Closure concept for 2-factors in claw-free graphs

Zdeněk Ryjáček ${ }^{1,4}$
Liming Xiong ${ }^{2,5}$
Kiyoshi Yoshimoto ${ }^{3,6}$

November 2, 2009

Abstract

We introduce a closure concept for 2-factors in claw-free graphs that generalizes the closure introduced by the first author. The 2 -factor closure of a graph is uniquely determined and the closure operation turns a claw-free graph into the line graph of a graph containing no cycles of length at most 5 and no cycles of length 6 satisfying a certain condition. A graph has a 2 -factor if and only if its closure has a 2 factor; however, the closure operation preserves neither the minimum number of components of a 2 -factor nor the hamiltonicity or nonhamiltonicity of a graph.

Keywords: closure; 2-factor; claw-free graph; line graph; dominating system.

1 Introduction

By a graph we always mean a simple loopless finite undirected graph $G=(V(G), E(G))$. We use standard graph-theoretical notation and terminology and for concepts and notations not defined here we refer the reader to [1].

The degree of a vertex $x \in V(G)$ is denoted $d_{G}(x)$, and $\delta(G)$ denotes the minimum degree of G, i.e. $\delta(G)=\min \left\{d_{G}(x) \mid x \in V(G)\right\}$. An edge of G is a pendant edge if some of its vertices is of degree 1. The distance in G of two vertices $x, y \in V(G)$ is denoted $\operatorname{dist}_{G}(x, y)$, and for two subgraphs $F_{1}, F_{2} \subset G$ we denote $\operatorname{dist}_{G}\left(F_{1}, F_{2}\right)=$ $\min \left\{\operatorname{dist}_{G}(x, y) \mid x \in V\left(F_{1}\right), y \in V\left(F_{2}\right)\right\}$. If F is a subgraph of G, we simply write $G-F$ for $G-V(F)$.

[^0]For a set of vertices $S \subset V(G),\langle S\rangle_{G}$ denotes the subgraph induced by S, and for a set of edges $D \subset E(G),\left\langle\langle D\rangle_{G}\right.$ denotes the edge-induced subgraph determined by the set D. A clique is a (not necessarily maximal) complete subgraph of a graph G, and, for an edge $e \in E(G), \omega_{G}(e)$ denotes the largest order of a clique containing e.

A cycle of length i is denoted C_{i}, and for a cycle C with a given orientation and a vertex $x \in V(C), x^{-}$and x^{+}denotes the predecessor and successor of x on C, respectively.

The girth of a graph G, denoted $g(G)$, is the length of a shortest cycle in G, and the circumference of G, denoted $c(G)$, is the length of a longest cycle in G. A cycle (path) in G having $|V(G)|$ vertices is called a hamiltonian cycle (hamiltonian path), and a graph containing a hamiltonian cycle (hamiltonian path) is said to be hamiltonian (traceable), respectively. A 2-factor in a graph G is a spanning subgraph of G in which all vertices have degree 2. Thus, a hamiltonian cycle is a connected 2 -factor.

If H is a graph, then the line graph of H, denoted $L(H)$, is the graph with $E(H)$ as vertex set, in which two vertices are adjacent if and only if the corresponding edges have a vertex in common. It is well-known that if G is a line graph (of some graph), then the graph H such that $G=L(H)$ is uniquely determined (with one exception of the graphs C_{3} and $K_{1,3}$, for which both $L\left(C_{3}\right)$ and $L\left(K_{1,3}\right)$ are isomorphic to $\left.C_{3}\right)$. The graph H for which $L(H)=G$ will be called the preimage of G and denoted $H=L^{-1}(G)$.

Let H be a graph and $e=x y \in E(H)$ an edge of H. Let $\left.H\right|_{e}$ be the graph obtained from H by identifying x and y to a new vertex v_{e} and adding to v_{e} a (new) pendant edge e^{\prime}. Then we say that $\left.H\right|_{e}$ is obtained from H by contraction of the edge e. Note that $|E(H)|=\left|E\left(\left.H\right|_{e}\right)\right|$.

The neighborhood of a vertex $x \in V(G)$ is the set $N_{G}(x)=\{y \in V(G) \mid x y \in E(G)\}$, and for $S \subset V(G)$ we denote $N_{G}(S)=\cup_{x \in S} N_{G}(x)$. For a vertex $x \in V(G)$, the graph G_{x}^{*} with $V\left(G_{x}^{*}\right)=V(G)$ and $E\left(G_{x}^{*}\right)=E(G) \cup\left\{u v \mid u, v \in N_{G}(x)\right\}$ is called the local completion of G at x.

The following proposition, which is easy to observe (see also [9]), shows the relation between the operations of local completion and of contraction of an edge.

Proposition A. Let H be a graph, $e \in E(H), G=L(H)$, and let $x \in V(G)$ be the vertex corresponding to the edge e. Then $G_{x}^{*}=L\left(\left.H\right|_{e}\right)$.

We say that a graph is even if every its vertex has positive even degree. A connected even graph is called a circuit, and the complete bipartite graph $K_{1, m}$ is a star. Specifically, the four-vertex star $K_{1,3}$ will be referred to as the claw. A subgraph F of a graph H dominates H if F dominates every edge of H, i.e. if every edge of H has at least one vertex in $V(F)$. Let \mathcal{S} be a set of edge-disjoint circuits and stars with at least three edges in H. We say that \mathcal{S} is a dominating system (abbreviated d-system) in H if every edge of H that is not in a star of \mathcal{S} is dominated by a circuit in \mathcal{S}. We will use the following result by Gould and Hynds [5].

Theorem B [5]. Let H be a graph. Then $L(H)$ has a 2-factor with c components if and only if H has a d-system with c elements.

A graph G is said to be claw-free if G does not contain an induced subgraph isomorphic to the claw $K_{1,3}$. It is a well-known fact that every line graph is claw-free, hence the class
of claw-free graphs can be considered as a natural generalization of the class of line graphs. For more information on claw-free graphs, see e.g. the survey paper [4].

In the class of claw-free graphs, a closure concept has been introduced in $[8]$ as follows. Let G be a claw-free graph and $x \in V(G)$. We say that x is locally connected if $\left\langle N_{G}(x)\right\rangle_{G}$ is a connected graph, x is simplicial if $\left\langle N_{G}(x)\right\rangle_{G}$ is a clique, and x is eligible if x is locally connected and nonsimplicial. The set of eligible or simplicial vertices of a graph G is denoted $\operatorname{EL}(G)$ or $\operatorname{SI}(G)$, respectively. The graph, obtained from G by recursively performing the local completion operation at eligible vertices, as long as this is possible, is called the closure of G and denoted $\operatorname{cl}(G)$. (More precisely: there are graphs G_{1}, \ldots, G_{k} such that $G_{1}=G, G_{i+1}=\left(G_{i}\right)_{x_{i}}^{*}$ for some $x_{i} \in \operatorname{EL}\left(G_{i}\right), i=1, \ldots, k-1, G_{k}=\operatorname{cl}(G)$ and $\operatorname{EL}\left(G_{k}\right)=\emptyset$.)

The following result summarizes basic properties of the closure.
Theorem C [8]. For every claw-free graph G :
(i) $\operatorname{cl}(G)$ is uniquely determined,
(ii) $\operatorname{cl}(G)$ is the line graph of a triangle-free graph,
(iii) $c(\mathrm{cl}(G))=c(G)$,
(iv) $\operatorname{cl}(G)$ is hamiltonian if and only if G is hamiltonian.

In [10] it was shown that the closure operation preserves also the existence or nonexistence of a 2-factor. More specifically, the following was proved in [10].

Theorem D [10]. Let G be a claw-free graph and let $x \in \operatorname{EL}(G)$. If G_{x}^{*} has a 2-factor with k components, then G has a 2 -factor with at most k components.

Consequently, the local completion operation performed at eligible vertices preserves the minimum number of components of a 2 -factor. Specifically, we obtain the following.

Corollary E [10]. Let G be a claw-free graph. Then G has a 2 -factor if and only if $\mathrm{cl}(G)$ has a 2-factor.

Further properties of $\mathrm{cl}(G)$ are summarized in the survey paper [3].
In this paper, we significantly strengthen the closure concept such that it still preserves the (non)-existence of a 2 -factor.

2 Closure concept

Let C_{k} be a cycle of even length $k \geq 4$. Two edges $e_{1}, e_{2} \in E(G)$ are said to be antipodal in C_{k}, if they are at maximum distance in C_{k} (i.e., $\left.\operatorname{dist}_{C_{k}}\left(e_{1}, e_{2}\right)=k / 2-1\right)$. An even cycle C_{k} in a graph G is said to be edge-antipodal, abbreviated EA, if $\min \left\{\omega_{G}\left(e_{1}\right), \omega_{G}\left(e_{2}\right)\right\}=2$ for any two antipodal edges $e_{1}, e_{2} \in E\left(C_{k}\right)$. Analogously, two vertices $x_{1}, x_{2} \in V\left(C_{k}\right)$ are antipodal in C_{k} if they are at maximum distance in C_{k} (i.e. $\operatorname{dist}_{C_{k}}\left(x_{1}, x_{2}\right)=k / 2$), and C_{k} is said to be vertex-antipodal, abbreviated VA, if $\min \left\{d_{G}\left(x_{1}\right), d_{G}\left(x_{2}\right)\right\}=2$ for any two antipodal vertices $x_{1}, x_{2} \in V\left(C_{k}\right)$.

Let G be a claw-free graph. A vertex $x \in V(G)$ is said to be $2 f$-eligible, if x satisfies one of the following:
(i) $x \in \mathrm{EL}(G)$,
(ii) $x \notin \mathrm{EL}(G)$ and x is in an induced cycle of length 4 or 5 or in an induced EA-cycle of length 6 .
The set of all 2f-eligible vertices of G will be denoted $\mathrm{EL}^{2 f}(G)$.
We say that a graph $\mathrm{cl}^{2 f}(G)$ is a 2-factor-closure (abbreviated 2f-closure) of a claw-free graph G, if there is a sequence of graphs G_{1}, \ldots, G_{k} such that
(i) $G_{1}=G$,
(ii) $G_{i+1}=\left(G_{i}\right)_{x_{i}}^{*}$ for some $x_{i} \in \operatorname{EL}^{2 f}\left(G_{i}\right), i=1, \ldots, k-1$,
(iii) $G_{k}=\mathrm{cl}^{2 f}(G)$ and $\operatorname{EL}^{2 f}\left(G_{k}\right)=\emptyset$.

Thus, the 2f-closure of a claw-free graph G is obtained by recursively repeating the local completion operation at 2 f -eligible vertices, as long as this is possible. In the next section we will show that, for a given claw-free graph G, its 2 f -closure is uniquely determined, which will justify the notation $\mathrm{cl}^{2 f}(G)$.

The graph G in Figure 1 is an example of a claw-free graph with a complete 2f-closure, in which $\operatorname{EL}(G)=\emptyset$. Note that G is nonhamiltonian and $G-x$ is nontraceable, while $\mathrm{cl}^{2 f}(G)$ is complete and $\mathrm{cl}^{2 f}(G-x)$ is traceable. Hence $\mathrm{cl}^{2 f}(G)$ preserves neither the (non)hamiltonicity nor the (non)-traceability of a graph. Moreover, since G is nonhamiltonian and $\mathrm{cl}^{2 f}(G)$ is complete, this example also shows that $\mathrm{cl}^{2 f}(G)$ does not preserve the minimum number of components of a 2 -factor, i.e., an analogue of Theorem D is not true for $\mathrm{cl}^{2 f}(G)$. However, in Section 4 we will prove the analogue of Corollary $\mathrm{E}_{\mathrm{for}} \mathrm{cl}^{2 f}(G)$.

Figure 1

3 Uniqueness of the closure

We recall some definitions and facts from [6] that will be helpful to prove the uniqueness of $\mathrm{cl}^{2 f}(G)$ as a special case of a more general setting.

Let \mathcal{C} be a class of graphs and let \mathcal{P} be a function on \mathcal{C} such that, for any $G \in \mathcal{C}$, $\mathcal{P}(G) \subset 2^{V(G)}$ (i.e., $\mathcal{P}(G)$ is a set of subsets of $V(G)$). For any $X \subset V(G)$ let G_{X}^{*} denote the local completion of G at X, i.e. the graph with $V\left(G_{X}^{*}\right)=V(G)$ and $E\left(G_{X}^{*}\right)=$ $E(G) \cup\{u v \mid u, v \in X\}$ (thus, the previous notation G_{x}^{*} means that, for a vertex $x \in V(G)$, we simply write G_{x}^{*} for $\left.G_{N_{G}(x)}^{*}\right)$.

We say that a graph F is a \mathcal{P}-extension of G, denoted $G \preceq F$, if there is a sequence of graphs $G_{0}=G, G_{1}, \ldots, G_{k}=F$ such that $G_{i+1}=\left(G_{i}\right)_{X_{i}}^{*}$ for some $X_{i} \in \mathcal{P}\left(G_{i}\right)$. Clearly, for any graph G there is a \preceq-maximal \mathcal{P}-extension H, and in this case we say that H is a \mathcal{P}-closure of G. If a \mathcal{P}-closure is uniquely determined then it is denoted by $\operatorname{cl}_{\mathcal{P}}(G)$. Finally, a function \mathcal{P} is non-decreasing (on a class \mathcal{C}), if, for any $H, H^{\prime} \in \mathcal{C}, H \preceq H^{\prime}$ implies that for any $X \in \mathcal{P}(H)$ there is an $X^{\prime} \in \mathcal{P}\left(H^{\prime}\right)$ such that $X \subset X^{\prime}$.

The following result was proved in [6]. For the sake of completeness, we include its (short) proof here.

Theorem \mathbf{F} [6]. If \mathcal{P} is a non-decreasing function on a class \mathcal{C}, then, for any $G \in \mathcal{C}$, a \mathcal{P}-closure of G is uniquely determined.

Proof. Let $H \neq H^{\prime}$ be \mathcal{P}-closures of G, let $G=G_{0}, G_{1}, \ldots, G_{k}=H^{\prime}$ be such that $G_{i+1}=\left(G_{i}\right)_{X_{i}}^{*}$ for some $X_{i} \in \mathcal{P}\left(G_{i}\right)$, and let s be a smallest integer such that $G_{s} \not \subset H$. Since $G_{s-1} \subset H$ and \mathcal{P} is non-decreasing, there is $X \in \mathcal{P}(H)$ such that $X_{s-1} \subset X$. Since H is \preceq-maximal, we have $H_{X}^{*}=H$, a contradiction.

It is easy to see that $\mathcal{P}(G)=\left\{N_{G}(x) \mid x \in \operatorname{EL}^{2 f}(G) \cup \mathrm{SI}(G)\right\}$ is a non-decreasing function on the class \mathcal{C} of claw-free graphs, and $\operatorname{cl}_{\mathcal{P}}(G)$ equals the 2f-closure of G. This immediately implies the following fact.

Proposition 1. For any claw-free graph G, the $2 f$-closure of G is uniquely determined.

4 Properties of the closure

The following result summarizes basic properties of the 2 f -closure.
Theorem 2. Let G be a claw-free graph. Then
(i) the closure $\mathrm{cl}^{2 f}(G)$ is uniquely determined,
(ii) there is a graph H such that
(α) $L(H)=\operatorname{cl}^{2 f}(G)$,
(β) $g(H) \geq 6$,
$(\gamma) H$ does not contain any vertex-antipodal cycle of length 6 ,
(iii) G has a 2-factor if and only if $\mathrm{cl}^{2 f}(G)$ has a 2-factor.

Proof. (i) Part (i) follows immediately from Proposition 1.
(ii) By (i), the 2 f -closure does not depend on the order of 2 f -eligible vertices used during the construction of $\mathrm{cl}^{2 f}(G)$. Thus, we can first apply local completion to eligible vertices, obtaining $\bar{G}=\mathrm{cl}(G)$, and then apply local completion to 2f-eligible vertices of \bar{G}. Let G_{1}, \ldots, G_{k} be a sequence of graphs that yields $\mathrm{cl}^{2 f}(G)$ from \bar{G}, i.e. $G_{1}=\bar{G}$, $G_{k}=\mathrm{cl}^{2 f}(G)$ and $G_{i+1}=\left(G_{i}\right)_{x_{i}}^{*}$ for some $x_{i} \in \operatorname{EL}^{2 f}\left(G_{i}\right), i=1, \ldots, k-1$. In some steps, it is possible that $\operatorname{EL}\left(G_{i}\right) \neq \emptyset$ and, if this occurs, choose x_{i} such that $x_{i} \in \operatorname{EL}\left(G_{i}\right)$. By

Theorem C, there is a triangle-free graph \bar{H} such that $\bar{G}=L(\bar{H})$ and, similarly, any time when $x_{i} \in \mathrm{EL}^{2 f}\left(G_{i}\right) \backslash \operatorname{EL}\left(G_{i}\right)$, the choice of x_{i} guarantees that $G_{i}=L\left(H_{i}\right)$ for some triangle-free graph H_{i}. Then, by Proposition A, $G_{i+1}=\left(G_{i}\right)_{x_{i}}^{*}=L\left(\left.H_{i}\right|_{e_{i}}\right)$, where e_{i} is the edge of H_{i} corresponding to the vertex $x_{i} \in V\left(G_{i}\right)$, and the fact that H_{i} is triangle-free guarantees that $\left.H_{i}\right|_{e_{i}}$ is a graph (i.e. the contraction of e_{i} does not create a multiple edge). By induction, each G_{i} is a line graph. Since $L^{-1}\left(C_{i}\right)=C_{i}$, and the preimage of an EA- C_{6} is a VA- C_{6}, the graph $H=L^{-1}\left(\mathrm{cl}^{2 f}(G)\right)$ has the required properties.
(iii) Clearly, every 2 -factor in G is a 2 -factor in $\operatorname{cl}^{2 f}(G)$, hence we need to prove that if $\mathrm{cl}^{2 f}(G)$ has a 2-factor then G has a 2-factor.

Similarly as in part (ii) of the proof, we can construct $\mathrm{cl}^{2 f}(G)$ such that we first apply local completion to eligible vertices as long as this is possible, and we obtain $\bar{G}=\operatorname{cl}(G)$ and the triangle-free graph $\bar{H}=L^{-1}(\bar{G})$. The 2f-closure of G is then obtained by applying local completion to 2 f -eligible vertices. In the i-th step of the construction we then have $G_{i+1}=\left(G_{i}\right)_{v_{i}}^{*}$, where $v_{i} \in \operatorname{EL}^{2 f}\left(G_{i}\right)$. If $v_{i} \in \operatorname{EL}\left(G_{i}\right)$, we are done by Theorem D , hence suppose that $\operatorname{EL}\left(G_{i}\right)=\emptyset$ and v_{i} is in an induced cycle C_{G}. By the definition of the 2f-closure, C_{G} is a C_{4}, a C_{5} or an EA- C_{6}.

Let $H=L^{-1}\left(G_{i}\right), C=L^{-1}\left(C_{G}\right)$, and let $e=x y \in E(H)$ be the edge corresponding to v_{i}. Then $e \in E(C)$ and C is a C_{4}, a C_{5} or a VA- C_{6}. We will suppose that C is oriented such that $x=y^{+}$. By Proposition A, we have $L^{-1}\left(\left(G_{i}\right)_{v_{i}}^{*}\right)=\left.H\right|_{e}$, thus, by Theorem B, it remains to prove the following claim.

Claim 3. If $\left.H\right|_{e}$ has a d-system, then H has a d-system.
We set $H^{\prime}=\left.H\right|_{e}$ and denote by v_{e} the vertex obtained by contracting $e=x y$, and by e^{\prime} the pendant edge (corresponding to e) attached to v_{e}.

Let \mathcal{S}^{\prime} be a d-system in H^{\prime}, and let $B\left(\mathcal{S}^{\prime}\right)$ and $S t\left(\mathcal{S}^{\prime}\right)$ be the set of circuits and the set of stars in \mathcal{S}^{\prime}, respectively. Note that in the spanning subgraph (of H^{\prime})

$$
D^{\prime}=\left(V\left(H^{\prime}\right), \bigcup_{B \in B\left(\mathcal{S}^{\prime}\right)} E(B)\right),
$$

every vertex has even degree (possibly zero). We can suppose that there is no star in \mathcal{S}^{\prime} whose center has positive even degree in D^{\prime} because all the edges of such a star are dominated by the circuit passing through the center. Since e^{\prime} is a pendant edge in H^{\prime}, $e^{\prime} \notin E\left(D^{\prime}\right)$, hence there exists either a star in $S t\left(\mathcal{S}^{\prime}\right)$ whose center is v_{e}, or a circuit in $B\left(\mathcal{S}^{\prime}\right)$ passing through v_{e}. If there is a star in $S t\left(\mathcal{S}^{\prime}\right)$ whose center is v_{e}, we denote this star by T^{\prime}; otherwise let T^{\prime} be an empty graph, i.e., $V\left(T^{\prime}\right)=\emptyset$. Let S be the set of the subgraphs in H corresponding to the stars in $S t\left(\mathcal{S}^{\prime}\right) \backslash\left\{T^{\prime}\right\}$ and D the spanning subgraph in H corresponding to D^{\prime}. Notice that all elements in S are stars in H and $d_{D}(x) \equiv d_{D}(y)$ $(\bmod 2)$.

Suppose first that both x and y have positive degree in D. Then there exists a circuit in $B\left(\mathcal{S}^{\prime}\right)$ passing through v_{e}, and there is no star in $S t\left(\mathcal{S}^{\prime}\right)$ with center at v_{e}. If both x and y have positive even degree in D, then D and S determine a d-system in H since the edge e is dominated in H by any of the circuits passing through x and y. Similarly, if both x and y have positive odd degree, then $D+e$ and S determine a d-system in H.

Hence we suppose that $d_{D}(x)=0$ or $d_{D}(y)=0$. By symmetry, let $d_{D}(y)=0$. If $C-\langle\langle E(D) \cap E(C)\rangle\rangle_{G}$ is edgeless (i.e., all edges of C have at least one vertex with positive
degree in $D)$, then $d_{D}(x) \geq 2$ and $d_{D}\left(y^{-}\right) \geq 2$. If T^{\prime} has no edge whose corresponding edge in H is incident to y, then D and S determine a d-system of H since the edges $e=x y$ and $y y^{-}$are dominated by the circuits in D passing through x and y^{-}, respectively. If T^{\prime} has an edge whose corresponding edge in H is incident to y, then D and the set of stars which obtained by adding to S the star consisting of $x y, y y^{-}$and all the corresponding edges incident to y, determine a d-system in H. Note that in the last case (i.e. if we added a star), the number of elements of the d-system under consideration is increased (and in this case also the minimum number of components of a 2 -factor can be increased).

Therefore we suppose $C-\langle\langle E(D) \cap E(C)\rangle\rangle_{G}$ contains an edge. This implies

$$
\begin{equation*}
|E(D) \cap E(C)| \leq|E(C)|-3 . \tag{1}
\end{equation*}
$$

Let $\widetilde{D}=\langle(E(D) \cup E(C)) \backslash(E(D) \cap E(C))\rangle\rangle_{G}$. As in the above, we can construct a d-system in H if $C-\langle\langle E(\widetilde{D}) \cap E(C)\rangle\rangle_{G}$ is edgeless. Indeed, in this case $d_{\widetilde{D}}(x) \geq 2$ and $d_{\widetilde{D}}(y) \geq 2$ since $e \in E(\widetilde{D})$. Therefore neither x nor y are singletons in \widetilde{D}. If there is a vertex $x_{i} \in C-\langle\langle E(\widetilde{D}) \cap E(C)\rangle\rangle_{G}$ such that some edges incident to x_{i} have no vertex in \widetilde{D}, then we construct a star from all such edges and the edges $x_{i}^{-} x_{i}, x_{i} x_{i}^{+}$. Let S_{1} be the set of all such stars for vertices in $C-\left\langle\langle E(\widetilde{D}) \cap E(C)\rangle_{G}\right.$ and S_{2} the set of all stars in S whose centers are on C. Then \widetilde{D} and $\left(S \backslash S_{2}\right) \cup S_{1}$ determine a d-system in H.

Therefore we suppose $C-\langle\langle E(\widetilde{D}) \cap E(C)\rangle\rangle_{G}$ contains an edge. This implies

$$
|E(C)|-|E(D) \cap E(C)| \leq|E(C)|-3
$$

and hence by (1),

$$
3 \leq|E(D) \cap E(C)| \leq|E(C)|-3 \leq 3 .
$$

As all the equalities hold, $|C|=6$ and $|E(D) \cap E(C)|=3$. Furthermore, the three edges in $E(D) \cap E(C)$ should be adjacent, i.e., these edges determine a path in C (otherwise $C-\langle\langle E(D) \cap E(C)\rangle\rangle_{G}$ is edgeless). The endvertices of this path are antipodal on C and, since each of them has positive even degree in D, their degrees in H are greater than two. This implies C is not vertex-antipodal, a contradiction.

Corollary 4. Let G be a claw-free graph in which every locally disconnected vertex is in an induced cycle of length 4 or 5 , or in an induced $E A-C_{6}$. Then G has a 2-factor.

Proof. If G satisfies the assumptions of the theorem, then every nonsimplicial vertex of G is 2 f -eligible, hence $\mathrm{cl}^{2 f}(G)$ is complete and G has a 2-factor by Theorem 2.

Consider the graph G in Figure 2. The graph G has no 2-factor, and applying local completion at any of its vertices would start a process that results in a complete graph. Each vertex of G is in some cycle of length 6 , but neither of these cycles is antipodal. Hence this example shows that the antipodality condition cannot be omitted.

Figure 2

5 Concluding remarks

1. If $x \in \mathrm{EL}^{2 f}(G) \backslash \mathrm{EL}(G)$, then x is in an induced cycle C, where C is a C_{4}, a C_{5} or an EA- C_{6}, and applying local completion at x turns C into an induced cycle the length of which is one less. Eventually, all vertices in $N_{G}(V(C))$ induce a clique in $\operatorname{cl}^{2 f}(G)$. This simple observation shows that the construction of $\mathrm{cl}^{2 f}(G)$ can be speeded up such that, in each step when an induced C_{4}, C_{5} or an EA- C_{6} is identified, all vertices in $N_{G}(V(C))$ are covered with a clique.
2. The 2f-closure can be slightly extended as follows. A branch in a graph G is a path in G with all interior vertices of degree 2 and with (distinct) endvertices of degree different from 2. The length of a branch is the number of its edges. If $x \in V(G)$ is of $d_{G}(x)=2$ and $N_{G}(x)=\left\{y_{1}, y_{2}\right\}$, we say that the graph with vertex set $V(G) \backslash\{x\}$ and edge set $\left(E(G) \backslash\left\{x y_{1}, x y_{2}\right\}\right) \cup\left\{y_{1} y_{2}\right\}$ is obtained by suppressing x. The graph obtained from G by suppressing $k-2$ interior vertices in each branch of length $k \geq 3$ is called the suppresion of G and denoted $\operatorname{supp}(G)$. It is easy to see that $\operatorname{supp}(G)$ is unique (up to isomorphism), and in $\operatorname{supp}(G)$ both neighbors of every vertex of degree 2 have degree different from 2. The following observation is also straightforward.

Proposition 5. Let G be a graph. Then G has a 2 -factor if and only if $\operatorname{supp}(G)$ has a 2 -factor.

Thus, it is possible to slightly extend the 2f-closure by setting $\mathrm{cl}_{S}^{2 f}(G)=\mathrm{cl}^{2 f}(\operatorname{supp}(G))$. This straightforward extension allows to handle some cycles of arbitrarily large length (for example, the paths $a_{1} a_{2} a_{3} a_{4}$ and $b_{1} b_{2} b_{3} b_{4}$ in Figure 1 can be arbitrarily long), however, the drawback of this approach is that possibly $\left|V\left(\operatorname{cl}_{S}^{2 f}(G)\right)\right| \neq|V(G)|$. We leave the technical details to the reader.
3. Combining the observations made in Remarks 1 and 2 with the approach used in [2] we can alternatively define the closure as follows. Let C be an induced cycle in G of length k, and let C_{S} be the corresponding cycle in $\operatorname{supp}(G)$. We say that C is $2 f$-eligible in G if $k \in\{4,5\}$, or if $k=6$ and C is edge-antipodal in G, and C is 2fc-eligible in G if C_{S} is 2f-eligible in $\operatorname{supp}(G)$. The local completion of G at C is the graph G_{C}^{*} with $V\left(G_{C}^{*}\right)=V(G)$ and $E\left(G_{C}^{*}\right)=E(G) \cup\{u v \mid u, v \in V(C) \cup N(V(C))\}$, and a graph $\operatorname{cl}_{C}^{2 f}(G)$ is said to be a $2 f c$-closure of G if there is a sequence of graphs G_{1}, \ldots, G_{t} such that
(i) $G_{1}=\operatorname{cl}(G)$,
(ii) $G_{i+1}=\operatorname{cl}\left(\left(G_{i}\right)_{C_{i}}^{*}\right)$ for some 2fc-eligible cycle C_{i} in $G_{i}, i=1, \ldots, t-1$,
(iii) $G_{t}=\operatorname{cl}_{C}^{2 f}(G)$ contains no 2fc-eligible cycle.

The following facts are easy to see.
Theorem 6. Let G be a claw-free graph. Then
(i) the closure $\operatorname{cl}_{C}^{2 f}(G)$ is uniquely determined,
(ii) $\operatorname{cl}^{2 f}(G) \subset \mathrm{cl}_{C}^{2 f}(G)$ and $\mathrm{cl}^{2 f}(G)=\mathrm{cl}_{C}^{2 f}(G)$ if and only if G has no branches of length $k \geq 3$,
(iii) G has a 2-factor if and only if $\mathrm{cl}_{C}^{2 f}(G)$ has a 2-factor.
4. We show another alternative way of introducing the closure that gives a concept slightly weaker, but in some situations easier to use.

For $x \in V(G)$ and a positive integer k, let $N_{G}^{k}(x)=\left\{y \in V(G) \mid 1 \leq \operatorname{dist}_{G}(x, y) \leq k\right\}$, and set $\mathrm{EL}^{k}(G)=\left\{x \in V(G) \mid\left\langle N_{G}^{k}(x)\right\rangle_{G}\right.$ is connected noncomplete $\}$. The vertices in $\mathrm{EL}^{k}(G)$ will be called k-distance-eligible (note that $\mathrm{EL}^{1}(G)=\mathrm{EL}(G)$).

For a claw-free graph G, let $\mathrm{cl}^{d 2}(G)$ be the graph obtained from G by local completions at 2-distance-eligible vertices, as long as such a vertex exists. It is straightforward to observe that $x \in \mathrm{EL}^{2}(G)$ if and only if $x \in V(G)$ is either eligible (i.e. $x \in \mathrm{EL}(G)$), or x is in an induced cycle of length 4 or 5 . Thus, the following facts are straightforward.

Theorem 7. Let G be a claw-free graph. Then
(i) the closure $\mathrm{cl}^{d 2}(G)$ is uniquely determined,
(ii) there is a graph H with $g(H) \geq 6$ such that $L(H)=\mathrm{cl}^{d 2}(G)$,
(iii) G has a 2-factor if and only if $\mathrm{cl}^{d 2}(G)$ has a 2-factor.

A graph G is N^{2}-locally connected if, for every $x \in V(G),\left\langle N_{G}^{2}(x)\right\rangle_{G}$ is a connected graph. Clearly, if G is N^{2}-locally connected, then $\mathrm{cl}^{d 2}(G)$ is a complete graph. Hence the following result by Li and $\mathrm{Liu}[7]$ is an immediate corollary of Theorem 7.

Theorem G [7]. Every N^{2}-locally connected claw-free graph with $\delta(G) \geq 2$ has a 2-factor.

The graph G in Figure 3 is an example of a graph that does not satisfy the assumptions of Theorem G, but cl ${ }^{d 2}(G)$ is a complete graph (and hence G has a 2 -factor by Theorem 7).

Figure 3
Consider the graph G in Figure 4. Clearly, G is claw-free and has no 2-factor. The vertex x is eligible in G (i.e., $x \in \mathrm{EL}(G)$), hence also $x \in \operatorname{EL}^{2}(G)$. However, applying the local completion operation to the whole distance 2-neighborhood $N^{2}(x)$ would result in a graph that has a 2 -factor. This example shows that modifying the 2-distance closure such that, in each step, $N^{2}(x)$ of a vertex $x \in \operatorname{EL}^{2}(G)$ is covered with a clique, would result in closure that does not preserve the (non)-existence of a 2 -factor.

Figure 4

References

[1] Bondy, J.A.; Murty, U.S.R.: Graph Theory with Applications. Macmillan, London and Elsevier, New York, 1976.
[2] H.J. Broersma, Z. Ryjáček: Strengthening the closure concept in claw-free graphs. Discrete Mathematics 233 (2001), 55-63.
[3] H.J. Broersma, Z. Ryjáček, I. Schiermeyer: Closure concepts - a survey. Graphs and Combinatorics 16 (2000), 17-48.
[4] R.J. Faudree, E. Flandrin, Z. Ryjáček: Claw-free graphs - a survey. Discrete Mathematics 164 (1997), 87-147.
[5] R.J Gould, E.A. Hynds: A note on cycles in 2-factors of line graphs. Bull. Inst. Comb. Appl. 26 (1999), 46-48.
[6] Kelmans, A.: On graph closures. Discrete Mathematics 271 (2003), 141-168.
[7] G. Li, Z. Liu: On 2-factors in claw-free graphs. Systems Sci. Math. Sci. 8 (1995), no. 4, 369-372.
[8] Z. Ryjáček: On a closure concept in claw-free graphs. Journal of Combinatorial Theory Ser. B 70 (1997), 217-224.
[9] Z. Ryjáček, R.H. Schelp: Contractibility techniques as a closure concept. Journal of Graph Theory 43 (2003), 37-48.
[10] Z. Ryjáček, A. Saito, R.H. Schelp: Closure, 2-factors and cycle coverings in claw-free graphs. Journal of Graph Theory 32 (1999), 109-117.

[^0]: ${ }^{1}$ Department of Mathematics, University of West Bohemia, and Institute of Theoretical Computer Science (ITI), Charles University, P.O. Box 314, 30614 Pilsen, Czech Republic, e-mail ryjacek@kma.zcu.cz
 ${ }^{2}$ Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, P.R. China, and Department of Mathematics, Jiangxi Normal University, Nanchang 330022, P.R. China, e-mail lmxiong@bit.edu.cn
 ${ }^{3}$ Department of Mathematics, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan, e-mail yosimoto@math.cst.nihon-u.ac.jp
 ${ }^{4}$ Research supported by grants No. 1 M0545 and MSM 4977751301 of the Czech Ministry of Education.
 ${ }^{5}$ Research supported by Nature Science Foundation of China under Contract Grant No.: 10671014
 ${ }^{6}$ Research supported by JSPS. KAKENHI (14740087)

