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Abstract

In this paper, we show that if G is an l-connected claw-free graph with
minimum degree at least three and l ∈ {2, 3}, then for any maximum inde-
pendent set S, there exists a 2-factor in which each cycle contains at least
l − 1 vertices in S.

1 Introduction

In this paper, we consider finite graphs. If no ambiguity can arise, we denote simply

the order |G| of G by n, the minimum degree δ(G) by δ and the independence

number α(G) by α. All notation and terminology not explained in this paper is

given in [4] or [1].

A 2-factor of a graph G is a spanning 2-regular subgraph of G. Choudum and

Paulraj [3] and Egawa and Ota [5] independently showed that every claw-free graph

with δ ≥ 4 has a 2-factor. For the upper bound of the number of cycles in 2-factors,

Broersma, Paulusma and Yoshimoto [2] proved that a claw-free graph with δ ≥ 4
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has a 2-factor with at most max

{
n − 3

δ − 1
, 1

}
cycles. This upper bound is almost best

possible. (See [17].) Faudree et al. [6] studied a pair of a maximum independent set

and a 2-factor of a claw-free graph G which together dominate G and showed that

if G is a claw-free graph with δ ≥ 2n

α
− 2 and n ≥ 3α3

2
, then for any maximum

independent set S, G has a 2-factor with α cycles such that each cycle contains

exactly one vertex in S. The following problems were posed in their article.

Conjecture A ([6]). Let G be a claw-free graph.

1. If δ ≥ n

α
≥ 5, then there exist a maximum independent set S and a 2-factor

with α cycles such that each cycle contains a vertex of S.

2. If δ ≥ α + 1, then for any maximum independent set S, there exists a 2-factor

with α cycles such that each cycle contains a vertex in S.

In this paper, we study 2-factors which just separate a given maximum indepen-

dent set S, i.e., we require that every cycle contains at least one vertex of S, and so

the number of cycles in a 2-factor can be smaller than α. This question was posed

by Kaiser when the third author gave a lecture at University of West Bohemia.

However, in general still we need the condition δ ≥ n/α because for any positive

integer δ with
n

α
− 1

2δ
< δ <

n

α
, there exists an infinite family of line graphs with

minimum degree δ whose every 2-factor contains more than α cycles (see [6], [17]).

However 2-connectivity decreases the lower bound of minimum degrees. Our main

result of this paper is the following.

Theorem 1. If G is an l-connected claw-free graph with δ ≥ 3 and l ∈ {2, 3}, then

for any maximum independent set S, G has a 2-factor such that each cycle contains

at least l − 1 vertices in S.

We will show this in Section 2. Since a 3-connected claw-free graph has a 2-factor

in which each cycle contains at least two vertices in a given maximum independent

set by Theorem 1, the number of the cycles in the 2-factor is at most
α

2
. It is well

known that the independence number of a claw-free graph is at most
2n

δ + 2
(for

instance, see [6]), and so we obtain the following.
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Corollary 2. A 3-connected claw-free graph has a 2-factor with at most
α

2
≤ n

δ + 2
cycles.

Finally we give some additional definitions and notation. A connected graph in

which every vertex has even degree is called a circuit. A subgraph D is dominating

a graph G if G − V (D) is edgeless. The degree of a vertex u in G is denoted by

dG(u) and we denote the set of all the vertices of degree at least k in G by V≥k(G),

and Vk(G) = {dG(u) = k | u ∈ G}. The edge-degree of an edge xy is defined as

dG(x) + dG(y)− 2. An edge subset E0 is called independent if no pair of edges in E0

are adjacent. We denote the subgraph induced by the vertex set of a subgraph B in

G by G[B]. A graph G is essentially k-edge-connected if for any edge set E0 of at

most k − 1 edges, G \ E0 contains at most one component with edges.

2 Proof of Theorem 1

Let G0 be an l-connected claw-free graph with δ ≥ 3 and l ∈ {2, 3} and S0 be any

maximum independent set of G0. We look for a 2-factor in G0 in which each cycle

contains at least l − 1 vertices in S0.

We use Ryjáček closure of a claw-free graph G which is defined as follows: for each

vertex x of G, NG(x) induces a subgraph G[NG(x)] with at most two components;

otherwise there is an induced claw. If G[NG(x)] has two components, both of them

must be cliques. In the case that G[NG(x)] is connected, we add edges joining all

pairs of nonadjacent vertices in NG(x). The closure cl(G) of G is a graph obtained

by recursively repeating this operation, as long as this is possible. Ryjacek [15]

showed that the closure cl(G) is uniquely determined and G is hamiltonian if and

only if cl(G) is hamiltonian.

Ryjáček, Saito and Schelp [16, Theorem 4] proved that for any mutually vertex-

disjoint cycles D1, . . . , Dp in cl(G), a claw-free graph G has mutually vertex disjoint

cycles C1, . . . Cq with p ≥ q such that
⋃p

i=1 V (Di) ⊂
⋃q

j=1 V (Cj). By modifying the

proof, easily we can improve this result as follows:
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Lemma 3. If G is a claw-free graph and D1, . . . , Dp are mutually vertex-disjoint

cycles in cl(G), then G has mutually vertex disjoint cycles C1, . . . Cq with p ≥ q such

that for each Di, there exists Cj such that V (Di) ⊂ V (Cj).

If cl(G0) has a 2-factor
⋃p

i=1 Di in which each cycle Di contains at least l − 1

vertices in S0, then by the above lemma, G0 has a vertex disjoint cycles C1, . . . , Cq

such that for each Di, there exists Cj such that V (Di) ⊂ V (Cj). Since

|Cj ∩ S0| ≥ |Di ∩ S0| ≥ l − 1 and

p⋃
i=1

V (Di) = V (cl(G0)) = V (G0),

⋃q
j=1 Cj is a required 2-factor of G0. We rephrase moreover the above statement

using the following result.

Lemma B (Ryjáček [15]). For any claw-free graph G, there exists a triangle-free

graph H such that L(H) = cl(G).

Let H0 be a triangle-free graph such that L(H0) = cl(G0). By the above facts, for

Theorem 1, it is sufficient to show that:

L(H0) has a 2-factor in which each cycle contains

at least l − 1 vertices in S0.
(1)

Let H be a graph and D a set of mutually edge-disjoint circuits and stars in H.

If every star has at least three edges and every edge in E(G)\
⋃

D∈D E(D) is incident

to a circuit in D, then D is called a system that dominates H. Gould and Hynds [11]

showed that the line graph L(H) has a 2-factor with c cycles if and only if there

exists a system that dominates H with c elements. Hence, we look for a system that

dominates H0 such that the corresponding 2-factor of L(H0) satisfies (1).

The set in H0 corresponding to S0 is an edge set. We denote the edge set also

by S0. Notice that S0 is independent in G0, but S0 is not always independent in

L(H0) = cl(G0), i.e.,

S0 is possibly not independent in H0.

In either case, it is sufficient to prove the following claim for (1) because the set of

hamilton cycles of L(F1), . . . , L(Fp) constructs a desired 2-factor of L(H0).
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Claim 1. There exist edge-disjoint subgraphs F1, . . . , Fp in H0 such that

1.
⋃p

i=1 E(Fi) = E(H0),

2. L(Fi) is hamiltonian for all i ≤ p and

3. Fi contains at least l − 1 edges in S0 for all i ≤ p.

Proof of Claim 1.

Because L(H0) is l-connected and has minimum degree at least three, H0 is essen-

tially l-edge-connected and the minimum edge-degree of H0 is at least three. Since

l ∈ {2, 3}, we can use the following lemma.

Lemma C (Yoshimoto [17]). If H is an essentially 2-edge-connected graph with

minimum edge-degree at least three, then there exists a system D that dominates H

such that every vertex in V≥3(H − V1(H)) is in a circuit in D.

Let D0 = {B1, . . . , Bp} be such a system that dominates H0 such that the number p

of the elements in the system is smallest.

Suppose there exists a star Bi in D0. If the center of Bi is in V≥3(H0 − V1(H0)),

then there exists a circuit Bj ∈ D0 which passes through the center. As every

edge in Bi is dominated by Bj, we can remove Bi from D0. This contradicts the

assumption of D0, and hence the center of Bi is in V2(H0 − V1(H0)). Since the

minimum edge-degree is at least three,

a star Bi ∈ D0 contains at least two pendant edges of H0. (2)

Furthermore,

if H0 is essentially 3-edge-connected, then there is no star in D0. (3)

We construct desired subgraphs F1, . . . , Fp from D0 by distributing edges which

are not used in
⋃p

i=1 Bi. At first we modify all stars in D0. Let B′
i be the star which

is constructed by all the pendant edges of H0 in Bi. For a circuit Bi ∈ D0, we let

B′
i = Bi and D′

0 = {B′
1, . . . , B

′
p}.
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For each B′
i ∈ D′

0, let

Si = E(H0[B
′
i]) ∩ S0 and S̃ = S0 \

p⋃
i=1

Si

and

Ti be a maximum independent edge set of H0[B
′
i] − V (Si),

where V (Si) = {x, y | xy ∈ Si}. Notice that there is a natural bijection between

V (G0) and E(H0). Since the vertex subset in G0 corresponding to
⋃p

i=1(Si ∪ Ti) is

independent,

for any edge f ∈
p⋃

i=1

Ti, there exists an edge e ∈ S̃ adjacent to f ; (4)

otherwise the vertex subset in G0 corresponding to S̃∪
⋃p

i=1 Si∪{f} is an independent

set of G0 which is larger than S0.

Let R be the bipartite graph with partite sets
⋃p

i=1 Ti and S̃ obtained by joining

all f ∈
⋃p

i=1 Ti and e ∈ S̃ which are adjacent in H0. By (4),

dR(f) ≥ 1 for all f ∈
p⋃

i=1

Ti.

As
⋃p

i=1 Ti is independent in H0,

dR(e) ≤ 2 for all e ∈ S̃.

We can show that R has a matching covering
⋃p

i=1 Ti. Let Rj be a component of R

containing an element of
⋃p

i=1 Ti and R′
j a spanning tree of Rj. If every e ∈ S̃ ∩ Rj

has degree two in R′
j, then |(

⋃p
i=1 Ti)∩Rj| = |S̃ ∩Rj|+ 1. Since Rj is a component

in R, there is no edge joining (
⋃p

i=1 Ti) ∩ Rj and S̃ \ (S̃ ∩ Rj) in R. Therefore, the

vertex subset in G0 corresponding to
(
S0− S̃∩Rj

)
∪

(
(
⋃p

i=1 Ti)∩Rj

)
is independent

and the order is |S0|+ 1. This contradicts the maximality of S0, and so R′
j contains

an end ej ∈ S̃ ∩ Rj.

We give a direction to E(R′
j) from the root ej to leaves. For any f ∈ (

⋃p
i=1 Ti)∩

Rj, there exists only one ef ∈ S̃ ∩ Rj which is the origin of f on this direction. We

define a mapping φ :
⋃p

i=1 Ti → S̃ by φ(f) = ef . As the degree of φ(f) ∈ S̃ is at
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most two, φ is a one-to-one correspondence, and so {fef : f ∈
⋃p

i=1 Ti, ef = φ(f)}

is a matching of R covering
⋃p

i=1 Ti.

The set S0 can be partitioned into the following mutually disjoint subsets:

p⋃
i=1

Si,

p⋃
i=1

φ(Ti) and S̃ \ (

p⋃
i=1

φ(Ti)).

Using this partition, we distribute edges in S0 to D′
0, i.e., we define a mapping

ϕ : S0 → D′
0 as follows:

1. For e ∈ Si (1 ≤ i ≤ p), we define ϕ(e) := B′
i.

2. For e ∈ φ(Ti) (1 ≤ i ≤ p), we define ϕ(e) := B′
i.

3. For e ∈ S̃ \
⋃p

i=1 φ(Ti), there exists B′
i ∈ D′

0 such that e is incident to B′
i

since D0 is a system that dominate H0. We let ϕ(e) := B′
i for arbitrary B′

i

containing an end of e.

Because Si ∪ φ(Ti) ⊂ ϕ−1(B′
i) and φ is a one-to-one correspondence,

|ϕ−1(B′
i)| ≥ |Si| + |φ(Ti)| = |Si| + |Ti|

for any B′
i ∈ D′

0. Therefore ϕ−1(B′
i) contains at least |Si|+ |Ti| edges in S0. If B′

i is a

star, then Si = E(B′
i)∩S0 and so |Si|+ |Ti| = 1. If B′

i is a circuit, then |Si|+ |Ti| ≥ 2

because H0 is triangle-free. Therefore,{
if B′

i is a star, ϕ−1(B′
i) contains one edge in S0

if B′
i is a circuit, ϕ−1(B′

i) contains at least two edges in S0.
(5)

Now we divide our argument into two cases.

Case 1. l = 3, i.e., H0 is essentially 3-edge-connected.

In this case, there is no star in D0 by (3), and so D′
0 = D0. Since D0 is a system

that dominates H0, every edge in E(H0) \
⋃p

i=1 E(B′
i) is incident to some B′

i in D′
0.

We define a mapping ψ from

Ẽ = E(H0) \ (

p⋃
i=1

E(B′
i) ∪ S0)
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to D′
0 as follows: for all e ∈ Ẽ, let ψ(e) := B′

i for arbitrary B′
i containing an end

of e.

Let

Fi = B′
i ∪ ϕ−1(B′

i) ∪ ψ−1(B′
i).

Obviously F1, . . . , Fp are mutually edge-disjoint and
⋃p

i=1 E(Fi) = E(H0). Since

every edge in Fi is on the circuit Bi or incident to Bi, Fi has a dominating circuit.

Harary and Nash-Williams [13] showed that L(H) is hamiltonian if and only if H

has a dominating circuit or H is a star with at least three edges. Therefore L(Fi) is

hamiltonian. By (5), every Fi contains at least two edges in S0, and hence F1, . . . , Fp

are desired subgraphs.

Case 2. l = 2, i.e., H0 is essentially 2-edge-connected.

In this case, D′
0 includes stars, and hence we have to care a star with less than three

edges because such stars do not induce cycles in L(H0). So, we distribute edges in

Ẽ = E(H0) \
( ⋃p

i=1 E(B′
i) ∪ S0

)
to D′

0 such that every star contains at least three

edges. Notice that any star B′
i ∈ D′

0 contains at least two edges by (2).

Suppose B′
i is a star in D′

0 with |E(B′
i)| = 2. If Si = ∅, then there is f ∈ Ti, and

so φ(f) ∈ ϕ−1(B′
i). Since φ(f) /∈ E(B′

i),

B′
i ∪ ϕ−1(B′

i) contains at least three edges. (6)

Therefore it is not necessary to distribute an edge in Ẽ to B′
i if Si = ∅. However, in

the case that |E(B′
i)| = 2 and Si ̸= ∅, we have to distribute an edge in Ẽ to B′

i.

Let T be the set of all stars B′
i ∈ D′

0 with |E(B′
i)| = 2 and Si ̸= ∅. The following

claim implies that there exist two edges in Ẽ incident to the center of B′
i ∈ T .

Claim 2. For all B′
i ∈ T , there is no edge in S0 \ Si incident to B′

i.

Proof. Suppose that there exists an edge e1 ∈ S0 such that e1 ̸∈ E(B′
i) and e1 is

incident with the center of B′
i. Let e2 ∈ Si, let e3 ∈ E(B′

i) − {e2}, and let e4 be the

edge incident with the center of B′
i other than e1, e2, e3. In the graph cl(G0), four

vertices e1, e2, e3, e4 form a clique. However e1e2 ̸∈ E(G0) because e1, e2 ∈ S0 and
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S0 is independent on G0. Thus, the edge e1e2 of cl(G0) is added through the closure

operation. This implies that NG0(e2) ⊂ {e3, e4}, which contradicts that δ ≥ 3.

Thus, Claim 2 holds.

Let K be the bipartite graph with partite sets Ẽ and T obtained by joining

all f ∈ Ẽ and B′
i ∈ T if f is incident to the center of B′

i. Since for any B′
i ∈ T ,

the center of B′
i is in V2(H0 − V1(H0)), we have dK(B′

i) = 2 by Claim 2. Since

dK(f) ≤ 2 for all f ∈ Ẽ, the bipartite graph K has a matching M covering T by

Hall’s Theorem. Using M , we define ψ : Ẽ → D′
0 as follows: let f ∈ Ẽ. If f is used

in M , we define ψ(f) := B′
i where fB′

i ∈ M ; otherwise let ψ(f) := B′
i for arbitrary

B′
i containing an end of f . Because the matching M covers T , we have ψ−1(B′

i) ̸= ∅

for any B′
i ∈ T . Since ψ−1(B′

i) ∩ E(B′
i) = ∅, B′

i ∪ ψ−1(B′
i) contains at least three

edges.

Let

Fi = B′
i ∪ ϕ−1(B′

i) ∪ ψ−1(B′
i)

for 1 ≤ i ≤ p. Obviously F1, . . . , Fp are mutually edge-disjoint and
⋃p

i=1 E(Fi) =

E(H0). Since every star Fi contains at least three edges, L(Fi) is hamiltonian for

all Fi by the theorem of Harary and Nash-Williams [13]. As Fi contains an edge in

S0 by (5), F1, . . . , Fp are desired subgraphs. The proof of Claim 1 is completed.

References

[1] J.A Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, Lon-
don and Elsevier, New York, 1976.

[2] H.J. Broersma, D. Paulusma and K. Yoshimoto, Sharp upper bounds on the
minimum number of components of 2-factors in claw-free graphs, Graphs and
Combin., 25 (2009), 427-460.

[3] S.A. Choudum and M.S. Paulraj, Regular factors in K1,3-free graphs, Journal of
Graph Theory 15 (1991) 259–265.

[4] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173,
Springer (2000).

[5] Y. Egawa and K. Ota, Regular factors in K1,n-free graphs, Journal of Graph
Theory 15 (1991) 337–344.

9



[6] R. J. Faudree, C. Magnant, K. Ozeki and K. Yoshimoto, Claw-Free Graphs and
2-Factors that Separate Independent Vertices, submitted

[7] R.J. Faudree, O. Favaron, E. Flandrin, H. Li, and Z. Liu, On 2-factors in claw-
free graphs, Discrete Mathematics 206 (1999) 131–137.

[8] R. Faudree, E. Flandrin, and Z. Ryjáček Claw-free graphs—a survey, Discrete
Mathematics 164 (1997) 87–147.

[9] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2-factors
of line graphs, Discrete Mathematics 307 (2007) 2775–2785.

[10] B. Jackson and K. Yoshimoto, Spanning Even Subgraphs of 3-edge-connected
Graphs, J. Graph Theory, 62 (2009) 37-47.

[11] R.J. Gould and E. Hynds, A note on cycles in 2-factors of line graphs, Bulletin
of the ICA 26 (1999) 46–48.

[12] R.J. Gould and M.S. Jacobson, Two-factors with few cycles in claw-free graphs,
Discrete Mathematics 231 (2001) 191–197.

[13] F. Harary and C. St. J.A. Nash-Williams On eulerian and hamiltonian graphs
and line graphs, Canadian Mathematical Bulletin 8 (1965) 701-710

[14] M. M. Matthews and D. P. Sumner, Hamiltonian results in K1,3-free graphs,
Journal of Graph Theory 8 (1984) 139–146.

[15] Z. Ryjáček, On a closure concept in claw-free graphs, Journal of Combinatorial
Theory, Series B 70 (1997) 217–224.
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