{f e_{f}: f \in \bigcup_{i=1}^{p} T_{i}, e_{f}=\phi(f)\right\}$ is a matching of R covering $\bigcup_{i=1}^{p} T_{i}$.

The set S_{0} can be partitioned into the following mutually disjoint subsets:

$$
\bigcup_{i=1}^{p} S_{i}, \bigcup_{i=1}^{p} \phi\left(T_{i}\right) \text { and } \widetilde{S} \backslash\left(\bigcup_{i=1}^{p} \phi\left(T_{i}\right)\right)
$$

Using this partition, we distribute edges in S_{0} to \mathcal{D}_{0}^{\prime}, i.e., we define a mapping $\varphi: S_{0} \rightarrow \mathcal{D}_{0}^{\prime}$ as follows:

1. For $e \in S_{i}(1 \leq i \leq p)$, we define $\varphi(e):=B_{i}^{\prime}$.
2. For $e \in \phi\left(T_{i}\right)(1 \leq i \leq p)$, we define $\varphi(e):=B_{i}^{\prime}$.
3. For $e \in \widetilde{S} \backslash \bigcup_{i=1}^{p} \phi\left(T_{i}\right)$, there exists $B_{i}^{\prime} \in \mathcal{D}_{0}^{\prime}$ such that e is incident to B_{i}^{\prime} since \mathcal{D}_{0} is a system that dominate H_{0}. We let $\varphi(e):=B_{i}^{\prime}$ for arbitrary B_{i}^{\prime} containing an end of e.

Because $S_{i} \cup \phi\left(T_{i}\right) \subset \varphi^{-1}\left(B_{i}^{\prime}\right)$ and ϕ is a one-to-one correspondence,

$$
\left|\varphi^{-1}\left(B_{i}^{\prime}\right)\right| \geq\left|S_{i}\right|+\left|\phi\left(T_{i}\right)\right|=\left|S_{i}\right|+\left|T_{i}\right|
$$

for any $B_{i}^{\prime} \in \mathcal{D}_{0}^{\prime}$. Therefore $\varphi^{-1}\left(B_{i}^{\prime}\right)$ contains at least $\left|S_{i}\right|+\left|T_{i}\right|$ edges in S_{0}. If B_{i}^{\prime} is a star, then $S_{i}=E\left(B_{i}^{\prime}\right) \cap S_{0}$ and so $\left|S_{i}\right|+\left|T_{i}\right|=1$. If B_{i}^{\prime} is a circuit, then $\left|S_{i}\right|+\left|T_{i}\right| \geq 2$ because H_{0} is triangle-free. Therefore,

$$
\begin{cases}\text { if } B_{i}^{\prime} \text { is a star, } & \varphi^{-1}\left(B_{i}^{\prime}\right) \text { contains one edge in } S_{0} \tag{5}\\ \text { if } B_{i}^{\prime} \text { is a circuit, } & \varphi^{-1}\left(B_{i}^{\prime}\right) \text { contains at least two edges in } S_{0} .\end{cases}
$$

Now we divide our argument into two cases.
Case 1. $l=3$, i.e., H_{0} is essentially 3 -edge-connected.
In this case, there is no star in \mathcal{D}_{0} by (3), and so $\mathcal{D}_{0}^{\prime}=\mathcal{D}_{0}$. Since \mathcal{D}_{0} is a system that dominates H_{0}, every edge in $E\left(H_{0}\right) \backslash \bigcup_{i=1}^{p} E\left(B_{i}^{\prime}\right)$ is incident to some B_{i}^{\prime} in \mathcal{D}_{0}^{\prime}. We define a mapping ψ from

$$
\widetilde{E}=E\left(H_{0}\right) \backslash\left(\bigcup_{i=1}^{p} E\left(B_{i}^{\prime}\right) \cup S_{0}\right)
$$

to \mathcal{D}_{0}^{\prime} as follows: for all $e \in \widetilde{E}$, let $\psi(e):=B_{i}^{\prime}$ for arbitrary B_{i}^{\prime} containing an end of e.

Let

$$
F_{i}=B_{i}^{\prime} \cup \varphi^{-1}\left(B_{i}^{\prime}\right) \cup \psi^{-1}\left(B_{i}^{\prime}\right) .
$$

Obviously F_{1}, \ldots, F_{p} are mutually edge-disjoint and $\bigcup_{i=1}^{p} E\left(F_{i}\right)=E\left(H_{0}\right)$. Since every edge in F_{i} is on the circuit B_{i} or incident to B_{i}, F_{i} has a dominating circuit. Harary and Nash-Williams [13] showed that $L(H)$ is hamiltonian if and only if H has a dominating circuit or H is a star with at least three edges. Therefore $L\left(F_{i}\right)$ is hamiltonian. By (5), every F_{i} contains at least two edges in S_{0}, and hence F_{1}, \ldots, F_{p} are desired subgraphs.

Case 2. $l=2$, i.e., H_{0} is essentially 2 -edge-connected.

In this case, \mathcal{D}_{0}^{\prime} includes stars, and hence we have to care a star with less than three edges because such stars do not induce cycles in $L\left(H_{0}\right)$. So, we distribute edges in $\widetilde{E}=E\left(H_{0}\right) \backslash\left(\bigcup_{i=1}^{p} E\left(B_{i}^{\prime}\right) \cup S_{0}\right)$ to \mathcal{D}_{0}^{\prime} such that every star contains at least three edges. Notice that any star $B_{i}^{\prime} \in \mathcal{D}_{0}^{\prime}$ contains at least two edges by (2).

Suppose B_{i}^{\prime} is a star in \mathcal{D}_{0}^{\prime} with $\left|E\left(B_{i}^{\prime}\right)\right|=2$. If $S_{i}=\emptyset$, then there is $f \in T_{i}$, and so $\phi(f) \in \varphi^{-1}\left(B_{i}^{\prime}\right)$. Since $\phi(f) \notin E\left(B_{i}^{\prime}\right)$,

$$
\begin{equation*}
B_{i}^{\prime} \cup \varphi^{-1}\left(B_{i}^{\prime}\right) \text { contains at least three edges. } \tag{6}
\end{equation*}
$$

Therefore it is not necessary to distribute an edge in \widetilde{E} to B_{i}^{\prime} if $S_{i}=\emptyset$. However, in the case that $\left|E\left(B_{i}^{\prime}\right)\right|=2$ and $S_{i} \neq \emptyset$, we have to distribute an edge in \widetilde{E} to B_{i}^{\prime}.

Let \mathcal{T} be the set of all stars $B_{i}^{\prime} \in \mathcal{D}_{0}^{\prime}$ with $\left|E\left(B_{i}^{\prime}\right)\right|=2$ and $S_{i} \neq \emptyset$. The following claim implies that there exist two edges in \widetilde{E} incident to the center of $B_{i}^{\prime} \in \mathcal{T}$.

Claim 2. For all $B_{i}^{\prime} \in \mathcal{T}$, there is no edge in $S_{0} \backslash S_{i}$ incident to B_{i}^{\prime}.
Proof. Suppose that there exists an edge $e_{1} \in S_{0}$ such that $e_{1} \notin E\left(B_{i}^{\prime}\right)$ and e_{1} is incident with the center of B_{i}^{\prime}. Let $e_{2} \in S_{i}$, let $e_{3} \in E\left(B_{i}^{\prime}\right)-\left\{e_{2}\right\}$, and let e_{4} be the edge incident with the center of B_{i}^{\prime} other than e_{1}, e_{2}, e_{3}. In the graph $\operatorname{cl}\left(G_{0}\right)$, four vertices $e_{1}, e_{2}, e_{3}, e_{4}$ form a clique. However $e_{1} e_{2} \notin E\left(G_{0}\right)$ because $e_{1}, e_{2} \in S_{0}$ and
S_{0} is independent on G_{0}. Thus, the edge $e_{1} e_{2}$ of $c l\left(G_{0}\right)$ is added through the closure operation. This implies that $N_{G_{0}}\left(e_{2}\right) \subset\left\{e_{3}, e_{4}\right\}$, which contradicts that $\delta \geq 3$. Thus, Claim 2 holds.

Let K be the bipartite graph with partite sets \widetilde{E} and \mathcal{T} obtained by joining all $f \in \widetilde{E}$ and $B_{i}^{\prime} \in \mathcal{T}$ if f is incident to the center of B_{i}^{\prime}. Since for any $B_{i}^{\prime} \in \mathcal{T}$, the center of B_{i}^{\prime} is in $V_{2}\left(H_{0}-V_{1}\left(H_{0}\right)\right)$, we have $d_{K}\left(B_{i}^{\prime}\right)=2$ by Claim 2. Since $d_{K}(f) \leq 2$ for all $f \in \widetilde{E}$, the bipartite graph K has a matching M covering \mathcal{T} by Hall's Theorem. Using M, we define $\psi: \widetilde{E} \rightarrow \mathcal{D}_{0}^{\prime}$ as follows: let $f \in \widetilde{E}$. If f is used in M, we define $\psi(f):=B_{i}^{\prime}$ where $f B_{i}^{\prime} \in M$; otherwise let $\psi(f):=B_{i}^{\prime}$ for arbitrary B_{i}^{\prime} containing an end of f. Because the matching M covers \mathcal{T}, we have $\psi^{-1}\left(B_{i}^{\prime}\right) \neq \emptyset$ for any $B_{i}^{\prime} \in \mathcal{T}$. Since $\psi^{-1}\left(B_{i}^{\prime}\right) \cap E\left(B_{i}^{\prime}\right)=\emptyset, B_{i}^{\prime} \cup \psi^{-1}\left(B_{i}^{\prime}\right)$ contains at least three edges.

Let

$$
F_{i}=B_{i}^{\prime} \cup \varphi^{-1}\left(B_{i}^{\prime}\right) \cup \psi^{-1}\left(B_{i}^{\prime}\right)
$$

for $1 \leq i \leq p$. Obviously F_{1}, \ldots, F_{p} are mutually edge-disjoint and $\bigcup_{i=1}^{p} E\left(F_{i}\right)=$ $E\left(H_{0}\right)$. Since every star F_{i} contains at least three edges, $L\left(F_{i}\right)$ is hamiltonian for all F_{i} by the theorem of Harary and Nash-Williams [13]. As F_{i} contains an edge in S_{0} by (5), F_{1}, \ldots, F_{p} are desired subgraphs. The proof of Claim 1 is completed.

References

[1] J.A Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
[2] H.J. Broersma, D. Paulusma and K. Yoshimoto, Sharp upper bounds on the minimum number of components of 2-factors in claw-free graphs, Graphs and Combin., 25 (2009), 427-460.
[3] S.A. Choudum and M.S. Paulraj, Regular factors in $K_{1,3}$-free graphs, Journal of Graph Theory 15 (1991) 259-265.
[4] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000).
[5] Y. Egawa and K. Ota, Regular factors in $K_{1, n}$-free graphs, Journal of Graph Theory 15 (1991) 337-344.
[6] R. J. Faudree, C. Magnant, K. Ozeki and K. Yoshimoto, Claw-Free Graphs and 2-Factors that Separate Independent Vertices, submitted
[7] R.J. Faudree, O. Favaron, E. Flandrin, H. Li, and Z. Liu, On 2-factors in clawfree graphs, Discrete Mathematics 206 (1999) 131-137.
[8] R. Faudree, E. Flandrin, and Z. Ryjáček Claw-free graphs-a survey, Discrete Mathematics 164 (1997) 87-147.
[9] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2-factors of line graphs, Discrete Mathematics 307 (2007) 2775-2785.
[10] B. Jackson and K. Yoshimoto, Spanning Even Subgraphs of 3-edge-connected Graphs, J. Graph Theory, 62 (2009) 37-47.
[11] R.J. Gould and E. Hynds, A note on cycles in 2-factors of line graphs, Bulletin of the ICA 26 (1999) 46-48.
[12] R.J. Gould and M.S. Jacobson, Two-factors with few cycles in claw-free graphs, Discrete Mathematics 231 (2001) 191-197.
[13] F. Harary and C. St. J.A. Nash-Williams On eulerian and hamiltonian graphs and line graphs, Canadian Mathematical Bulletin 8 (1965) 701-710
[14] M. M. Matthews and D. P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, Journal of Graph Theory 8 (1984) 139-146.
[15] Z. Ryjáček, On a closure concept in claw-free graphs, Journal of Combinatorial Theory, Series B 70 (1997) 217-224.
[16] Z. Ryjáček, A. Saito, and R.H. Schelp, Closure, 2-factors, and cycle coverings in claw-free graphs, Journal of Graph Theory 32 (1999) 109-117.
[17] K. Yoshimoto, On the number of components in 2-factors of claw-free graphs, Discrete Mathematics 307 (2007) 2808-2819.

[^0]: ${ }^{1}$ Supported by project 1M0545 and Research Plan MSM 4977751301 of the Czech Ministry of Education.
 ${ }^{2}$ Supported by JSPS Research Fellowships for Young Scientists.
 ${ }^{3}$ Supported by JSPS. KAKENHI (14740087)

