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Abstract
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In this article, we conjecture that for a balanced bipartite graph with partite
sets of odd order the extremal number for an even order path guarantees many
more paths of differing lengths. The conjecture is proved for a linear portion
of the conjectured paths.

Keywords: Extremal Number, Path Lengths, Balanced Bipartite
Graphs
2000 Mathematics Subject Classification: 05C35,05C38

The second author dedicates this article to Sasa Yoshimoto.

1 Introduction

In [2] the extremal number is given for a path to be embeddable in a bipartite graph.

We first describe a specific bipartite graph that determines the extremal number for

the path P2k+2 of order 2k + 2, k a positive integer.

Let KA,B be bipartite with partite sets A and B, |A| = |B| = 2k+1, k a positive

integer. Further partition both A and B into two sets of order k and k + 1. Joining

all vertices in the k (k + 1) element set of A to the k + 1 (k) element set of B gives

a graph G with 2k2 + 2k edges composed of two vertex disjoint copies of Kk,k+1.

This graph G clearly contains no path P2k+2. Surely G is extremal for P2k+2, since
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the addition of any edge gives a graph with 2k2 + 2k + 1 edges which contains the

path P2k+2. In [2] this is proved, that for a balanced bipartite graph with parts of

order 2k + 1, the path P2k+2 has extremal number 2k2 + 2k, i.e., any such balanced

bipartite graph with 2k2 + 2k + 1 edges contains a P2k+2.

Thus let G be as described and let G′ denote the graph obtained from G by

adding an additional edge (there are two such nonisomorphic graphs). Interestingly

this graph G′ satisfies a much stronger property. Let C be any k + 1 element subset

of A in G′. Then for each fixed l, 2 ≤ l ≤ k + 1, it is easily checked that G′ contains

k + 1 distinct paths with one end vertex in C and k + 1 different end vertices in B.

This example suggests the following conjecture.

Conjecture 1. Let G be a subgraph of the complete bipartite graph K2k+1,2k+1 of

size e(G) ≥ 2k2 + 2k + 1 with partite sets A and B. Then for each k + 1 element

subset C ⊂ A and 2 ≤ l ≤ k + 1, there exist k + 1 paths of order 2l with one end

vertex in C and each of the k + 1 paths with a different end vertex in B.

This conjecture, if true, is interesting in that an extremal number for a fixed

P2k+2 implies the existence of many different P2k+2’s, starting in an arbitrary k + 1

element set in A and ending at different k + 1 elements in B. In addition the truth

of the conjecture would imply that the same is true for all P2l’s, 2 ≤ l ≤ k − 1.

The objective of this article is to give credibility to the conjecture by proving

it holds for at least k/9 values of l. In addition the truth of the conjecture would

appear to be applicable, for example, in Ramsey questions involving the existence

of cycles. At this point there seems to be no comparable extremal result which

forces the existence of many similar well defined paths from the extremal number of

a single path.

All notation and terminology not explained here is given in [1].
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2 Main result and the Proof

The remainder of this article is devoted to the proof of the following theorem. Its

proof is somewhat technical and after some introductory notation and basic obser-

vations is broken into three separate cases. For a vertex subset W of a graph G, we

denote the maximal degree max{dG(w) : w ∈ W} by ∆G(W ), the minimal degree

by δG(W ) and |NG(W )| by dG(W )

Theorem 2. Conjecture 1 holds for at least k/9 values of l.

Proof. Let a0, a1, . . . , a2k be the vertices in A such that dG(ai) ≥ dG(ai+1) for all

i ≤ 2k−1. Let ∆G(A) = dG(a0) = k+r, Aj = {ai : dG(ai) ≥ j}, and A∗
j = Aj \{a0}.

Since the degree of a|Ak+1| is at most k,

(k + r)|Ak+1| + k(2k + 1 − |Ak+1|) ≥
|Ak+1|−1∑

i=0

dG(ai) +
2k∑

i=|Ak+1|

dG(ai)

≥ 2k2 + 2k + 1

⇐⇒ |Ak+1| ≥
k + 1

r
. (1)

Let U be a subset of A and γ a positive real number. Let H(U, γ) be the graph

whose vertex set is U and edge set is {uv : |NG(u) ∩ NG(v)| ≥ γ}. Suppose U

contains three vertices u, v, w such that all of |NG(u)∩NG(v)|, |NG(v)∩NG(w)| and

|NG(w) ∩ NG(u)| are smaller than k/9. Then,

dG(U) ≥ |NG(u) ∪ NG(v) ∪ NG(w)|

≥ |NG(u)| + |NG(v)| + |NG(w)|

−(|NG(u) ∩ NG(v)| + |NG(v) ∩ NG(w)| + |NG(w) ∩ NG(u)|)

> 3δG(U) − 3k/9

⇐⇒ δG(U) < dG(U)/3 + k/9.

Conversely, if δG(U) ≥ dG(U)/3 + k/9, then for any three vertices in U , there are

two vertices which are adjacent in H(U, k/9). Therefore, the following claim holds.

Claim 1. Let U be a vertex subset of A. If δG(U) ≥ dG(U)/3+k/9, then the stability

of H(U, k/9) is at most two.
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In particular, since dG(U) ≤ |B| = 2k + 1,

if δG(U) ≥ 7

9
k +

1

3
, then the stability of H(U, k/9) is at most two. (2)

We denote the vertices in C by c0, c1, . . . , ck where dG(ci) ≥ dG(ci+1) for all

i ≤ k − 1. If ∆G(C) ≤ k − r + 1, then

2k2 + 2k + 1 ≤ (k− r + 1)|C|+ (k + r)(|A| − |C|) = 2k2 + 2k− r + 1 < 2k2 + 2k + 1.

Therefore, since |NG(a0) ∪ NG(c0)| ≤ |B| = 2k + 1,

∆G(C) ≥ k − r + 2 and |NG(a0) ∩ NG(c0)| ≥ 1. (3)

We divide the remainder of the proof into three cases.

Case 1. ∆G(A) = k + 1, i.e., r = 1.

From (1), |Ak+1| ≥ k+1, and so Ak+1 contains a vertex of C. From (2), the stability

of H(Ak+1, k/9) is at most two. Therefore, H(Ak+1, k/9) has a hamilton path or is

the union of two cliques.

1. Suppose that there is a component X in H(Ak+1, k/9) containing a vertex z

of C such that |X| ≥ k/9. Since X is a clique or X = H(Ak+1, k/9), obviously

for any 2 ≤ l ≤ k/9, there is a path P = x1x2 · · · xl in X where xl = z. Since

|NG(xi) ∩ NG(xi+1)| ≥ k/9, for any y ∈ NG(x1), there exists a path

Py = yx1y1x2 · · · xl−1yl−1xl

where yi ∈ (NG(xi) ∩ NG(xi+1)) \ {y, y1, y2, . . . , yi−1} for 1 ≤ i ≤ l − 1. Since

dG(x1) = k + 1 and xl = z ∈ C, the set {Py : y ∈ NG(x1)} gives the desired set of

k + 1 paths.

2. Assume that any component in H(Ak+1, k/9) contains no vertex in C or the

order is less than k/9. Since Ak+1 contains a vertex of C, H(Ak+1, k/9) is the union

of two cliques. Let X be the largest component in H(Ak+1, k/9). Since the other

component contains a vertex of C, |X| > 8k/9. As C contains a vertex of degree

k + 1 and |B| = 2k + 1, |NG(C) ∩ NG(X)| ≥ 1.
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2.1. Suppose that |NG(C) ∩ NG(X)| ≥ 2. Let y1, y2 ∈ NG(C) ∩ NG(X) and

zj ∈ NG(yj)∩C and xj ∈ NG(yj)∩X for j = 1, 2, i.e., G contains two paths x1y1z1

and x2y2z2. For any 2 ≤ l ≤ k/9, let P = x1x2 · · · xl−1 be a path in X where

xl−1 = x1. For any y ∈ NG(x1) \ {y1}, there exist a path

P 1
y = yx1y1x2 · · · xl−1y

1z1

where yi ∈ (NG(xi) ∩ NG(xi+1)) \ {y, y1, y1, y2, . . . , yi−1} for 1 ≤ i ≤ l − 2. Since

dG(x1) = k + 1, the set {Py : y ∈ NG(x1)} gives the desired set of at least k. If

y1 ∈ NG(x1), then by using x2y2z2, we can obtain one more desired path as above.

2.2. Assume that |NG(C) ∩ NG(X)| = 1. This implies for any x ∈ X, NG(X) \

NG(C) = B \ NG(C) and dG(C) = k + 1, and

for any z ∈ C, |NG(z) ∩ NG(c0)| ≥ dG(z). (4)

Let U = {c0, c1, . . . , c⌈2k/9−1⌉}.

2.2.a. Suppose δG(U) ≥ dG(U)/3+k/9, then from Claim 1 the stability of H(U, k/9)

is at most two. Let XC be a largest component in H(U, k/9). From (4), c0 ∈ XC .

For any 2 ≤ l ≤ k/9, there is a path z1z2 · · · zl in XC where z1 = c0. For any

y ∈ NG(c0), there exists a path

Py = yz1y1z2 · · · zl−1yl−1zl

where yi ∈ (NG(xi) ∩ NG(xi+1)) \ {y, y1, y2, . . . , yi−1} for 1 ≤ i ≤ l − 1. Since

dG(c0) = k + 1, the set {Py : y ∈ NG(c0)} gives the desired k + 1 paths of order 2l.

2.2.b Suppose δG(U) < dG(U)/3 + k/9 = (k + 1)/3 + k/9 = (4k + 3)/9, then

dG(c⌈2k/9⌉) is also smaller than (4k + 3)/9. Since |C \U | = ⌈7k/9 + 1⌉ and |A \ (C \

U)| ≥ 2k + 1 − 7k/9 − 2, the number of non-adjacent pairs between A and B is:

(2k + 1)2 − (2k2 + 2k + 1) = 2k2 + 2k

≥ (2k + 1 − (k + 1))(|A \ (C \ U)| − 1) + (2k + 1 − 4k + 3

9
)(|C \ U | + 1)

> (2k + 1 − (k + 1))(2k − 7k

9
− 2) + (2k + 1 − 4k + 3

9
)(

7

9
k + 2)

=
197

81
k2 +

44

27
k +

4

3
,

5



a contradiction.

Therefore, for the remainder of the proof

∆G(A) ≥ k + 2, i.e., r ≥ 2.

Case 2. |A∗
k+1| ≥ 2k/9 − 2.

From (2), the stability of H(A∗
k+1, k/9) is at most two. Since k +1+ k + r ≥ 2k +3,

|NG(a0) ∩ NG(x)| ≥ 2 for any x ∈ A∗
k+1. (5)

1. Suppose that there is a component X in H(A∗
k+1, k/9) containing a vertex z of

C such that |X| ≥ k/9 − 1. Since X is a clique or X = H(A∗
k+1, k/9), obviously

for any 2 ≤ l ≤ k/9, there is a path P = x2 · · · xl in X where xl = z. For each

y ∈ NG(a0) and y′ ∈ (NG(a0) ∩ NG(x2)) \ {y}, there exists a path

Py = ya0y
′x2y2 · · · xl−1yl−1xl

in G such that yi ∈ (NG(xi) ∩ NG(xi+1)) \ {y, y′, y2, . . . , yi−1} for all 2 ≤ i ≤ l − 1.

Since dG(a0) ≥ k + r, the set {Py : y ∈ NG(a0)} gives a desired set of k + 1 paths of

order 2l.

2. Suppose that any component in H(A∗
k+1, k/9) contains no vertex in C or the

order is less than k/9 − 1. Let X be a largest component in H(A∗
k+1, k/9). Then

|X| ≥ k/9 − 1.

2.1. Suppose there exist z ∈ C and x ∈ X such that |NG(z) ∩ NG(x)| ≥ 2. For

any 2 ≤ l ≤ k/9, let P = x1x2 · · · xl−1 be a path in X where xl−1 = x. For any

y ∈ NG(x1), there exist y′ ∈ (NG(z) ∩ NG(x)) \ {y} and a path

Py = yx1y1x2 · · · xl−1y
′z

where yi ∈ (NG(xi) ∩ NG(xi+1)) \ {y, y′, y1, y2, . . . , yi−1} for 1 ≤ i ≤ l − 2. Since

dG(x1) = k + 1, the set {Py : y ∈ NG(x1)} gives the desired set of k + 1 paths.

2.2. Suppose

for any z ∈ C and x ∈ X, |NG(z) ∩ NG(x)| ≤ 1. (6)
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This implies a0 ̸= c0 by (5) and |NG(a0) ∩ NG(c0)| ≥ 1 from (3). Let y′ ∈ NG(a0) ∩

NG(c0). Then, obviously {Py = ya0y
′c0 : y ∈ NG(a0) \ {y′}} contains the desired

k + 1 paths of order 4. Hence in the following we consider when 3 ≤ l ≤ k/9.

2.2.a. Suppose |NG(a0)∩NG(c0)| ≥ 2. For any 3 ≤ l ≤ k/9, let P = x1x2 · · · xl−2 be

any path in X. At first, we specify y ∈ NG(x1), and let y′ ∈ (NG(a0)∩NG(c0))\{y}.

If NG(a0)∩NG(xl−2) ̸= {y, y′}, then we can choose y′′ ∈ (NG(a0)∩NG(xl−2))\{y, y′}.

If NG(a0) ∩ NG(xl−2) = {y, y′}, then from (6), y /∈ NG(a0) ∩ NG(c0). Hence we can

choose y′′′ ∈ (NG(a0) ∩ NG(c0)) \ {y, y′}. In either case, as in the above, we can

construct a path

Py = yx1y1x2y2 · · · xl−2y
′′a0y

′c0 or yx1y1x2y2 · · · xl−2y
′a0y

′′′c0

in G, respectively. Since dG(x1) ≥ k + 1, we have the desired k + 1 paths of order

2l.

2.2.b. If |NG(a0) ∩ NG(c0)| ≤ 1, then equality holds and dG(c0) = k − r + 2 from

(3). Let {y′} = NG(a0) ∩ NG(c0), and then NG(c0) = (B \ NG(a0)) ∪ {y′}.

Suppose there is a vertex x ∈ X such that NG(x) \ NG(a0) ̸= ∅. Let y′′ ∈

NG(x) \NG(a0). Since NG(c0) = (B \NG(a0))∪ {y′} and y′ ∈ NG(a0), y′′ ∈ NG(c0),

let P be a path x2x3 · · · xl−1 in X where xl−1 = x and 3 ≤ l ≤ k/9. For any

y ∈ NG(a0), we can construct a path

Py = ya0y1x2y2 · · · xl−1y
′′c0

in which yi ∈ (NG(xi) ∩ NG(xi+1)) \ {y, y′′, y1, y2, . . . , yi−1} for i ≤ l − 2. Since

dG(a0) = k + r, there are k + 1 paths of order 2l.

Suppose NG(X) ⊂ NG(a0). Let x1x2 · · · xl−2 be a path in X for 3 ≤ l ≤ k/9. For

any y ∈ NG(x1) \ {y}, there is y′′ ∈ (NG(xl−2) ∩ NG(a0)) \ {y, y′} since |NG(xl−2) ∩

NG(a0)| = dG(xl−2) ≥ k + 1. Thus we can construct a path

Py = yx1y1x2y2 · · · xl−2y
′′a0y

′c0

in which yi ∈ (NG(xi)∩NG(xi+1)) \ {y, y′, y′′, y1, y2, . . . , yi−1} for i ≤ l− 3. Hence, if

|NG(x1)\{y′}| ≥ k+1, then there are k+1 paths of order 2l. If |NG(x1)\{y′}| = k,
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then y′ ∈ NG(x1), and so for y′′′ ∈ NG(a0) \ NG(x1), we can obtain (k + 1)th path

y′′′a0y
′′xl−2 · · · y2x2y1x1y

′c0.

Case 3. |A∗
k+1| < 2k/9 − 2.

From (1), since 2k/9 − 2 > |A∗
k+1| = |Ak+1| − 1 ≥ (k + 1)/r − 1, r ≥ 5. Let

m = dG(ak+1) and p = |{ai : dG(ai) ≤ k and 1 ≤ i ≤ k}|.

Then p > k − (2k/9 − 2) = 7k/9 + 2 and

2k2 + 2k + 1 ≤ e(G) ≤
k−p∑
i=0

dG(ai) +
k∑

i=k−p+1

dG(ai) +
2k∑

i=k+1

dG(ai)

≤ (2k + 1)(k − p + 1) + kp + mk

⇐⇒ km ≥ pk + p − k

=⇒ m ≥ p > 7k/9 + 2 > 7k/9 + 1/3.

Hence,

the stability of H(A∗
m, k/9) is at most two

from (2). Furthermore

2k2 + 2k + 1 ≤ e(G) ≤
k−p∑
i=0

dG(ai) +
k∑

i=k−p+1

dG(ai) +
2k∑

i=k+1

dG(ai)

≤ (k + r)(k − p + 1) + kp + mk

⇐⇒ km ≥ k2 + k − kr + pr − r + 1

=⇒ m ≥ k + 1 − r +
pr − r + 1

k
.

Since r ≥ 5 and p > 7k/9 + 2, the following inequalities hold:

m + (k + r) ≥ 2k + 1 +
pr − r + 1

k
≥ 2k + 3

⇐⇒ r(p − 1) ≥ 2k − 1.

Therefore

for any x ∈ A∗
m and ai ∈ Ak+r, NG(x) ∩ NG(ai) ≥ 2. (7)
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Notice that as |A∗
m| ≥ k + 1, A∗

m contains a vertex z in C \ {a0}. Let y′ ∈ NG(a0)∩

NG(z). Then, obviously {Py = ya0y
′z : y ∈ NG(a0)\{y′}} contains the desired k+1

paths of order 4. Hence in the following, we consider the case when 3 ≤ l ≤ k/9.

1. Recall that the stability of H(A∗
m, k/9) is two. Therefore if H(A∗

m, k/9) has a

component X which contains a vertex z of C with |X| ≥ k/9 − 1, then we can

construct the desired k + 1 paths of order 2l for any 3 ≤ l ≤ k/9 as done in part 1

in Case 2.

2. Suppose that each component X in H(A∗
m, k/9) has no vertex of C or |X| <

k/9 − 1. Since A∗
m ∩ (C \ {a0}) ̸= ∅, H(A∗

m, k/9) is the union of two cliques X and

X ′ such that |X| > 8k/9 + 1, X ∩ C = ∅, |X ′| < k/9 − 1 and X ′ ∩ C ̸= ∅.

2.1. Suppose that there are x ∈ X and z ∈ C \ {a0} such that NG(x) ∩NG(z) ̸= ∅.

Let y′ ∈ NG(x)∩NG(z) and P = x2x3 · · · xl−1 be a path in X where xl−1 = x for any

3 ≤ l ≤ k/9. Let y′′ ∈ (NG(a0)∩NG(x2)) \ {y′}. Then for any y ∈ NG(a0) \ {y′, y′′},

we can construct a path

Py = ya0y
′′x2y2 · · · xl−1y

′z

in which yi ∈ (NG(xi) ∩ NG(xi+1)) \ {y, y′, y′′, y2, . . . , yi−1} for 2 ≤ i ≤ l − 2. Since

dG(a0) ≥ k + r ≥ k + 5, we obtain the desired k + 1 paths of order 2l.

2.2. Assume that NG(X) ∩ NG(C \ {a0}) = ∅, i.e., NG(C \ {a0}) ⊂ B \ NG(X).

2.2.a. Suppose dG(X) ≥ k+1. If a0 ∈ C, then for any y ∈ NG(X) and 3 ≤ l ≤ k/9,

there is a path P = x1x2 · · · xl−1 in X such that y ∈ NG(x1), and y′′ ∈ (NG(xl−1) ∩

NG(a0)) \ {y}, and so there is a path

Py = yx1y1x2y2 · · · xl−1y
′′a0

in which yi ∈ (NG(xi) ∩ NG(xi+1)) \ {y, y′, y1, y2, . . . , yi−1} for 1 ≤ i ≤ l − 2. Since

dG(X) ≥ k + 1, we obtain desired k + 1 paths of length 2l.

If a0 /∈ C, then from (3), NG(a0) ∩ NG(c0) ̸= ∅. Let y′ ∈ NG(a0) ∩ NG(c0).

Notice that y′ /∈ NG(X). For any y ∈ NG(X) and 3 ≤ l ≤ k/9, there is a path

P = x1x2 · · · xl−2 in X such that y ∈ NG(x1). For y′′ ∈ (NG(xl−2) ∩ NG(a0)) \ {y},
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we can construct a path

Py = yx1y1x2y2 · · · xl−2y
′′a0y

′c0

in which yi ∈ (NG(xi)∩NG(xi+1))\{y, y′, y′′, y1, y2, . . . , yi−1} for 1 ≤ i ≤ l−3. Since

dG(X) ≥ k + 1, we obtain the desired k + 1 paths of order 2l.

2.2.b. Assume dG(X) ≤ k. Let U = {c0, c1, . . . , c⌈2k/9−2⌉} \ {a0}.

Suppose

δG(U) ≥ dG(U)

3
+

k

9
,

and then from Claim 1 the stability of H(U, k/9) is at most 2. Let XC be a largest

component in H(U, k/9).

If there is z ∈ XC such that NG(z) ∩ NG(a0) ̸= ∅, then there is a path P =

z2z3 · · · zl in XC for any 3 ≤ l ≤ k/9 where z2 = z. Let y′ ∈ NG(z2) ∩ NG(a0). For

any y ∈ NG(a0) \ {y′}, we can construct

Py = ya0y
′z2y2 · · · zl

in which yi ∈ (NG(zi) ∩ NG(zi+1)) \ {y, y′, y2, . . . , yi−1} for 2 ≤ i ≤ l − 1. Since

dG(a0) ≥ k + r, we obtain the desired k + 1 paths of order 2l.

If NG(XC) ∩ NG(a0) = ∅, then ∆G(XC) ≤ k − r + 1. This implies that

dG(c⌈2k/9−2⌉+1) ≤ k − r + 1. Let L = {ci : ⌈2k/9 − 2⌉ + 1 ≤ i ≤ k}. Since

|X| > 8k/9 + 1, |XC | ≥ k/9 − 1,

|L| = ⌊7k/9 + 2⌋ > 7k/9 + 1, |A \ (X ∪ XC ∪ L)| < 2k/9,

and k + r > max{k, k − r + 1},

2k2 + 2k + 1 ≤ e(G)

≤
∑
x∈X

dG(x) +
∑

z∈XC

dG(z) +
∑
ci∈L

dG(ci) +
∑

ai∈A\(X∪XC∪L)

dG(ai)

≤ k|X| + (k − r + 1)|XC | + (k − r + 1)|L| + (k + r)|A \ (X ∪ XC ∪ L)|

< k(
8

9
k + 1) + (k − r + 1)(

k

9
− 1) + (k − r + 1)(

7

9
k + 1) + (k + r)

2

9
k

= 2k2 +
17

9
k − 2r

3
k < 2k2 + 2k + 1.
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This is a contradiction.

Therefore

δG(U) <
dG(U)

3
+

k

9
≤ 2k + 1 − dG(X)

3
+

k

9
.

Since

dG(X) ≥ δG(X) ≥ m ≥ k + 1 − r +
pr − r + 1

k
,

2k + 1 − dG(X) < k + r, and so

k + r > max{dG(X), 2k + 1 − dG(X),
2k + 1 − dG(X))

3
+

k

9
}.

Since |X| > 8k/9+1, |U | ≥ 2k/9−2, |L| > 7k/9+1 and |A\(X∪U ∪L)| < k/9+1,

2k2 + 2k + 1 ≤ e(G)

≤
∑
x∈X

dG(x) +
∑
z∈U

dG(z) +
∑
ci∈L

dG(ci) +
∑

ai∈A\(X∪U∪L)

dG(ai)

≤ dG(X)(
8

9
k + 1) + (2k + 1 − dG(X))(

2

9
k − 2)

+(
2k + 1 − dG(X)

3
+

k

9
)(

7

9
k + 1) + (k + r)(

k

9
+ 1)

=
94

81
k2 +

r

9
k +

11dG(X)

27
k +

8dG(X)

3
− 47

27
k − 5

3
+ r

⇐⇒ r

9
k +

11dG(X)

27
k +

8dG(X)

3
+ r ≥ 68

81
k2 +

101

27
k +

8

3

Since dG(X) ≤ k and r ≤ k + 1

r

9
k +

11dG(X)

27
k +

8dG(X)

3
+ r ≤ k + 1

9
k +

11k

27
k +

8k

3
+ k + 1

=
11

27
k2 +

34

9
k +

10

9
<

68

81
k2 +

101

27
k +

8

3
,

a contradiction. This completes the proof of this case and the proof of the theorem.
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