An Extremal Problem Resulting in Many Paths

Richard H. Schelp
Department of Mathematical Sciences, The University of Memphis
Memphis, TN 38152-3240
schelpr@msci.memphis.edu
and
Kiyoshi Yoshimoto ${ }^{1}$
Department of Mathematics, College of Science and Technology Nihon University, Tokyo 101-8308, Japan
yosimoto@math.cst.nihon-u.ac.jp

Abstract

For a bipartite graph the extremal number for the existence of a specific odd (even) length path was determined in J. Graph Theory 8 (1984), 83-95. In this article, we conjecture that for a balanced bipartite graph with partite sets of odd order the extremal number for an even order path guarantees many more paths of differing lengths. The conjecture is proved for a linear portion of the conjectured paths.

Keywords: Extremal Number, Path Lengths, Balanced Bipartite Graphs
 2000 Mathematics Subject Classification: 05C35,05C38

The second author dedicates this article to Sasa Yoshimoto.

1 Introduction

In [2] the extremal number is given for a path to be embeddable in a bipartite graph. We first describe a specific bipartite graph that determines the extremal number for the path $P_{2 k+2}$ of order $2 k+2, k$ a positive integer.

Let $K_{A, B}$ be bipartite with partite sets A and $B,|A|=|B|=2 k+1, k$ a positive integer. Further partition both A and B into two sets of order k and $k+1$. Joining all vertices in the $k(k+1)$ element set of A to the $k+1(k)$ element set of B gives a graph G with $2 k^{2}+2 k$ edges composed of two vertex disjoint copies of $K_{k, k+1}$. This graph G clearly contains no path $P_{2 k+2}$. Surely G is extremal for $P_{2 k+2}$, since

[^0]the addition of any edge gives a graph with $2 k^{2}+2 k+1$ edges which contains the path $P_{2 k+2}$. In [2] this is proved, that for a balanced bipartite graph with parts of order $2 k+1$, the path $P_{2 k+2}$ has extremal number $2 k^{2}+2 k$, i.e., any such balanced bipartite graph with $2 k^{2}+2 k+1$ edges contains a $P_{2 k+2}$.

Thus let G be as described and let G^{\prime} denote the graph obtained from G by adding an additional edge (there are two such nonisomorphic graphs). Interestingly this graph G^{\prime} satisfies a much stronger property. Let C be any $k+1$ element subset of A in G^{\prime}. Then for each fixed $l, 2 \leq l \leq k+1$, it is easily checked that G^{\prime} contains $k+1$ distinct paths with one end vertex in C and $k+1$ different end vertices in B. This example suggests the following conjecture.

Conjecture 1. Let G be a subgraph of the complete bipartite graph $K_{2 k+1,2 k+1}$ of size $e(G) \geq 2 k^{2}+2 k+1$ with partite sets A and B. Then for each $k+1$ element subset $C \subset A$ and $2 \leq l \leq k+1$, there exist $k+1$ paths of order $2 l$ with one end vertex in C and each of the $k+1$ paths with a different end vertex in B.

This conjecture, if true, is interesting in that an extremal number for a fixed $P_{2 k+2}$ implies the existence of many different $P_{2 k+2}$'s, starting in an arbitrary $k+1$ element set in A and ending at different $k+1$ elements in B. In addition the truth of the conjecture would imply that the same is true for all $P_{2 l}$'s, $2 \leq l \leq k-1$.

The objective of this article is to give credibility to the conjecture by proving it holds for at least $k / 9$ values of l. In addition the truth of the conjecture would appear to be applicable, for example, in Ramsey questions involving the existence of cycles. At this point there seems to be no comparable extremal result which forces the existence of many similar well defined paths from the extremal number of a single path.

All notation and terminology not explained here is given in [1].

2 Main result and the Proof

The remainder of this article is devoted to the proof of the following theorem. Its proof is somewhat technical and after some introductory notation and basic observations is broken into three separate cases. For a vertex subset W of a graph G, we denote the maximal degree $\max \left\{d_{G}(w): w \in W\right\}$ by $\Delta_{G}(W)$, the minimal degree by $\delta_{G}(W)$ and $\left|N_{G}(W)\right|$ by $d_{G}(W)$

Theorem 2. Conjecture 1 holds for at least $k / 9$ values of l.
Proof. Let $a_{0}, a_{1}, \ldots, a_{2 k}$ be the vertices in A such that $d_{G}\left(a_{i}\right) \geq d_{G}\left(a_{i+1}\right)$ for all $i \leq 2 k-1$. Let $\Delta_{G}(A)=d_{G}\left(a_{0}\right)=k+r, A_{j}=\left\{a_{i}: d_{G}\left(a_{i}\right) \geq j\right\}$, and $A_{j}^{*}=A_{j} \backslash\left\{a_{0}\right\}$. Since the degree of $a_{\left|A_{k+1}\right|}$ is at most k,

$$
\begin{align*}
& (k+r)\left|A_{k+1}\right|+k\left(2 k+1-\left|A_{k+1}\right|\right) \geq \sum_{i=0}^{\left|A_{k+1}\right|-1} d_{G}\left(a_{i}\right)+\sum_{i=\left|A_{k+1}\right|}^{2 k} d_{G}\left(a_{i}\right) \\
& \geq 2 k^{2}+2 k+1 \\
& \Longleftrightarrow\left|A_{k+1}\right| \geq \frac{k+1}{r} . \tag{1}
\end{align*}
$$

Let U be a subset of A and γ a positive real number. Let $H(U, \gamma)$ be the graph whose vertex set is U and edge set is $\left\{u v:\left|N_{G}(u) \cap N_{G}(v)\right| \geq \gamma\right\}$. Suppose U contains three vertices u, v, w such that all of $\left|N_{G}(u) \cap N_{G}(v)\right|,\left|N_{G}(v) \cap N_{G}(w)\right|$ and $\left|N_{G}(w) \cap N_{G}(u)\right|$ are smaller than $k / 9$. Then,

$$
\begin{aligned}
d_{G}(U) \geq & \geq N_{G}(u) \cup N_{G}(v) \cup N_{G}(w) \mid \\
\geq & \left|N_{G}(u)\right|+\left|N_{G}(v)\right|+\left|N_{G}(w)\right| \\
& -\left(\left|N_{G}(u) \cap N_{G}(v)\right|+\left|N_{G}(v) \cap N_{G}(w)\right|+\left|N_{G}(w) \cap N_{G}(u)\right|\right) \\
> & 3 \delta_{G}(U)-3 k / 9 \\
& \Longleftrightarrow \delta_{G}(U)<d_{G}(U) / 3+k / 9 .
\end{aligned}
$$

Conversely, if $\delta_{G}(U) \geq d_{G}(U) / 3+k / 9$, then for any three vertices in U, there are two vertices which are adjacent in $H(U, k / 9)$. Therefore, the following claim holds.

Claim 1. Let U be a vertex subset of A. If $\delta_{G}(U) \geq d_{G}(U) / 3+k / 9$, then the stability of $H(U, k / 9)$ is at most two.

In particular, since $d_{G}(U) \leq|B|=2 k+1$,

$$
\begin{equation*}
\text { if } \delta_{G}(U) \geq \frac{7}{9} k+\frac{1}{3} \text {, then the stability of } H(U, k / 9) \text { is at most two. } \tag{2}
\end{equation*}
$$

We denote the vertices in C by $c_{0}, c_{1}, \ldots, c_{k}$ where $d_{G}\left(c_{i}\right) \geq d_{G}\left(c_{i+1}\right)$ for all $i \leq k-1$. If $\Delta_{G}(C) \leq k-r+1$, then
$2 k^{2}+2 k+1 \leq(k-r+1)|C|+(k+r)(|A|-|C|)=2 k^{2}+2 k-r+1<2 k^{2}+2 k+1$.

Therefore, since $\left|N_{G}\left(a_{0}\right) \cup N_{G}\left(c_{0}\right)\right| \leq|B|=2 k+1$,

$$
\begin{equation*}
\Delta_{G}(C) \geq k-r+2 \text { and }\left|N_{G}\left(a_{0}\right) \cap N_{G}\left(c_{0}\right)\right| \geq 1 . \tag{3}
\end{equation*}
$$

We divide the remainder of the proof into three cases.

Case 1. $\Delta_{G}(A)=k+1$, i.e., $r=1$.
From (1), $\left|A_{k+1}\right| \geq k+1$, and so A_{k+1} contains a vertex of C. From (2), the stability of $H\left(A_{k+1}, k / 9\right)$ is at most two. Therefore, $H\left(A_{k+1}, k / 9\right)$ has a hamilton path or is the union of two cliques.

1. Suppose that there is a component X in $H\left(A_{k+1}, k / 9\right)$ containing a vertex z of C such that $|X| \geq k / 9$. Since X is a clique or $X=H\left(A_{k+1}, k / 9\right)$, obviously for any $2 \leq l \leq k / 9$, there is a path $P=x_{1} x_{2} \cdots x_{l}$ in X where $x_{l}=z$. Since $\left|N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{i+1}\right)\right| \geq k / 9$, for any $y \in N_{G}\left(x_{1}\right)$, there exists a path

$$
P_{y}=y x_{1} y_{1} x_{2} \cdots x_{l-1} y_{l-1} x_{l}
$$

where $y_{i} \in\left(N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{i+1}\right)\right) \backslash\left\{y, y_{1}, y_{2}, \ldots, y_{i-1}\right\}$ for $1 \leq i \leq l-1$. Since $d_{G}\left(x_{1}\right)=k+1$ and $x_{l}=z \in C$, the set $\left\{P_{y}: y \in N_{G}\left(x_{1}\right)\right\}$ gives the desired set of $k+1$ paths.
2. Assume that any component in $H\left(A_{k+1}, k / 9\right)$ contains no vertex in C or the order is less than $k / 9$. Since A_{k+1} contains a vertex of $C, H\left(A_{k+1}, k / 9\right)$ is the union of two cliques. Let X be the largest component in $H\left(A_{k+1}, k / 9\right)$. Since the other component contains a vertex of $C,|X|>8 k / 9$. As C contains a vertex of degree $k+1$ and $|B|=2 k+1,\left|N_{G}(C) \cap N_{G}(X)\right| \geq 1$.
2.1. Suppose that $\left|N_{G}(C) \cap N_{G}(X)\right| \geq 2$. Let $y^{1}, y^{2} \in N_{G}(C) \cap N_{G}(X)$ and $z^{j} \in N_{G}\left(y^{j}\right) \cap C$ and $x^{j} \in N_{G}\left(y^{j}\right) \cap X$ for $j=1,2$, i.e., G contains two paths $x^{1} y^{1} z^{1}$ and $x^{2} y^{2} z^{2}$. For any $2 \leq l \leq k / 9$, let $P=x_{1} x_{2} \cdots x_{l-1}$ be a path in X where $x_{l-1}=x^{1}$. For any $y \in N_{G}\left(x_{1}\right) \backslash\left\{y^{1}\right\}$, there exist a path

$$
P_{y}^{1}=y x_{1} y_{1} x_{2} \cdots x_{l-1} y^{1} z^{1}
$$

where $y_{i} \in\left(N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{i+1}\right)\right) \backslash\left\{y, y^{1}, y_{1}, y_{2}, \ldots, y_{i-1}\right\}$ for $1 \leq i \leq l-2$. Since $d_{G}\left(x_{1}\right)=k+1$, the set $\left\{P_{y}: y \in N_{G}\left(x_{1}\right)\right\}$ gives the desired set of at least k. If $y^{1} \in N_{G}\left(x_{1}\right)$, then by using $x^{2} y^{2} z^{2}$, we can obtain one more desired path as above.
2.2. Assume that $\left|N_{G}(C) \cap N_{G}(X)\right|=1$. This implies for any $x \in X, N_{G}(X) \backslash$ $N_{G}(C)=B \backslash N_{G}(C)$ and $d_{G}(C)=k+1$, and

$$
\begin{equation*}
\text { for any } z \in C,\left|N_{G}(z) \cap N_{G}\left(c_{0}\right)\right| \geq d_{G}(z) \text {. } \tag{4}
\end{equation*}
$$

Let $U=\left\{c_{0}, c_{1}, \ldots, c_{\lceil 2 k / 9-1\rceil}\right\}$.
2.2.a. Suppose $\delta_{G}(U) \geq d_{G}(U) / 3+k / 9$, then from Claim 1 the stability of $H(U, k / 9)$ is at most two. Let X_{C} be a largest component in $H(U, k / 9)$. From (4), $c_{0} \in X_{C}$. For any $2 \leq l \leq k / 9$, there is a path $z_{1} z_{2} \cdots z_{l}$ in X_{C} where $z_{1}=c_{0}$. For any $y \in N_{G}\left(c_{0}\right)$, there exists a path

$$
P_{y}=y z_{1} y_{1} z_{2} \cdots z_{l-1} y_{l-1} z_{l}
$$

where $y_{i} \in\left(N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{i+1}\right)\right) \backslash\left\{y, y_{1}, y_{2}, \ldots, y_{i-1}\right\}$ for $1 \leq i \leq l-1$. Since $d_{G}\left(c_{0}\right)=k+1$, the set $\left\{P_{y}: y \in N_{G}\left(c_{0}\right)\right\}$ gives the desired $k+1$ paths of order $2 l$.
2.2.b Suppose $\delta_{G}(U)<d_{G}(U) / 3+k / 9=(k+1) / 3+k / 9=(4 k+3) / 9$, then $d_{G}\left(c_{\lceil 2 k / 9\rceil}\right)$ is also smaller than $(4 k+3) / 9$. Since $|C \backslash U|=\lceil 7 k / 9+1\rceil$ and $\mid A \backslash(C \backslash$ $U) \mid \geq 2 k+1-7 k / 9-2$, the number of non-adjacent pairs between A and B is:

$$
\begin{aligned}
& (2 k+1)^{2}-\left(2 k^{2}+2 k+1\right)=2 k^{2}+2 k \\
\geq & (2 k+1-(k+1))(|A \backslash(C \backslash U)|-1)+\left(2 k+1-\frac{4 k+3}{9}\right)(|C \backslash U|+1) \\
> & (2 k+1-(k+1))\left(2 k-\frac{7 k}{9}-2\right)+\left(2 k+1-\frac{4 k+3}{9}\right)\left(\frac{7}{9} k+2\right) \\
= & \frac{197}{81} k^{2}+\frac{44}{27} k+\frac{4}{3},
\end{aligned}
$$

a contradiction.
Therefore, for the remainder of the proof

$$
\Delta_{G}(A) \geq k+2, \text { i.e., } r \geq 2 .
$$

Case 2. $\left|A_{k+1}^{*}\right| \geq 2 k / 9-2$.
From (2), the stability of $H\left(A_{k+1}^{*}, k / 9\right)$ is at most two. Since $k+1+k+r \geq 2 k+3$,

$$
\begin{equation*}
\left|N_{G}\left(a_{0}\right) \cap N_{G}(x)\right| \geq 2 \text { for any } x \in A_{k+1}^{*} . \tag{5}
\end{equation*}
$$

1. Suppose that there is a component X in $H\left(A_{k+1}^{*}, k / 9\right)$ containing a vertex z of C such that $|X| \geq k / 9-1$. Since X is a clique or $X=H\left(A_{k+1}^{*}, k / 9\right)$, obviously for any $2 \leq l \leq k / 9$, there is a path $P=x_{2} \cdots x_{l}$ in X where $x_{l}=z$. For each $y \in N_{G}\left(a_{0}\right)$ and $y^{\prime} \in\left(N_{G}\left(a_{0}\right) \cap N_{G}\left(x_{2}\right)\right) \backslash\{y\}$, there exists a path

$$
P_{y}=y a_{0} y^{\prime} x_{2} y_{2} \cdots x_{l-1} y_{l-1} x_{l}
$$

in G such that $y_{i} \in\left(N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{i+1}\right)\right) \backslash\left\{y, y^{\prime}, y_{2}, \ldots, y_{i-1}\right\}$ for all $2 \leq i \leq l-1$. Since $d_{G}\left(a_{0}\right) \geq k+r$, the set $\left\{P_{y}: y \in N_{G}\left(a_{0}\right)\right\}$ gives a desired set of $k+1$ paths of order $2 l$.
2. Suppose that any component in $H\left(A_{k+1}^{*}, k / 9\right)$ contains no vertex in C or the order is less than $k / 9-1$. Let X be a largest component in $H\left(A_{k+1}^{*}, k / 9\right)$. Then $|X| \geq k / 9-1$.
2.1. Suppose there exist $z \in C$ and $x \in X$ such that $\left|N_{G}(z) \cap N_{G}(x)\right| \geq 2$. For any $2 \leq l \leq k / 9$, let $P=x_{1} x_{2} \cdots x_{l-1}$ be a path in X where $x_{l-1}=x$. For any $y \in N_{G}\left(x_{1}\right)$, there exist $y^{\prime} \in\left(N_{G}(z) \cap N_{G}(x)\right) \backslash\{y\}$ and a path

$$
P_{y}=y x_{1} y_{1} x_{2} \cdots x_{l-1} y^{\prime} z
$$

where $y_{i} \in\left(N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{i+1}\right)\right) \backslash\left\{y, y^{\prime}, y_{1}, y_{2}, \ldots, y_{i-1}\right\}$ for $1 \leq i \leq l-2$. Since $d_{G}\left(x_{1}\right)=k+1$, the set $\left\{P_{y}: y \in N_{G}\left(x_{1}\right)\right\}$ gives the desired set of $k+1$ paths.
2.2. Suppose

$$
\begin{equation*}
\text { for any } z \in C \text { and } x \in X,\left|N_{G}(z) \cap N_{G}(x)\right| \leq 1 . \tag{6}
\end{equation*}
$$

This implies $a_{0} \neq c_{0}$ by (5) and $\left|N_{G}\left(a_{0}\right) \cap N_{G}\left(c_{0}\right)\right| \geq 1$ from (3). Let $y^{\prime} \in N_{G}\left(a_{0}\right) \cap$ $N_{G}\left(c_{0}\right)$. Then, obviously $\left\{P_{y}=y a_{0} y^{\prime} c_{0}: y \in N_{G}\left(a_{0}\right) \backslash\left\{y^{\prime}\right\}\right\}$ contains the desired $k+1$ paths of order 4 . Hence in the following we consider when $3 \leq l \leq k / 9$.
2.2.a. Suppose $\left|N_{G}\left(a_{0}\right) \cap N_{G}\left(c_{0}\right)\right| \geq 2$. For any $3 \leq l \leq k / 9$, let $P=x_{1} x_{2} \cdots x_{l-2}$ be any path in X. At first, we specify $y \in N_{G}\left(x_{1}\right)$, and let $y^{\prime} \in\left(N_{G}\left(a_{0}\right) \cap N_{G}\left(c_{0}\right)\right) \backslash\{y\}$. If $N_{G}\left(a_{0}\right) \cap N_{G}\left(x_{l-2}\right) \neq\left\{y, y^{\prime}\right\}$, then we can choose $y^{\prime \prime} \in\left(N_{G}\left(a_{0}\right) \cap N_{G}\left(x_{l-2}\right)\right) \backslash\left\{y, y^{\prime}\right\}$. If $N_{G}\left(a_{0}\right) \cap N_{G}\left(x_{l-2}\right)=\left\{y, y^{\prime}\right\}$, then from (6), $y \notin N_{G}\left(a_{0}\right) \cap N_{G}\left(c_{0}\right)$. Hence we can choose $y^{\prime \prime \prime} \in\left(N_{G}\left(a_{0}\right) \cap N_{G}\left(c_{0}\right)\right) \backslash\left\{y, y^{\prime}\right\}$. In either case, as in the above, we can construct a path

$$
P_{y}=y x_{1} y_{1} x_{2} y_{2} \cdots x_{l-2} y^{\prime \prime} a_{0} y^{\prime} c_{0} \text { or } y x_{1} y_{1} x_{2} y_{2} \cdots x_{l-2} y^{\prime} a_{0} y^{\prime \prime \prime} c_{0}
$$

in G, respectively. Since $d_{G}\left(x_{1}\right) \geq k+1$, we have the desired $k+1$ paths of order $2 l$.
2.2.b. If $\left|N_{G}\left(a_{0}\right) \cap N_{G}\left(c_{0}\right)\right| \leq 1$, then equality holds and $d_{G}\left(c_{0}\right)=k-r+2$ from (3). Let $\left\{y^{\prime}\right\}=N_{G}\left(a_{0}\right) \cap N_{G}\left(c_{0}\right)$, and then $N_{G}\left(c_{0}\right)=\left(B \backslash N_{G}\left(a_{0}\right)\right) \cup\left\{y^{\prime}\right\}$.

Suppose there is a vertex $x \in X$ such that $N_{G}(x) \backslash N_{G}\left(a_{0}\right) \neq \emptyset$. Let $y^{\prime \prime} \in$ $N_{G}(x) \backslash N_{G}\left(a_{0}\right)$. Since $N_{G}\left(c_{0}\right)=\left(B \backslash N_{G}\left(a_{0}\right)\right) \cup\left\{y^{\prime}\right\}$ and $y^{\prime} \in N_{G}\left(a_{0}\right), y^{\prime \prime} \in N_{G}\left(c_{0}\right)$, let P be a path $x_{2} x_{3} \cdots x_{l-1}$ in X where $x_{l-1}=x$ and $3 \leq l \leq k / 9$. For any $y \in N_{G}\left(a_{0}\right)$, we can construct a path

$$
P_{y}=y a_{0} y_{1} x_{2} y_{2} \cdots x_{l-1} y^{\prime \prime} c_{0}
$$

in which $y_{i} \in\left(N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{i+1}\right)\right) \backslash\left\{y, y^{\prime \prime}, y_{1}, y_{2}, \ldots, y_{i-1}\right\}$ for $i \leq l-2$. Since $d_{G}\left(a_{0}\right)=k+r$, there are $k+1$ paths of order $2 l$.

Suppose $N_{G}(X) \subset N_{G}\left(a_{0}\right)$. Let $x_{1} x_{2} \cdots x_{l-2}$ be a path in X for $3 \leq l \leq k / 9$. For any $y \in N_{G}\left(x_{1}\right) \backslash\{y\}$, there is $y^{\prime \prime} \in\left(N_{G}\left(x_{l-2}\right) \cap N_{G}\left(a_{0}\right)\right) \backslash\left\{y, y^{\prime}\right\}$ since $\mid N_{G}\left(x_{l-2}\right) \cap$ $N_{G}\left(a_{0}\right) \mid=d_{G}\left(x_{l-2}\right) \geq k+1$. Thus we can construct a path

$$
P_{y}=y x_{1} y_{1} x_{2} y_{2} \cdots x_{l-2} y^{\prime \prime} a_{0} y^{\prime} c_{0}
$$

in which $y_{i} \in\left(N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{i+1}\right)\right) \backslash\left\{y, y^{\prime}, y^{\prime \prime}, y_{1}, y_{2}, \ldots, y_{i-1}\right\}$ for $i \leq l-3$. Hence, if $\left|N_{G}\left(x_{1}\right) \backslash\left\{y^{\prime}\right\}\right| \geq k+1$, then there are $k+1$ paths of order $2 l$. If $\left|N_{G}\left(x_{1}\right) \backslash\left\{y^{\prime}\right\}\right|=k$,
then $y^{\prime} \in N_{G}\left(x_{1}\right)$, and so for $y^{\prime \prime \prime} \in N_{G}\left(a_{0}\right) \backslash N_{G}\left(x_{1}\right)$, we can obtain $(k+1)$ th path

$$
y^{\prime \prime \prime} a_{0} y^{\prime \prime} x_{l-2} \cdots y_{2} x_{2} y_{1} x_{1} y^{\prime} c_{0} .
$$

Case 3. $\left|A_{k+1}^{*}\right|<2 k / 9-2$.
From (1), since $2 k / 9-2>\left|A_{k+1}^{*}\right|=\left|A_{k+1}\right|-1 \geq(k+1) / r-1, r \geq 5$. Let

$$
m=d_{G}\left(a_{k+1}\right) \text { and } p=\mid\left\{a_{i}: d_{G}\left(a_{i}\right) \leq k \text { and } 1 \leq i \leq k\right\} \mid .
$$

Then $p>k-(2 k / 9-2)=7 k / 9+2$ and

$$
\begin{aligned}
& 2 k^{2}+2 k+1 \leq e(G) \leq \sum_{i=0}^{k-p} d_{G}\left(a_{i}\right)+\sum_{i=k-p+1}^{k} d_{G}\left(a_{i}\right)+\sum_{i=k+1}^{2 k} d_{G}\left(a_{i}\right) \\
& \leq(2 k+1)(k-p+1)+k p+m k \\
& \Longleftrightarrow k m \geq p k+p-k \\
& \Longrightarrow m \geq p>7 k / 9+2>7 k / 9+1 / 3 .
\end{aligned}
$$

Hence,
the stability of $H\left(A_{m}^{*}, k / 9\right)$ is at most two
from (2). Furthermore

$$
\begin{aligned}
& 2 k^{2}+2 k+1 \leq e(G) \leq \sum_{i=0}^{k-p} d_{G}\left(a_{i}\right)+\sum_{i=k-p+1}^{k} d_{G}\left(a_{i}\right)+\sum_{i=k+1}^{2 k} d_{G}\left(a_{i}\right) \\
& \leq(k+r)(k-p+1)+k p+m k \\
& \Longleftrightarrow k m \geq k^{2}+k-k r+p r-r+1 \\
& \Longrightarrow m \geq k+1-r+\frac{p r-r+1}{k} .
\end{aligned}
$$

Since $r \geq 5$ and $p>7 k / 9+2$, the following inequalities hold:

$$
\begin{aligned}
& m+(k+r) \geq 2 k+1+\frac{p r-r+1}{k} \geq 2 k+3 \\
\Longleftrightarrow & r(p-1) \geq 2 k-1 .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\text { for any } x \in A_{m}^{*} \text { and } a_{i} \in A_{k+r}, N_{G}(x) \cap N_{G}\left(a_{i}\right) \geq 2 \text {. } \tag{7}
\end{equation*}
$$

Notice that as $\left|A_{m}^{*}\right| \geq k+1, A_{m}^{*}$ contains a vertex z in $C \backslash\left\{a_{0}\right\}$. Let $y^{\prime} \in N_{G}\left(a_{0}\right) \cap$ $N_{G}(z)$. Then, obviously $\left\{P_{y}=y a_{0} y^{\prime} z: y \in N_{G}\left(a_{0}\right) \backslash\left\{y^{\prime}\right\}\right\}$ contains the desired $k+1$ paths of order 4 . Hence in the following, we consider the case when $3 \leq l \leq k / 9$.

1. Recall that the stability of $H\left(A_{m}^{*}, k / 9\right)$ is two. Therefore if $H\left(A_{m}^{*}, k / 9\right)$ has a component X which contains a vertex z of C with $|X| \geq k / 9-1$, then we can construct the desired $k+1$ paths of order $2 l$ for any $3 \leq l \leq k / 9$ as done in part 1 in Case 2.
2. Suppose that each component X in $H\left(A_{m}^{*}, k / 9\right)$ has no vertex of C or $|X|<$ $k / 9-1$. Since $A_{m}^{*} \cap\left(C \backslash\left\{a_{0}\right\}\right) \neq \emptyset, H\left(A_{m}^{*}, k / 9\right)$ is the union of two cliques X and X^{\prime} such that $|X|>8 k / 9+1, X \cap C=\emptyset,\left|X^{\prime}\right|<k / 9-1$ and $X^{\prime} \cap C \neq \emptyset$.
2.1. Suppose that there are $x \in X$ and $z \in C \backslash\left\{a_{0}\right\}$ such that $N_{G}(x) \cap N_{G}(z) \neq \emptyset$. Let $y^{\prime} \in N_{G}(x) \cap N_{G}(z)$ and $P=x_{2} x_{3} \cdots x_{l-1}$ be a path in X where $x_{l-1}=x$ for any $3 \leq l \leq k / 9$. Let $y^{\prime \prime} \in\left(N_{G}\left(a_{0}\right) \cap N_{G}\left(x_{2}\right)\right) \backslash\left\{y^{\prime}\right\}$. Then for any $y \in N_{G}\left(a_{0}\right) \backslash\left\{y^{\prime}, y^{\prime \prime}\right\}$, we can construct a path

$$
P_{y}=y a_{0} y^{\prime \prime} x_{2} y_{2} \cdots x_{l-1} y^{\prime} z
$$

in which $y_{i} \in\left(N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{i+1}\right)\right) \backslash\left\{y, y^{\prime}, y^{\prime \prime}, y_{2}, \ldots, y_{i-1}\right\}$ for $2 \leq i \leq l-2$. Since $d_{G}\left(a_{0}\right) \geq k+r \geq k+5$, we obtain the desired $k+1$ paths of order $2 l$.
2.2. Assume that $N_{G}(X) \cap N_{G}\left(C \backslash\left\{a_{0}\right\}\right)=\emptyset$, i.e., $N_{G}\left(C \backslash\left\{a_{0}\right\}\right) \subset B \backslash N_{G}(X)$.
2.2.a. Suppose $d_{G}(X) \geq k+1$. If $a_{0} \in C$, then for any $y \in N_{G}(X)$ and $3 \leq l \leq k / 9$, there is a path $P=x_{1} x_{2} \cdots x_{l-1}$ in X such that $y \in N_{G}\left(x_{1}\right)$, and $y^{\prime \prime} \in\left(N_{G}\left(x_{l-1}\right) \cap\right.$ $\left.N_{G}\left(a_{0}\right)\right) \backslash\{y\}$, and so there is a path

$$
P_{y}=y x_{1} y_{1} x_{2} y_{2} \cdots x_{l-1} y^{\prime \prime} a_{0}
$$

in which $y_{i} \in\left(N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{i+1}\right)\right) \backslash\left\{y, y^{\prime}, y_{1}, y_{2}, \ldots, y_{i-1}\right\}$ for $1 \leq i \leq l-2$. Since $d_{G}(X) \geq k+1$, we obtain desired $k+1$ paths of length $2 l$.

If $a_{0} \notin C$, then from (3), $N_{G}\left(a_{0}\right) \cap N_{G}\left(c_{0}\right) \neq \emptyset$. Let $y^{\prime} \in N_{G}\left(a_{0}\right) \cap N_{G}\left(c_{0}\right)$. Notice that $y^{\prime} \notin N_{G}(X)$. For any $y \in N_{G}(X)$ and $3 \leq l \leq k / 9$, there is a path $P=x_{1} x_{2} \cdots x_{l-2}$ in X such that $y \in N_{G}\left(x_{1}\right)$. For $y^{\prime \prime} \in\left(N_{G}\left(x_{l-2}\right) \cap N_{G}\left(a_{0}\right)\right) \backslash\{y\}$,
we can construct a path

$$
P_{y}=y x_{1} y_{1} x_{2} y_{2} \cdots x_{l-2} y^{\prime \prime} a_{0} y^{\prime} c_{0}
$$

in which $y_{i} \in\left(N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{i+1}\right)\right) \backslash\left\{y, y^{\prime}, y^{\prime \prime}, y_{1}, y_{2}, \ldots, y_{i-1}\right\}$ for $1 \leq i \leq l-3$. Since $d_{G}(X) \geq k+1$, we obtain the desired $k+1$ paths of order $2 l$.
2.2.b. Assume $d_{G}(X) \leq k$. Let $U=\left\{c_{0}, c_{1}, \ldots, c_{\lceil 2 k / 9-2\rceil}\right\} \backslash\left\{a_{0}\right\}$.

Suppose

$$
\delta_{G}(U) \geq \frac{d_{G}(U)}{3}+\frac{k}{9},
$$

and then from Claim 1 the stability of $H(U, k / 9)$ is at most 2 . Let X_{C} be a largest component in $H(U, k / 9)$.

If there is $z \in X_{C}$ such that $N_{G}(z) \cap N_{G}\left(a_{0}\right) \neq \emptyset$, then there is a path $P=$ $z_{2} z_{3} \cdots z_{l}$ in X_{C} for any $3 \leq l \leq k / 9$ where $z_{2}=z$. Let $y^{\prime} \in N_{G}\left(z_{2}\right) \cap N_{G}\left(a_{0}\right)$. For any $y \in N_{G}\left(a_{0}\right) \backslash\left\{y^{\prime}\right\}$, we can construct

$$
P_{y}=y a_{0} y^{\prime} z_{2} y_{2} \cdots z_{l}
$$

in which $y_{i} \in\left(N_{G}\left(z_{i}\right) \cap N_{G}\left(z_{i+1}\right)\right) \backslash\left\{y, y^{\prime}, y_{2}, \ldots, y_{i-1}\right\}$ for $2 \leq i \leq l-1$. Since $d_{G}\left(a_{0}\right) \geq k+r$, we obtain the desired $k+1$ paths of order $2 l$.

If $N_{G}\left(X_{C}\right) \cap N_{G}\left(a_{0}\right)=\emptyset$, then $\Delta_{G}\left(X_{C}\right) \leq k-r+1$. This implies that $d_{G}\left(c_{\lceil 2 k / 9-2\rceil+1}\right) \leq k-r+1$. Let $L=\left\{c_{i}:\lceil 2 k / 9-2\rceil+1 \leq i \leq k\right\}$. Since $|X|>8 k / 9+1,\left|X_{C}\right| \geq k / 9-1$,

$$
|L|=\lfloor 7 k / 9+2\rfloor>7 k / 9+1,\left|A \backslash\left(X \cup X_{C} \cup L\right)\right|<2 k / 9,
$$

and $k+r>\max \{k, k-r+1\}$,

$$
\begin{aligned}
& 2 k^{2}+2 k+1 \leq e(G) \\
\leq & \sum_{x \in X} d_{G}(x)+\sum_{z \in X_{C}} d_{G}(z)+\sum_{c_{i} \in L} d_{G}\left(c_{i}\right)+\sum_{a_{i} \in A \backslash\left(X \cup X_{C} \cup L\right)} d_{G}\left(a_{i}\right) \\
\leq & k|X|+(k-r+1)\left|X_{C}\right|+(k-r+1)|L|+(k+r)\left|A \backslash\left(X \cup X_{C} \cup L\right)\right| \\
< & k\left(\frac{8}{9} k+1\right)+(k-r+1)\left(\frac{k}{9}-1\right)+(k-r+1)\left(\frac{7}{9} k+1\right)+(k+r) \frac{2}{9} k \\
= & 2 k^{2}+\frac{17}{9} k-\frac{2 r}{3} k<2 k^{2}+2 k+1 .
\end{aligned}
$$

This is a contradiction.
Therefore

$$
\delta_{G}(U)<\frac{d_{G}(U)}{3}+\frac{k}{9} \leq \frac{2 k+1-d_{G}(X)}{3}+\frac{k}{9} .
$$

Since

$$
d_{G}(X) \geq \delta_{G}(X) \geq m \geq k+1-r+\frac{p r-r+1}{k},
$$

$2 k+1-d_{G}(X)<k+r$, and so

$$
k+r>\max \left\{d_{G}(X), 2 k+1-d_{G}(X), \frac{\left.2 k+1-d_{G}(X)\right)}{3}+\frac{k}{9}\right\} .
$$

Since $|X|>8 k / 9+1,|U| \geq 2 k / 9-2,|L|>7 k / 9+1$ and $|A \backslash(X \cup U \cup L)|<k / 9+1$,

$$
\begin{aligned}
& 2 k^{2}+2 k+1 \leq e(G) \\
\leq & \sum_{x \in X} d_{G}(x)+\sum_{z \in U} d_{G}(z)+\sum_{c_{i} \in L} d_{G}\left(c_{i}\right)+\sum_{a_{i} \in A \backslash(X \cup U \cup L)} d_{G}\left(a_{i}\right) \\
\leq & d_{G}(X)\left(\frac{8}{9} k+1\right)+\left(2 k+1-d_{G}(X)\right)\left(\frac{2}{9} k-2\right) \\
& +\left(\frac{2 k+1-d_{G}(X)}{3}+\frac{k}{9}\right)\left(\frac{7}{9} k+1\right)+(k+r)\left(\frac{k}{9}+1\right) \\
= & \frac{94}{81} k^{2}+\frac{r}{9} k+\frac{11 d_{G}(X)}{27} k+\frac{8 d_{G}(X)}{3}-\frac{47}{27} k-\frac{5}{3}+r \\
\Longleftrightarrow & \frac{r}{9} k+\frac{11 d_{G}(X)}{27} k+\frac{8 d_{G}(X)}{3}+r \geq \frac{68}{81} k^{2}+\frac{101}{27} k+\frac{8}{3}
\end{aligned}
$$

Since $d_{G}(X) \leq k$ and $r \leq k+1$

$$
\begin{aligned}
& \frac{r}{9} k+\frac{11 d_{G}(X)}{27} k+\frac{8 d_{G}(X)}{3}+r \leq \frac{k+1}{9} k+\frac{11 k}{27} k+\frac{8 k}{3}+k+1 \\
= & \frac{11}{27} k^{2}+\frac{34}{9} k+\frac{10}{9}<\frac{68}{81} k^{2}+\frac{101}{27} k+\frac{8}{3},
\end{aligned}
$$

a contradiction. This completes the proof of this case and the proof of the theorem.

References

[1] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000)
[2] A. Gyárfás, C. C. Rousseau, R. H. Schelp, An extremal problem for paths in bipartite graphs, J. Graph Theory 8 (1984), 83-95.

[^0]: ${ }^{1}$ Supported by JSPS. KAKENHI (14740087)

