2-factors and independent sets on claw-free graphs

Roman Kuzel¹

Department of Mathematics, The University of West Bohemia Pilsen, Czech Republic rkuzel@kma.zcu.cz

Kenta Ozeki²

Department of Mathematics, Keio University Yokohama 223-0061, Japan ozeki@comb.math.keio.ac.jp

and

Kiyoshi Yoshimoto³

Department of Mathematics College of Science and Technology, Nihon University Tokyo 101-8308, Japan yoshimoto.kiyoshi@nihon-u.ac.jp

Abstract

In this paper, we show that if G is an *l*-connected claw-free graph with minimum degree at least three and $l \in \{2,3\}$, then for any maximum independent set S, there exists a 2-factor in which each cycle contains at least l-1 vertices in S.

1 Introduction

In this paper, we consider finite graphs. If no ambiguity can arise, we denote simply the order |G| of G by n, the minimum degree $\delta(G)$ by δ and the independence number $\alpha(G)$ by α . All notation and terminology not explained in this paper is given in [4] or [1].

A 2-factor of a graph G is a spanning 2-regular subgraph of G. Choudum and Paulraj [3] and Egawa and Ota [5] independently showed that every claw-free graph with $\delta \geq 4$ has a 2-factor. For the upper bound of the number of cycles in 2-factors, Broersma, Paulusma and Yoshimoto [2] proved that a claw-free graph with $\delta \geq 4$

 $^{^1 \}rm Supported$ by project 1M0545 and Research Plan MSM 4977751301 of the Czech Ministry of Education.

²Supported by JSPS Research Fellowships for Young Scientists.

³Supported by JSPS. KAKENHI (14740087)

has a 2-factor with at most $\max\left\{\frac{n-3}{\delta-1},1\right\}$ cycles. This upper bound is almost best possible. (See [17].) Faudree et al. [6] studied a pair of a maximum independent set and a 2-factor of a claw-free graph G which together dominate G and showed that if G is a claw-free graph with $\delta \geq \frac{2n}{\alpha} - 2$ and $n \geq \frac{3\alpha^3}{2}$, then for any maximum independent set S, G has a 2-factor with α cycles such that each cycle contains exactly one vertex in S. The following problems were posed in their article.

Conjecture A ([6]). Let G be a claw-free graph.

- 1. If $\delta \geq \frac{n}{\alpha} \geq 5$, then there exist a maximum independent set S and a 2-factor with α cycles such that each cycle contains a vertex of S.
- If δ ≥ α + 1, then for any maximum independent set S, there exists a 2-factor with α cycles such that each cycle contains a vertex in S.

In this paper, we study 2-factors which just separate a given maximum independent set S, i.e., we require that every cycle contains at least one vertex of S, and so the number of cycles in a 2-factor can be smaller than α . This question was posed by Kaiser when the third author gave a lecture at University of West Bohemia. However, in general still we need the condition $\delta \geq n/\alpha$ because for any positive integer δ with $\frac{n}{\alpha} - \frac{1}{2\delta} < \delta < \frac{n}{\alpha}$, there exists an infinite family of line graphs with minimum degree δ whose every 2-factor contains more than α cycles (see [6], [17]). However 2-connectivity decreases the lower bound of minimum degrees. Our main result of this paper is the following.

Theorem 1. If G is an l-connected claw-free graph with $\delta \geq 3$ and $l \in \{2, 3\}$, then for any maximum independent set S, G has a 2-factor such that each cycle contains at least l-1 vertices in S.

We will show this in Section 2. Since a 3-connected claw-free graph has a 2-factor in which each cycle contains at least two vertices in a given maximum independent set by Theorem 1, the number of the cycles in the 2-factor is at most $\frac{\alpha}{2}$. It is well known that the independence number of a claw-free graph is at most $\frac{2n}{\delta+2}$ (for instance, see [6]), and so we obtain the following. **Corollary 2.** A 3-connected claw-free graph has a 2-factor with at most $\frac{\alpha}{2} \leq \frac{n}{\delta+2}$ cycles.

Finally we give some additional definitions and notation. A connected graph in which every vertex has even degree is called a *circuit*. A subgraph D is *dominating* a graph G if G - V(D) is edgeless. The degree of a vertex u in G is denoted by $d_G(u)$ and we denote the set of all the vertices of degree at least k in G by $V_{\geq k}(G)$, and $V_k(G) = \{d_G(u) = k \mid u \in G\}$. The *edge-degree* of an edge xy is defined as $d_G(x) + d_G(y) - 2$. An edge subset E_0 is called *independent* if no pair of edges in E_0 are adjacent. We denote the subgraph induced by the vertex set of a subgraph B in G by G[B]. A graph G is *essentially* k-edge-connected if for any edge set E_0 of at most k - 1 edges, $G \setminus E_0$ contains at most one component with edges.

2 Proof of Theorem 1

Let G_0 be an *l*-connected claw-free graph with $\delta \geq 3$ and $l \in \{2, 3\}$ and S_0 be any maximum independent set of G_0 . We look for a 2-factor in G_0 in which each cycle contains at least l-1 vertices in S_0 .

We use Ryjáček closure of a claw-free graph G which is defined as follows: for each vertex x of G, $N_G(x)$ induces a subgraph $G[N_G(x)]$ with at most two components; otherwise there is an induced claw. If $G[N_G(x)]$ has two components, both of them must be cliques. In the case that $G[N_G(x)]$ is connected, we add edges joining all pairs of nonadjacent vertices in $N_G(x)$. The closure cl(G) of G is a graph obtained by recursively repeating this operation, as long as this is possible. Ryjacek [15] showed that the closure cl(G) is uniquely determined and G is hamiltonian if and only if cl(G) is hamiltonian.

Ryjáček, Saito and Schelp [16, Theorem 4] proved that for any mutually vertexdisjoint cycles D_1, \ldots, D_p in cl(G), a claw-free graph G has mutually vertex disjoint cycles C_1, \ldots, C_q with $p \ge q$ such that $\bigcup_{i=1}^p V(D_i) \subset \bigcup_{j=1}^q V(C_j)$. By modifying the proof, easily we can improve this result as follows: **Lemma 3.** If G is a claw-free graph and D_1, \ldots, D_p are mutually vertex-disjoint cycles in cl(G), then G has mutually vertex disjoint cycles C_1, \ldots, C_q with $p \ge q$ such that for each D_i , there exists C_j such that $V(D_i) \subset V(C_j)$.

If $cl(G_0)$ has a 2-factor $\bigcup_{i=1}^p D_i$ in which each cycle D_i contains at least l-1 vertices in S_0 , then by the above lemma, G_0 has a vertex disjoint cycles C_1, \ldots, C_q such that for each D_i , there exists C_j such that $V(D_i) \subset V(C_j)$. Since

$$|C_j \cap S_0| \ge |D_i \cap S_0| \ge l - 1$$
 and $\bigcup_{i=1}^p V(D_i) = V(cl(G_0)) = V(G_0),$

 $\bigcup_{j=1}^{q} C_j$ is a required 2-factor of G_0 . We rephrase moreover the above statement using the following result.

Lemma B (Ryjáček [15]). For any claw-free graph G, there exists a triangle-free graph H such that L(H) = cl(G).

Let H_0 be a triangle-free graph such that $L(H_0) = cl(G_0)$. By the above facts, for Theorem 1, it is sufficient to show that:

$$L(H_0) \text{ has a 2-factor in which each cycle contains}$$

at least $l-1$ vertices in S_0 . (1)

Let H be a graph and \mathcal{D} a set of mutually edge-disjoint circuits and stars in H. If every star has at least three edges and every edge in $E(G) \setminus \bigcup_{D \in \mathcal{D}} E(D)$ is incident to a circuit in \mathcal{D} , then \mathcal{D} is called a *system that dominates* H. Gould and Hynds [11] showed that the line graph L(H) has a 2-factor with c cycles if and only if there exists a system that dominates H with c elements. Hence, we look for a system that dominates H_0 such that the corresponding 2-factor of $L(H_0)$ satisfies (1).

The set in H_0 corresponding to S_0 is an edge set. We denote the edge set also by S_0 . Notice that S_0 is independent in G_0 , but S_0 is not always independent in $L(H_0) = cl(G_0)$, i.e.,

S_0 is possibly not independent in H_0 .

In either case, it is sufficient to prove the following claim for (1) because the set of hamilton cycles of $L(F_1), \ldots, L(F_p)$ constructs a desired 2-factor of $L(H_0)$.

Claim 1. There exist edge-disjoint subgraphs F_1, \ldots, F_p in H_0 such that

- 1. $\bigcup_{i=1}^{p} E(F_i) = E(H_0),$
- 2. $L(F_i)$ is hamiltonian for all $i \leq p$ and
- 3. F_i contains at least l-1 edges in S_0 for all $i \leq p$.

Proof of Claim 1.

Because $L(H_0)$ is *l*-connected and has minimum degree at least three, H_0 is essentially *l*-edge-connected and the minimum edge-degree of H_0 is at least three. Since $l \in \{2, 3\}$, we can use the following lemma.

Lemma C (Yoshimoto [17]). If H is an essentially 2-edge-connected graph with minimum edge-degree at least three, then there exists a system \mathcal{D} that dominates H such that every vertex in $V_{\geq 3}(H - V_1(H))$ is in a circuit in \mathcal{D} .

Let $\mathcal{D}_0 = \{B_1, \ldots, B_p\}$ be such a system that dominates H_0 such that the number p of the elements in the system is smallest.

Suppose there exists a star B_i in \mathcal{D}_0 . If the center of B_i is in $V_{\geq 3}(H_0 - V_1(H_0))$, then there exists a circuit $B_j \in \mathcal{D}_0$ which passes through the center. As every edge in B_i is dominated by B_j , we can remove B_i from \mathcal{D}_0 . This contradicts the assumption of \mathcal{D}_0 , and hence the center of B_i is in $V_2(H_0 - V_1(H_0))$. Since the minimum edge-degree is at least three,

a star
$$B_i \in \mathcal{D}_0$$
 contains at least two pendant edges of H_0 . (2)

Furthermore,

if
$$H_0$$
 is essentially 3-edge-connected, then there is no star in \mathcal{D}_0 . (3)

We construct desired subgraphs F_1, \ldots, F_p from \mathcal{D}_0 by distributing edges which are not used in $\bigcup_{i=1}^p B_i$. At first we modify all stars in \mathcal{D}_0 . Let B'_i be the star which is constructed by all the pendant edges of H_0 in B_i . For a circuit $B_i \in \mathcal{D}_0$, we let $B'_i = B_i$ and $\mathcal{D}'_0 = \{B'_1, \ldots, B'_p\}$. For each $B'_i \in \mathcal{D}'_0$, let

$$S_i = E(H_0[B'_i]) \cap S_0 \text{ and } \widetilde{S} = S_0 \setminus \bigcup_{i=1}^p S_i$$

and

 T_i be a maximum independent edge set of $H_0[B'_i] - V(S_i)$,

where $V(S_i) = \{x, y \mid xy \in S_i\}$. Notice that there is a natural bijection between $V(G_0)$ and $E(H_0)$. Since the vertex subset in G_0 corresponding to $\bigcup_{i=1}^p (S_i \cup T_i)$ is independent,

for any edge
$$f \in \bigcup_{i=1}^{p} T_i$$
, there exists an edge $e \in \widetilde{S}$ adjacent to f ; (4)

otherwise the vertex subset in G_0 corresponding to $\widetilde{S} \cup \bigcup_{i=1}^p S_i \cup \{f\}$ is an independent set of G_0 which is larger than S_0 .

Let R be the bipartite graph with partite sets $\bigcup_{i=1}^{p} T_i$ and \widetilde{S} obtained by joining all $f \in \bigcup_{i=1}^{p} T_i$ and $e \in \widetilde{S}$ which are adjacent in H_0 . By (4),

$$d_R(f) \ge 1$$
 for all $f \in \bigcup_{i=1}^p T_i$.

As $\bigcup_{i=1}^{p} T_i$ is independent in H_0 ,

$$d_R(e) \leq 2$$
 for all $e \in \widetilde{S}$.

We can show that R has a matching covering $\bigcup_{i=1}^{p} T_i$. Let R_j be a component of R containing an element of $\bigcup_{i=1}^{p} T_i$ and R'_j a spanning tree of R_j . If every $e \in \widetilde{S} \cap R_j$ has degree two in R'_j , then $|(\bigcup_{i=1}^{p} T_i) \cap R_j| = |\widetilde{S} \cap R_j| + 1$. Since R_j is a component in R, there is no edge joining $(\bigcup_{i=1}^{p} T_i) \cap R_j$ and $\widetilde{S} \setminus (\widetilde{S} \cap R_j)$ in R. Therefore, the vertex subset in G_0 corresponding to $(S_0 - \widetilde{S} \cap R_j) \cup ((\bigcup_{i=1}^{p} T_i) \cap R_j)$ is independent and the order is $|S_0| + 1$. This contradicts the maximality of S_0 , and so R'_j contains an end $e_j \in \widetilde{S} \cap R_j$.

We give a direction to $E(R'_j)$ from the root e_j to leaves. For any $f \in (\bigcup_{i=1}^p T_i) \cap R_j$, there exists only one $e_f \in \widetilde{S} \cap R_j$ which is the origin of f on this direction. We define a mapping $\phi : \bigcup_{i=1}^p T_i \to \widetilde{S}$ by $\phi(f) = e_f$. As the degree of $\phi(f) \in \widetilde{S}$ is at

most two, ϕ is a one-to-one correspondence, and so $\{fe_f : f \in \bigcup_{i=1}^p T_i, e_f = \phi(f)\}$ is a matching of R covering $\bigcup_{i=1}^p T_i$.

The set S_0 can be partitioned into the following mutually disjoint subsets:

$$\bigcup_{i=1}^{p} S_i, \bigcup_{i=1}^{p} \phi(T_i) \text{ and } \widetilde{S} \setminus (\bigcup_{i=1}^{p} \phi(T_i)).$$

Using this partition, we distribute edges in S_0 to \mathcal{D}'_0 , i.e., we define a mapping $\varphi: S_0 \to \mathcal{D}'_0$ as follows:

- 1. For $e \in S_i$ $(1 \le i \le p)$, we define $\varphi(e) := B'_i$.
- 2. For $e \in \phi(T_i)$ $(1 \le i \le p)$, we define $\varphi(e) := B'_i$.
- 3. For $e \in \widetilde{S} \setminus \bigcup_{i=1}^{p} \phi(T_i)$, there exists $B'_i \in \mathcal{D}'_0$ such that e is incident to B'_i since \mathcal{D}_0 is a system that dominate H_0 . We let $\varphi(e) := B'_i$ for arbitrary B'_i containing an end of e.

Because $S_i \cup \phi(T_i) \subset \varphi^{-1}(B'_i)$ and ϕ is a one-to-one correspondence,

$$|\varphi^{-1}(B_i')| \ge |S_i| + |\phi(T_i)| = |S_i| + |T_i|$$

for any $B'_i \in \mathcal{D}'_0$. Therefore $\varphi^{-1}(B'_i)$ contains at least $|S_i| + |T_i|$ edges in S_0 . If B'_i is a star, then $S_i = E(B'_i) \cap S_0$ and so $|S_i| + |T_i| = 1$. If B'_i is a circuit, then $|S_i| + |T_i| \ge 2$ because H_0 is triangle-free. Therefore,

$$\begin{cases} if B'_i \text{ is a star,} & \varphi^{-1}(B'_i) \text{ contains one edge in } S_0 \\ if B'_i \text{ is a circuit,} & \varphi^{-1}(B'_i) \text{ contains at least two edges in } S_0. \end{cases}$$
(5)

Now we divide our argument into two cases.

Case 1. l = 3, i.e., H_0 is essentially 3-edge-connected.

In this case, there is no star in \mathcal{D}_0 by (3), and so $\mathcal{D}'_0 = \mathcal{D}_0$. Since \mathcal{D}_0 is a system that dominates H_0 , every edge in $E(H_0) \setminus \bigcup_{i=1}^p E(B'_i)$ is incident to some B'_i in \mathcal{D}'_0 . We define a mapping ψ from

$$\widetilde{E} = E(H_0) \setminus (\bigcup_{i=1}^p E(B'_i) \cup S_0)$$

to \mathcal{D}'_0 as follows: for all $e \in \widetilde{E}$, let $\psi(e) := B'_i$ for arbitrary B'_i containing an end of e.

Let

$$F_i = B'_i \cup \varphi^{-1}(B'_i) \cup \psi^{-1}(B'_i).$$

Obviously F_1, \ldots, F_p are mutually edge-disjoint and $\bigcup_{i=1}^p E(F_i) = E(H_0)$. Since every edge in F_i is on the circuit B_i or incident to B_i , F_i has a dominating circuit. Harary and Nash-Williams [13] showed that L(H) is hamiltonian if and only if Hhas a dominating circuit or H is a star with at least three edges. Therefore $L(F_i)$ is hamiltonian. By (5), every F_i contains at least two edges in S_0 , and hence F_1, \ldots, F_p are desired subgraphs.

Case 2. l = 2, i.e., H_0 is essentially 2-edge-connected.

In this case, \mathcal{D}'_0 includes stars, and hence we have to care a star with less than three edges because such stars do not induce cycles in $L(H_0)$. So, we distribute edges in $\widetilde{E} = E(H_0) \setminus \left(\bigcup_{i=1}^p E(B'_i) \cup S_0 \right)$ to \mathcal{D}'_0 such that every star contains at least three edges. Notice that any star $B'_i \in \mathcal{D}'_0$ contains at least two edges by (2).

Suppose B'_i is a star in \mathcal{D}'_0 with $|E(B'_i)| = 2$. If $S_i = \emptyset$, then there is $f \in T_i$, and so $\phi(f) \in \varphi^{-1}(B'_i)$. Since $\phi(f) \notin E(B'_i)$,

$$B'_i \cup \varphi^{-1}(B'_i)$$
 contains at least three edges. (6)

Therefore it is not necessary to distribute an edge in \widetilde{E} to B'_i if $S_i = \emptyset$. However, in the case that $|E(B'_i)| = 2$ and $S_i \neq \emptyset$, we have to distribute an edge in \widetilde{E} to B'_i .

Let \mathcal{T} be the set of all stars $B'_i \in \mathcal{D}'_0$ with $|E(B'_i)| = 2$ and $S_i \neq \emptyset$. The following claim implies that there exist two edges in \widetilde{E} incident to the center of $B'_i \in \mathcal{T}$.

Claim 2. For all $B'_i \in \mathcal{T}$, there is no edge in $S_0 \setminus S_i$ incident to B'_i .

Proof. Suppose that there exists an edge $e_1 \in S_0$ such that $e_1 \notin E(B'_i)$ and e_1 is incident with the center of B'_i . Let $e_2 \in S_i$, let $e_3 \in E(B'_i) - \{e_2\}$, and let e_4 be the edge incident with the center of B'_i other than e_1, e_2, e_3 . In the graph $cl(G_0)$, four vertices e_1, e_2, e_3, e_4 form a clique. However $e_1e_2 \notin E(G_0)$ because $e_1, e_2 \in S_0$ and S_0 is independent on G_0 . Thus, the edge e_1e_2 of $cl(G_0)$ is added through the closure operation. This implies that $N_{G_0}(e_2) \subset \{e_3, e_4\}$, which contradicts that $\delta \geq 3$. Thus, Claim 2 holds.

Let K be the bipartite graph with partite sets \widetilde{E} and \mathcal{T} obtained by joining all $f \in \widetilde{E}$ and $B'_i \in \mathcal{T}$ if f is incident to the center of B'_i . Since for any $B'_i \in \mathcal{T}$, the center of B'_i is in $V_2(H_0 - V_1(H_0))$, we have $d_K(B'_i) = 2$ by Claim 2. Since $d_K(f) \leq 2$ for all $f \in \widetilde{E}$, the bipartite graph K has a matching M covering \mathcal{T} by Hall's Theorem. Using M, we define $\psi : \widetilde{E} \to \mathcal{D}'_0$ as follows: let $f \in \widetilde{E}$. If f is used in M, we define $\psi(f) := B'_i$ where $fB'_i \in M$; otherwise let $\psi(f) := B'_i$ for arbitrary B'_i containing an end of f. Because the matching M covers \mathcal{T} , we have $\psi^{-1}(B'_i) \neq \emptyset$ for any $B'_i \in \mathcal{T}$. Since $\psi^{-1}(B'_i) \cap E(B'_i) = \emptyset$, $B'_i \cup \psi^{-1}(B'_i)$ contains at least three edges.

Let

$$F_i = B'_i \cup \varphi^{-1}(B'_i) \cup \psi^{-1}(B'_i)$$

for $1 \leq i \leq p$. Obviously F_1, \ldots, F_p are mutually edge-disjoint and $\bigcup_{i=1}^p E(F_i) = E(H_0)$. Since every star F_i contains at least three edges, $L(F_i)$ is hamiltonian for all F_i by the theorem of Harary and Nash-Williams [13]. As F_i contains an edge in S_0 by (5), F_1, \ldots, F_p are desired subgraphs. The proof of Claim 1 is completed.

References

- [1] J.A Bondy and U.S.R. Murty, *Graph Theory with Applications*, Macmillan, London and Elsevier, New York, 1976.
- [2] H.J. Broersma, D. Paulusma and K. Yoshimoto, Sharp upper bounds on the minimum number of components of 2-factors in claw-free graphs, Graphs and Combin., 25 (2009), 427-460.
- [3] S.A. Choudum and M.S. Paulraj, Regular factors in K_{1,3}-free graphs, Journal of Graph Theory 15 (1991) 259–265.
- [4] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000).
- [5] Y. Egawa and K. Ota, Regular factors in $K_{1,n}$ -free graphs, Journal of Graph Theory **15** (1991) 337–344.

- [6] R. J. Faudree, C. Magnant, K. Ozeki and K. Yoshimoto, *Claw-Free Graphs and* 2-Factors that Separate Independent Vertices, submitted
- [7] R.J. Faudree, O. Favaron, E. Flandrin, H. Li, and Z. Liu, On 2-factors in clawfree graphs, Discrete Mathematics 206 (1999) 131–137.
- [8] R. Faudree, E. Flandrin, and Z. Ryjáček *Claw-free graphs—a survey*, Discrete Mathematics 164 (1997) 87–147.
- [9] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2-factors of line graphs, Discrete Mathematics **307** (2007) 2775–2785.
- [10] B. Jackson and K. Yoshimoto, Spanning Even Subgraphs of 3-edge-connected Graphs, J. Graph Theory, 62 (2009) 37-47.
- [11] R.J. Gould and E. Hynds, A note on cycles in 2-factors of line graphs, Bulletin of the ICA 26 (1999) 46–48.
- [12] R.J. Gould and M.S. Jacobson, Two-factors with few cycles in claw-free graphs, Discrete Mathematics 231 (2001) 191–197.
- [13] F. Harary and C. St. J.A. Nash-Williams On eulerian and hamiltonian graphs and line graphs, Canadian Mathematical Bulletin 8 (1965) 701-710
- [14] M. M. Matthews and D. P. Sumner, Hamiltonian results in $K_{1,3}$ -free graphs, Journal of Graph Theory 8 (1984) 139–146.
- [15] Z. Ryjáček, On a closure concept in claw-free graphs, Journal of Combinatorial Theory, Series B 70 (1997) 217–224.
- [16] Z. Ryjáček, A. Saito, and R.H. Schelp, Closure, 2-factors, and cycle coverings in claw-free graphs, Journal of Graph Theory 32 (1999) 109–117.
- [17] K. Yoshimoto, On the number of components in 2-factors of claw-free graphs, Discrete Mathematics 307 (2007) 2808–2819.