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Abstract

We introduce a closure concept for 2-factors in claw-free graphs that generalizes the
closure introduced by the first author. The 2-factor closure of a graph is uniquely
determined and the closure operation turns a claw-free graph into the line graph of
a graph containing no cycles of length at most 5 and no cycles of length 6 satisfying
a certain condition. A graph has a 2-factor if and only if its closure has a 2-
factor; however, the closure operation preserves neither the minimum number of
components of a 2-factor nor the hamiltonicity or nonhamiltonicity of a graph.
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1 Introduction

By a graph we always mean a simple loopless finite undirected graph G = (V (G), E(G)).
We use standard graph-theoretical notation and terminology and for concepts and nota-
tions not defined here we refer the reader to [1].

The degree of a vertex x ∈ V (G) is denoted dG(x), and δ(G) denotes the minimum
degree of G, i.e. δ(G) = min{dG(x)| x ∈ V (G)}. An edge of G is a pendant edge
if some of its vertices is of degree 1. The distance in G of two vertices x, y ∈ V (G)
is denoted distG(x, y), and for two subgraphs F1, F2 ⊂ G we denote distG(F1, F2) =
min{distG(x, y)| x ∈ V (F1), y ∈ V (F2)}. If F is a subgraph of G, we simply write G− F
for G− V (F ).
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For a set of vertices S ⊂ V (G), ⟨S⟩G denotes the subgraph induced by S, and for a
set of edges D ⊂ E(G), ⟨⟨D⟩⟩G denotes the edge-induced subgraph determined by the set
D. A clique is a (not necessarily maximal) complete subgraph of a graph G, and, for an
edge e ∈ E(G), ωG(e) denotes the largest order of a clique containing e.

A cycle of length i is denoted Ci, and for a cycle C with a given orientation and a
vertex x ∈ V (C), x− and x+ denotes the predecessor and successor of x on C, respectively.

The girth of a graph G, denoted g(G), is the length of a shortest cycle in G, and the
circumference of G, denoted c(G), is the length of a longest cycle in G. A cycle (path)
in G having |V (G)| vertices is called a hamiltonian cycle (hamiltonian path), and a graph
containing a hamiltonian cycle (hamiltonian path) is said to be hamiltonian (traceable),
respectively. A 2-factor in a graph G is a spanning subgraph of G in which all vertices
have degree 2. Thus, a hamiltonian cycle is a connected 2-factor.

If H is a graph, then the line graph of H, denoted L(H), is the graph with E(H) as
vertex set, in which two vertices are adjacent if and only if the corresponding edges have
a vertex in common. It is well-known that if G is a line graph (of some graph), then the
graph H such that G = L(H) is uniquely determined (with one exception of the graphs
C3 and K1,3, for which both L(C3) and L(K1,3) are isomorphic to C3). The graph H for
which L(H) = G will be called the preimage of G and denoted H = L−1(G).

Let H be a graph and e = xy ∈ E(H) an edge of H. Let H|e be the graph obtained
from H by identifying x and y to a new vertex ve and adding to ve a (new) pendant edge
e′. Then we say that H|e is obtained from H by contraction of the edge e. Note that
|E(H)| = |E(H|e)|.

The neighborhood of a vertex x ∈ V (G) is the set NG(x) = {y ∈ V (G)| xy ∈ E(G)},
and for S ⊂ V (G) we denote NG(S) = ∪x∈SNG(x). For a vertex x ∈ V (G), the graph
G

∗
x with V (G

∗
x) = V (G) and E(G

∗
x) = E(G) ∪ {uv| u, v ∈ NG(x)} is called the local

completion of G at x.

The following proposition, which is easy to observe (see also [9]), shows the relation
between the operations of local completion and of contraction of an edge.

Proposition A. Let H be a graph, e ∈ E(H), G = L(H), and let x ∈ V (G) be the
vertex corresponding to the edge e. Then G

∗
x = L(H|e).

We say that a graph is even if every its vertex has positive even degree. A connected
even graph is called a circuit, and the complete bipartite graph K1,m is a star. Specifically,
the four-vertex star K1,3 will be referred to as the claw. A subgraph F of a graph H
dominates H if F dominates every edge of H, i.e. if every edge of H has at least one
vertex in V (F ). Let S be a set of edge-disjoint circuits and stars with at least three edges
in H. We say that S is a dominating system (abbreviated d-system) in H if every edge
of H that is not in a star of S is dominated by a circuit in S. We will use the following
result by Gould and Hynds [5].

Theorem B [5]. Let H be a graph. Then L(H) has a 2-factor with c components if
and only if H has a d-system with c elements.

A graph G is said to be claw-free if G does not contain an induced subgraph isomorphic
to the claw K1,3. It is a well-known fact that every line graph is claw-free, hence the class
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of claw-free graphs can be considered as a natural generalization of the class of line graphs.
For more information on claw-free graphs, see e.g. the survey paper [4].

In the class of claw-free graphs, a closure concept has been introduced in [8] as follows.
Let G be a claw-free graph and x ∈ V (G). We say that x is locally connected if ⟨NG(x)⟩G
is a connected graph, x is simplicial if ⟨NG(x)⟩G is a clique, and x is eligible if x is
locally connected and nonsimplicial. The set of eligible or simplicial vertices of a graph
G is denoted EL(G) or SI(G), respectively. The graph, obtained from G by recursively
performing the local completion operation at eligible vertices, as long as this is possible,
is called the closure of G and denoted cl(G). (More precisely: there are graphs G1, . . . , Gk

such that G1 = G, Gi+1 = (Gi)
∗
xi

for some xi ∈ EL(Gi), i = 1, . . . , k − 1, Gk = cl(G) and
EL(Gk) = ∅.)

The following result summarizes basic properties of the closure.

Theorem C [8]. For every claw-free graph G:
(i) cl(G) is uniquely determined,
(ii) cl(G) is the line graph of a triangle-free graph,
(iii) c(cl(G)) = c(G),
(iv) cl(G) is hamiltonian if and only if G is hamiltonian.

In [10] it was shown that the closure operation preserves also the existence or nonex-
istence of a 2-factor. More specifically, the following was proved in [10].

Theorem D [10]. Let G be a claw-free graph and let x ∈ EL(G). If G
∗
x has a 2-factor

with k components, then G has a 2-factor with at most k components.

Consequently, the local completion operation performed at eligible vertices preserves
the minimum number of components of a 2-factor. Specifically, we obtain the following.

Corollary E [10]. Let G be a claw-free graph. Then G has a 2-factor if and only if
cl(G) has a 2-factor.

Further properties of cl(G) are summarized in the survey paper [3].

In this paper, we significantly strengthen the closure concept such that it still preserves
the (non)-existence of a 2-factor.

2 Closure concept

Let Ck be a cycle of even length k ≥ 4. Two edges e1, e2 ∈ E(G) are said to be antipodal
in Ck, if they are at maximum distance in Ck (i.e., distCk

(e1, e2) = k/2−1). An even cycle
Ck in a graph G is said to be edge-antipodal, abbreviated EA, if min{ωG(e1), ωG(e2)} = 2
for any two antipodal edges e1, e2 ∈ E(Ck). Analogously, two vertices x1, x2 ∈ V (Ck) are
antipodal in Ck if they are at maximum distance in Ck (i.e. distCk

(x1, x2) = k/2), and
Ck is said to be vertex-antipodal, abbreviated VA, if min{dG(x1), dG(x2)} = 2 for any two
antipodal vertices x1, x2 ∈ V (Ck).

Let G be a claw-free graph. A vertex x ∈ V (G) is said to be 2f-eligible, if x satisfies
one of the following:
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(i) x ∈ EL(G),
(ii) x /∈ EL(G) and x is in an induced cycle of length 4 or 5 or in an induced EA-cycle

of length 6.

The set of all 2f-eligible vertices of G will be denoted EL2f (G).

We say that a graph cl2f (G) is a 2-factor-closure (abbreviated 2f-closure) of a claw-free
graph G, if there is a sequence of graphs G1, . . . , Gk such that

(i) G1 = G,
(ii) Gi+1 = (Gi)

∗
xi

for some xi ∈ EL2f (Gi), i = 1, . . . , k − 1,

(iii) Gk = cl2f (G) and EL2f (Gk) = ∅.
Thus, the 2f-closure of a claw-free graph G is obtained by recursively repeating the local
completion operation at 2f-eligible vertices, as long as this is possible. In the next section
we will show that, for a given claw-free graph G, its 2f-closure is uniquely determined,
which will justify the notation cl2f (G).

The graph G in Figure 1 is an example of a claw-free graph with a complete 2f-closure,
in which EL(G) = ∅. Note that G is nonhamiltonian and G − x is nontraceable, while
cl2f (G) is complete and cl2f (G−x) is traceable. Hence cl2f (G) preserves neither the (non)-
hamiltonicity nor the (non)-traceability of a graph. Moreover, since G is nonhamiltonian
and cl2f (G) is complete, this example also shows that cl2f (G) does not preserve the
minimum number of components of a 2-factor, i.e., an analogue of Theorem D is not true
for cl2f (G). However, in Section 4 we will prove the analogue of Corollary E for cl2f (G).
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Figure 1

3 Uniqueness of the closure

We recall some definitions and facts from [6] that will be helpful to prove the uniqueness
of cl2f (G) as a special case of a more general setting.

Let C be a class of graphs and let P be a function on C such that, for any G ∈ C,
P(G) ⊂ 2V (G) (i.e., P(G) is a set of subsets of V (G)). For any X ⊂ V (G) let G

∗
X

denote the local completion of G at X, i.e. the graph with V (G
∗
X) = V (G) and E(G

∗
X) =

E(G)∪{uv| u, v ∈ X} (thus, the previous notation G
∗
x means that, for a vertex x ∈ V (G),

we simply write G
∗
x for G

∗

NG(x)).
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We say that a graph F is a P-extension of G, denoted G ≼ F , if there is a sequence of
graphs G0 = G,G1, . . . , Gk = F such that Gi+1 = (Gi)

∗
Xi

for some Xi ∈ P(Gi). Clearly,
for any graph G there is a ≼-maximal P-extension H, and in this case we say that H
is a P-closure of G. If a P-closure is uniquely determined then it is denoted by clP(G).
Finally, a function P is non-decreasing (on a class C), if, for any H,H ′ ∈ C, H ≼ H ′

implies that for any X ∈ P(H) there is an X ′ ∈ P(H ′) such that X ⊂ X ′.

The following result was proved in [6]. For the sake of completeness, we include its
(short) proof here.

Theorem F [6]. If P is a non-decreasing function on a class C, then, for any G ∈ C,
a P-closure of G is uniquely determined.

Proof. Let H ̸= H ′ be P-closures of G, let G = G0, G1, . . . , Gk = H ′ be such that
Gi+1 = (Gi)

∗
Xi

for some Xi ∈ P(Gi), and let s be a smallest integer such that Gs ̸⊂ H.
Since Gs−1 ⊂ H and P is non-decreasing, there is X ∈ P(H) such that Xs−1 ⊂ X. Since
H is ≼-maximal, we have H

∗
X = H, a contradiction.

It is easy to see that P(G) = {NG(x)| x ∈ EL2f (G) ∪ SI(G)} is a non-decreasing
function on the class C of claw-free graphs, and clP(G) equals the 2f-closure of G. This
immediately implies the following fact.

Proposition 1. For any claw-free graph G, the 2f-closure of G is uniquely determined.

4 Properties of the closure

The following result summarizes basic properties of the 2f-closure.

Theorem 2. Let G be a claw-free graph. Then
(i) the closure cl2f (G) is uniquely determined,
(ii) there is a graph H such that

(α) L(H) = cl2f (G),
(β) g(H) ≥ 6,
(γ) H does not contain any vertex-antipodal cycle of length 6,

(iii) G has a 2-factor if and only if cl2f (G) has a 2-factor.

Proof. (i) Part (i) follows immediately from Proposition 1.

(ii) By (i), the 2f-closure does not depend on the order of 2f-eligible vertices used
during the construction of cl2f (G). Thus, we can first apply local completion to eligible
vertices, obtaining G = cl(G), and then apply local completion to 2f-eligible vertices of
G. Let G1, . . . , Gk be a sequence of graphs that yields cl2f (G) from G, i.e. G1 = G,
Gk = cl2f (G) and Gi+1 = (Gi)

∗
xi

for some xi ∈ EL2f (Gi), i = 1, . . . , k − 1. In some steps,
it is possible that EL(Gi) ̸= ∅ and, if this occurs, choose xi such that xi ∈ EL(Gi). By
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Theorem C, there is a triangle-free graph H such that G = L(H) and, similarly, any
time when xi ∈ EL2f (Gi) \EL(Gi), the choice of xi guarantees that Gi = L(Hi) for some
triangle-free graph Hi. Then, by Proposition A, Gi+1 = (Gi)

∗
xi
= L(Hi|ei), where ei is the

edge of Hi corresponding to the vertex xi ∈ V (Gi), and the fact that Hi is triangle-free
guarantees that Hi|ei is a graph (i.e. the contraction of ei does not create a multiple
edge). By induction, each Gi is a line graph. Since L−1(Ci) = Ci, and the preimage of an
EA-C6 is a VA-C6, the graph H = L−1(cl2f (G)) has the required properties.

(iii) Clearly, every 2-factor in G is a 2-factor in cl2f (G), hence we need to prove that
if cl2f (G) has a 2-factor then G has a 2-factor.

Similarly as in part (ii) of the proof, we can construct cl2f (G) such that we first apply
local completion to eligible vertices as long as this is possible, and we obtain G = cl(G)
and the triangle-free graph H = L−1(G). The 2f-closure of G is then obtained by applying
local completion to 2f-eligible vertices. In the i-th step of the construction we then have
Gi+1 = (Gi)

∗
vi
, where vi ∈ EL2f (Gi). If vi ∈ EL(Gi), we are done by Theorem D, hence

suppose that EL(Gi) = ∅ and vi is in an induced cycle CG. By the definition of the
2f-closure, CG is a C4, a C5 or an EA-C6.

Let H = L−1(Gi), C = L−1(CG), and let e = xy ∈ E(H) be the edge corresponding
to vi. Then e ∈ E(C) and C is a C4, a C5 or a VA-C6. We will suppose that C is oriented
such that x = y+. By Proposition A, we have L−1((Gi)

∗
vi
) = H|e, thus, by Theorem B, it

remains to prove the following claim.

Claim 3. If H|e has a d-system, then H has a d-system.

We set H ′ = H|e and denote by ve the vertex obtained by contracting e = xy, and by
e′ the pendant edge (corresponding to e) attached to ve.

Let S ′ be a d-system in H ′, and let B(S ′) and St(S ′) be the set of circuits and the set
of stars in S ′, respectively. Note that in the spanning subgraph (of H ′)

D′ = (V (H ′),
∪

B∈B(S′)

E(B)),

every vertex has even degree (possibly zero). We can suppose that there is no star in
S ′ whose center has positive even degree in D′ because all the edges of such a star are
dominated by the circuit passing through the center. Since e′ is a pendant edge in H ′,
e′ /∈ E(D′), hence there exists either a star in St(S ′) whose center is ve, or a circuit in
B(S ′) passing through ve . If there is a star in St(S ′) whose center is ve , we denote this
star by T ′; otherwise let T ′ be an empty graph, i.e., V (T ′) = ∅. Let S be the set of the
subgraphs in H corresponding to the stars in St(S ′) \ {T ′} and D the spanning subgraph
in H corresponding to D′. Notice that all elements in S are stars in H and dD(x) ≡ dD(y)
(mod 2).

Suppose first that both x and y have positive degree in D. Then there exists a circuit
in B(S ′) passing through ve, and there is no star in St(S ′) with center at ve. If both x
and y have positive even degree in D, then D and S determine a d-system in H since the
edge e is dominated in H by any of the circuits passing through x and y. Similarly, if
both x and y have positive odd degree, then D + e and S determine a d-system in H.

Hence we suppose that dD(x) = 0 or dD(y) = 0. By symmetry, let dD(y) = 0. If
C−⟨⟨E(D)∩E(C)⟩⟩G is edgeless (i.e., all edges of C have at least one vertex with positive
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degree in D), then dD(x) ≥ 2 and dD(y
−) ≥ 2. If T ′ has no edge whose corresponding

edge in H is incident to y, then D and S determine a d-system of H since the edges e = xy
and yy− are dominated by the circuits in D passing through x and y−, respectively. If T ′

has an edge whose corresponding edge in H is incident to y, then D and the set of stars
which obtained by adding to S the star consisting of xy, yy− and all the corresponding
edges incident to y, determine a d-system in H. Note that in the last case (i.e. if we
added a star), the number of elements of the d-system under consideration is increased
(and in this case also the minimum number of components of a 2-factor can be increased).

Therefore we suppose C − ⟨⟨E(D) ∩ E(C)⟩⟩G contains an edge. This implies

|E(D) ∩ E(C)| ≤ |E(C)| − 3. (1)

Let D̃ = ⟨⟨(E(D) ∪ E(C)) \ (E(D) ∩ E(C))⟩⟩G. As in the above, we can construct a

d-system in H if C − ⟨⟨E(D̃) ∩ E(C)⟩⟩G is edgeless. Indeed, in this case dD̃(x) ≥ 2 and

dD̃(y) ≥ 2 since e ∈ E(D̃). Therefore neither x nor y are singletons in D̃. If there is a

vertex xi ∈ C − ⟨⟨E(D̃) ∩ E(C)⟩⟩G such that some edges incident to xi have no vertex in

D̃, then we construct a star from all such edges and the edges x−
i xi, xix

+
i . Let S1 be the

set of all such stars for vertices in C − ⟨⟨E(D̃) ∩ E(C)⟩⟩G and S2 the set of all stars in S

whose centers are on C. Then D̃ and (S \ S2) ∪ S1 determine a d-system in H.

Therefore we suppose C − ⟨⟨E(D̃) ∩ E(C)⟩⟩G contains an edge. This implies

|E(C)| − |E(D) ∩ E(C)| ≤ |E(C)| − 3

and hence by (1),
3 ≤ |E(D) ∩ E(C)| ≤ |E(C)| − 3 ≤ 3.

As all the equalities hold, |C| = 6 and |E(D) ∩ E(C)| = 3. Furthermore, the three edges
in E(D) ∩ E(C) should be adjacent, i.e., these edges determine a path in C (otherwise
C − ⟨⟨E(D) ∩E(C)⟩⟩G is edgeless). The endvertices of this path are antipodal on C and,
since each of them has positive even degree in D, their degrees in H are greater than two.
This implies C is not vertex-antipodal, a contradiction.

Corollary 4. Let G be a claw-free graph in which every locally disconnected vertex is
in an induced cycle of length 4 or 5, or in an induced EA-C6. Then G has a 2-factor.

Proof. If G satisfies the assumptions of the theorem, then every nonsimplicial vertex
of G is 2f-eligible, hence cl2f (G) is complete and G has a 2-factor by Theorem 2.

Consider the graph G in Figure 2. The graph G has no 2-factor, and applying local
completion at any of its vertices would start a process that results in a complete graph.
Each vertex of G is in some cycle of length 6, but neither of these cycles is antipodal.
Hence this example shows that the antipodality condition cannot be omitted.
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5 Concluding remarks

1. If x ∈ EL2f (G) \ EL(G), then x is in an induced cycle C, where C is a C4, a C5 or an
EA-C6, and applying local completion at x turns C into an induced cycle the length of
which is one less. Eventually, all vertices in NG(V (C)) induce a clique in cl2f (G). This
simple observation shows that the construction of cl2f (G) can be speeded up such that,
in each step when an induced C4, C5 or an EA-C6 is identified, all vertices in NG(V (C))
are covered with a clique.

2. The 2f-closure can be slightly extended as follows. A branch in a graph G is a
path in G with all interior vertices of degree 2 and with (distinct) endvertices of degree
different from 2. The length of a branch is the number of its edges. If x ∈ V (G) is of
dG(x) = 2 and NG(x) = {y1, y2}, we say that the graph with vertex set V (G) \ {x} and
edge set (E(G) \ {xy1, xy2}) ∪ {y1y2} is obtained by suppressing x. The graph obtained
from G by suppressing k − 2 interior vertices in each branch of length k ≥ 3 is called
the suppresion of G and denoted supp(G). It is easy to see that supp(G) is unique (up
to isomorphism), and in supp(G) both neighbors of every vertex of degree 2 have degree
different from 2. The following observation is also straightforward.

Proposition 5. Let G be a graph. Then G has a 2-factor if and only if supp(G) has
a 2-factor.

Thus, it is possible to slightly extend the 2f-closure by setting cl2fS (G) = cl2f (supp(G)).
This straightforward extension allows to handle some cycles of arbitrarily large length (for
example, the paths a1a2a3a4 and b1b2b3b4 in Figure 1 can be arbitrarily long), however, the
drawback of this approach is that possibly |V (cl2fS (G))| ̸= |V (G)|. We leave the technical
details to the reader.

3. Combining the observations made in Remarks 1 and 2 with the approach used
in [2] we can alternatively define the closure as follows. Let C be an induced cycle in G of
length k, and let CS be the corresponding cycle in supp(G). We say that C is 2f-eligible
in G if k ∈ {4, 5}, or if k = 6 and C is edge-antipodal in G, and C is 2fc-eligible in
G if CS is 2f-eligible in supp(G). The local completion of G at C is the graph G

∗
C with

V (G
∗
C) = V (G) and E(G

∗
C) = E(G)∪{uv| u, v ∈ V (C)∪N(V (C))}, and a graph cl2fC (G)

is said to be a 2fc-closure of G if there is a sequence of graphs G1, . . . , Gt such that
(i) G1 = cl(G),
(ii) Gi+1 = cl((Gi)

∗
Ci
) for some 2fc-eligible cycle Ci in Gi, i = 1, . . . , t− 1,

(iii) Gt = cl2fC (G) contains no 2fc-eligible cycle.
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The following facts are easy to see.

Theorem 6. Let G be a claw-free graph. Then
(i) the closure cl2fC (G) is uniquely determined,
(ii) cl2f (G) ⊂ cl2fC (G) and cl2f (G) = cl2fC (G) if and only if G has no branches of length

k ≥ 3,
(iii) G has a 2-factor if and only if cl2fC (G) has a 2-factor.

4. We show another alternative way of introducing the closure that gives a concept
slightly weaker, but in some situations easier to use.

For x ∈ V (G) and a positive integer k, let Nk
G(x) = {y ∈ V (G)| 1 ≤ distG(x, y) ≤ k},

and set ELk(G) = {x ∈ V (G)| ⟨Nk
G(x)⟩G is connected noncomplete}. The vertices in

ELk(G) will be called k-distance-eligible (note that EL1(G) = EL(G)).
For a claw-free graph G, let cld2(G) be the graph obtained from G by local completions

at 2-distance-eligible vertices, as long as such a vertex exists. It is straightforward to
observe that x ∈ EL2(G) if and only if x ∈ V (G) is either eligible (i.e. x ∈ EL(G)), or x
is in an induced cycle of length 4 or 5. Thus, the following facts are straightforward.

Theorem 7. Let G be a claw-free graph. Then
(i) the closure cld2(G) is uniquely determined,
(ii) there is a graph H with g(H) ≥ 6 such that L(H) = cld2(G),
(iii) G has a 2-factor if and only if cld2(G) has a 2-factor.

A graph G is N2-locally connected if, for every x ∈ V (G), ⟨N2
G(x)⟩G is a connected

graph. Clearly, if G is N2-locally connected, then cld2(G) is a complete graph. Hence the
following result by Li and Liu [7] is an immediate corollary of Theorem 7.

Theorem G [7]. Every N2-locally connected claw-free graph with δ(G) ≥ 2 has a
2-factor.

The graph G in Figure 3 is an example of a graph that does not satisfy the assumptions
of Theorem G, but cld2(G) is a complete graph (and hence G has a 2-factor by Theorem 7).
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Figure 3

Consider the graph G in Figure 4. Clearly, G is claw-free and has no 2-factor. The
vertex x is eligible in G (i.e., x ∈ EL(G)), hence also x ∈ EL2(G). However, applying the
local completion operation to the whole distance 2-neighborhood N2(x) would result in a
graph that has a 2-factor. This example shows that modifying the 2-distance closure such
that, in each step, N2(x) of a vertex x ∈ EL2(G) is covered with a clique, would result in
closure that does not preserve the (non)-existence of a 2-factor.
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[4] R.J. Faudree, E. Flandrin, Z. Ryjáček: Claw-free graphs – a survey. Discrete Math-
ematics 164 (1997), 87-147.

[5] R.J Gould, E.A. Hynds: A note on cycles in 2-factors of line graphs. Bull. Inst. Comb.
Appl. 26 (1999), 46-48.

[6] Kelmans, A.: On graph closures. Discrete Mathematics 271 (2003), 141-168.

[7] G. Li, Z. Liu: On 2-factors in claw-free graphs. Systems Sci. Math. Sci. 8 (1995),
no. 4, 369-372.
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