Cycles through specified vertices in triangle-free graphs

Daniel Paulusma
Department of Computer Science, Durham University
Science Laboratories, South Road, Durham DH1 3LE, England daniel.paulusma@durham.ac.uk
and
Kiyoshi Yoshimoto ${ }^{1}$
Department of Mathematics, College of Science and Technology Nihon University, Tokyo 101-8308, Japan
yosimoto@math.cst.nihon-u.ac.jp

Abstract

Let G be a triangle-free graph with $\delta(G) \geq 2$ and $\sigma_{4}(G) \geq|V(G)|+2$. Let $S \subset V(G)$ consist of less than $\sigma_{4} / 4+1$ vertices. We prove the following. If all vertices of S have degree at least three, then there exists a cycle C containing S. Both the upper bound on $|S|$ and the lower bound on σ_{4} are best possible.

Keywords: cycle, path, triangle-free graph.
2000 Mathematics Subject Classification: 05C38, 05C45.

1 Introduction

Let $G=(V(G), E(G))$ be a graph, where $V(G)$ is a finite set of vertices and $E(G)$ is a set of unordered pairs of two different vertices, called edges. All notation and terminology not explained is given in [6]. For simplicity, the order of a graph is denoted by n and $G-V(H)$ by $G-H$. Let

$$
\sigma_{k}(G)=\min \left\{\sum_{i=1}^{k} d_{G}\left(x_{i}\right) \mid x_{1}, x_{2}, \ldots, x_{k} \text { are independent }\right\},
$$

where $d_{G}\left(x_{i}\right)$ is the degree of a vertex x_{i}. If the independence number of G is less than k, then we define $\sigma_{k}(G)=\infty$.

Ore [11] showed that a graph G with $\sigma_{2} \geq n$ is hamiltonian and Bondy [3] proved that if G is a 2 -connected graph with $\sigma_{3} \geq n+2$, then for any longest cycle $C, E(G-C)=\emptyset$. Enomoto et al. [9] generalized this theorem as follows: if G is a

[^0]2-connected graph with $\sigma_{3} \geq n+2$, then $p(G)-c(G) \leq 1$, where $p(G)$ and $c(G)$ are the order of longest paths and the circumference, respectively.

In this paper we study triangle-free graphs. For triangle-free graphs with $\sigma_{2} \geq$ $(n+1) / 2$, all longest cycles are dominating [16]. This lower bound is almost best possible by the examples due to Ash and Jackson [1]. Corresponding to the theorem by Enomoto et al., the following result has been proven.

Theorem 1 ([13]). Let G be a triangle-free graph with $\delta \geq 2$. If $\sigma_{4} \geq n+2$, then for any path P, there exists a cycle C such that $|V(P-C)| \leq 1$ or G is isomorphic to the graph in Figure 1.

Figure 1:

In the literature the question has been studied whether for a given graph G any subset S of vertices of restricted size has some cycle passing through it. Many results on general graphs and graph classes are known (see, e.g., [2], [4], [5] [7], [8], [10], [12], [14], [15], [17]). For triangle-free graphs the following result has been proven.

Theorem 2 ([13]). Let G be a triangle-free graph with $\delta \geq 2$. If $\sigma_{4} \geq n+2$, then for any set S of at most δ vertices, there exists a cycle C containing S.

In this paper, we show the following related theorem.
Theorem 3. Let G be a triangle-free graph with $\delta \geq 2$ and $\sigma_{4} \geq n+2$. Let $S \subset V(G)$ consist of less than $\sigma_{4} / 4+1$ vertices. If all vertices of S have degree at least three, then there exists a cycle C containing S.

The several bounds in these theorems are all tight. We show this by a number of counter examples. For these counter examples we use the following notations. We denote the complement of graph $G=(V, E)$ by $\bar{G}=(V,(V \times V) \backslash E)$. For two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, we denote their union by $G_{1} \cup G_{2}=$
$\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$ and their join by $G_{1} * G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup\left(V_{1} \times V_{2}\right)\right)$. A complete graph is a graph with an edge between every pair of vertices. The complete graph on n vertices is denoted by K_{n}. The complete bipartite graph $\overline{K_{k}} * \overline{K_{\ell}}$ is denoted by $K_{k, \ell}$.

- Consider the graph $\overline{K_{k-1}} * \overline{K_{k}} * K_{1} * \overline{K_{k}} * \overline{K_{k-1}}$ with $\delta=(n+1) / 4$ and $\sigma_{4}=n+1$. If we choose two vertices from each $\overline{K_{k}}$, obviously there is no cycle containing the vertices. See Figure 2(i). Hence, in Theorem 2 and Theorem 3, the lower

Figure 2:
bound on σ_{4} is best possible.

- Consider the graph $\overline{K_{k-2}} * \overline{K_{k}} * \overline{K_{2}} * \overline{K_{k}} * \overline{K_{k-2}}$ with $\delta=(n+2) / 4$ and $\sigma_{4}=n+2$. There is no cycle containing all $k=(n+2) / 4$ vertices of the left $\overline{K_{k}}$ and a vertex in the right $K_{k, k-2}$. See Figure 2(ii). Hence, in Theorem 2 and Theorem 3 , the upper bound on $|S|$ is best possible.

We cannot relax the degree condition of vertices in S in Theorem 3 into"all vertices of S have degree at least two". For example in the graph in Figure 1, $\sigma_{4} / 4+1=10 / 4+1$. So we can choose three vertices. However, if we choose the three white vertices of degree two in the graph, obviously there is no desired cycle. There is even a class of counter examples of large order as follows. Consider the graph $K_{k, k}$ for any $k \geq 3$. Let x, x^{\prime} be two vertices in the same partite set of this graph. Add two extra vertices w, w^{\prime} and add all edges between $\left\{x, x^{\prime}\right\}$ and $\left\{w, w^{\prime}\right\}$. This way we obtain a graph G_{k} with $\sigma_{4}=2 k+4=n+2 \geq 10$. Now let $S \subset V\left(G_{k}\right)$ consist of the vertices w, w^{\prime} and some vertex u not in $\left\{x, x^{\prime}\right\}$. Then $|S|=3<10 / 4+1 \leq \sigma_{4} / 4+1$. However, the only cycle in G_{k} that contains both w and w^{\prime} is the cycle on the four vertices $x, x^{\prime}, w, w^{\prime}$. This means that G_{k} does not
contain a cycle passing through S. We note that S contains two vertices of degree two. The following conjecture seems to hold.

Conjecture 4. Let G be a triangle-free graph with $\delta \geq 2$ and $\sigma_{4} \geq n+2$. Let $S \subset V(G)$ consist of less than $\sigma_{4} / 4+1$ vertices. If S contains at most one vertex of degree 2 , then there exists a cycle C containing S.

Finally, we give some additional definitions and notations. The set of all the neighbours of a vertex $x \in V(G)$ is denoted by $N_{G}(x)$ or simply $N(x)$, and its cardinality by $d_{G}(x)$ or $d(x)$. For a subgraph H of G, we denote $N_{G}(x) \cap V(H)$ by $N_{H}(x)$ and its cardinality by $d_{H}(x)$. For simplicity, we denote $|V(H)|$ by $|H|$ and " $u_{i} \in V(H)$ " by " $u_{i} \in H$ ". The set of neighbours $\bigcup_{v \in H} N_{G}(v) \backslash V(H)$ is written by $N_{G}(H)$ or $N(H)$, and for a subgraph $F \subset G, N_{G}(H) \cap V(F)$ is denoted by $N_{F}(H)$. Especially, for an edge $e=x y$, we denote $N(e)=(N(x) \cup N(y)) \backslash\{x, y\}$ and $d(e)=|N(e)|$.

Let $C=v_{1} v_{2} \ldots v_{p} v_{1}$ be a cycle with a fixed orientation. The segment $v_{i} v_{i+1} \ldots v_{j}$ is written by $v_{i} \vec{C} v_{j}$ where the subscripts are to be taken modulo $|C|$. The converse segment $v_{j} v_{j-1} \ldots v_{i}$ is written by $v_{j} \overleftarrow{C} v_{i}$. The successor of u_{i} is denoted by u_{i}^{+} and the predecessor by u_{i}^{-}. For a subset $A \subseteq V(C)$, we write $\left\{u_{i}^{+} \mid u_{i} \in A\right\}$ and $\left\{u_{i}^{-} \mid u_{i} \in A\right\}$ by A^{+}and A^{-}, respectively.

2 The Proof of Theorem 3

In the proof we make use of the following lemma. A cycle C in a graph G is called a swaying cycle of a subset $S \subseteq V(G)$ if $|C \cap S|$ is maximum in all cycles of G.

Lemma 5. Let G be a connected graph such that for any path P, there exists a cycle C such that $|P-C| \leq 1$. Let $S \subset V(G)$. Then for any longest swaying cycle C of $S, S \subset V(C)$ or $N(x) \subset C$ for any $x \in S-C$.

Proof. Let $S \subset V(G)$ and C a longest swaying cycle of S. Suppose $S-C \neq \emptyset$. For any vertex $x \in S-C$, there is a path Q joining x and C. Let P be a longest path containing $V(C \cup Q)$. Then there exists a cycle D such that $|P-D| \leq 1$. If x has neighbours in $G-C$, then $|P| \geq|C|+2$ and so $|D| \geq|C|+1$. Because $|D \cap S| \geq|C \cap S|$, this contradicts the assumption that C is a longest swaying cycle. Hence $N_{G-C}(x)=\emptyset$.

Now let G be a graph with $\delta \geq 2$ and $\sigma_{4} \geq n+2$. Let $S \subset V(G)$ be a set of less than $\sigma_{4} / 4+1$ vertices that all have degree at least three. Let \mathcal{C} be the set of all longest swaying cycles of S. Suppose a cycle in \mathcal{C} does not contain all vertices in S.

Claim 1. If there exists a swaying cycle D of S and $v \in S-D$ such that $N(v) \subset$ $V(D)$, then $d(v) \leq|D \cap S|$, and so $d(v)<\sigma_{4} / 4$.

Proof. If $d(v)>|D \cap S|$, then there exist $y, z \in N(v)$ such that $y^{+}=z$ or $y^{+} \vec{D} z^{-} \cap$ $S=\emptyset$ because $N(v) \subset V(D)$. Then the cycle $y v z \vec{D} y$ contains $|D \cap S|+1$ vertices in S. This contradicts the assumption that D is a swaying cycle. Hence $d(v) \leq$ $|D \cap S| \leq|S|-1<\sigma_{4} / 4$.

Note that our statement holds if G is isomorphic to the graph in Figure 1. Hence Claim 1 together with Theorem 1 and Lemma 5 implies that

$$
\begin{equation*}
d(v)<\sigma_{4} / 4 \text { for any } D \in \mathcal{C} \text { and } v \in S-D \tag{1}
\end{equation*}
$$

Let $C=u_{1} u_{2} \cdots u_{|C|} \in \mathcal{C}$ such that $\max \{d(v) \mid v \in S-C\}$ is maximum in \mathcal{C}, and let $x \in S-C$ such that $d(x)$ is maximum in $S-C$. Then $d(x)<\sigma_{4} / 4$ by (1). Let $N(x)=\left\{u_{\tau(1)}, u_{\tau(2)}, \ldots, u_{\tau(d(x))}\right\}$ which occur on C in the order of their indices. Then clearly:

$$
\begin{equation*}
N(x)^{+} \text {is an independent set; } \tag{2}
\end{equation*}
$$

otherwise there is a cycle containing $|C \cap S|+1$ vertices of S. As G is trianglefree, a vertex $u_{\tau(l)}^{+} \in N(x)^{+}$is not adjacent to x. If $u_{\tau(l)}^{+}$is adjacent to a vertex $y \in G-(C \cup x)$, then the order of the path $y u_{\tau(l)}^{+} \vec{C} u_{\tau(l)} x$ is $|C|+2$. By Theorem 1, there is a cycle D^{\prime} such that $\left|D^{\prime} \cap S\right| \geq|C \cap S|$ and $\left|D^{\prime}\right| \geq|C|+1$. This is a contradiction. Therefore:

$$
\begin{equation*}
N\left(u_{\tau(l)}^{+}\right) \subset V(C) \text { for } u_{\tau(l)}^{+} \in N(x)^{+} . \tag{3}
\end{equation*}
$$

Let $I_{l}=u_{\tau(l)}^{+} \vec{C} u_{\tau(l+1)}$ and $J_{l}=u_{\tau(l+1)}^{+} \vec{C} u_{\tau(l)}$ and:

$$
L=\left\{u_{\tau(i)}^{+} \mid d\left(u_{\tau(i)}^{+}\right) \text {is maximum in } N(x)^{+}\right\} .
$$

Because $\sigma_{4} / 4>d(x) \geq 3$ and $N(x)^{+} \cup x$ is an independent set, there is a vertex in $N(x)^{+}$whose degree is at least $\sigma_{4} / 4$. Hence the degree of a vertex in L is greater than $\sigma_{4} / 4$. If $u_{\tau(i)}^{++} \in L^{+}$is adjacent to $u_{\tau(j)}^{+} \in\left(N(x) \backslash u_{\tau(i)}\right)^{+}$, then the cycle
$u_{\tau(i)}^{++} u_{\tau(j)}^{+} \vec{C} u_{\tau(i)} x u_{\tau(j)} \overleftarrow{C} u_{\tau(i)}^{++}$and $u_{\tau(i)}^{+} \in S$ contradict (1). If $u_{\tau(i)}^{++} x \in E(G)$, then the cycle $u_{\tau(i)} x u_{\tau(i)}^{++} \vec{C} u_{\tau(i)}$ and $u_{\tau(i)}^{+}$contradict (1). Hence:

$$
\begin{equation*}
u_{\tau(i)}^{++} \in L^{+} \text {is adjacent to none of }\left(N(x) \backslash u_{\tau(i)}\right)^{+} \cup x . \tag{4}
\end{equation*}
$$

For each $u_{\tau(l)}^{+} \in N(x)^{+}$, we denote the edge $u_{\tau(l)}^{+} u_{\tau(l)}^{++}$by e_{l}.
Claim 2. For any $u_{\tau(i)}^{+} \in L$, it holds that:

1. $N_{I_{i}}\left(e_{i}\right)^{-} \cap N_{I_{i}}\left(u_{\tau(i+1)}^{+}\right)=\emptyset$.
2. $N_{J_{i}}(x)^{+} \cap N_{J_{i}}\left(e_{i}\right)=\emptyset$.
3. $N_{J_{i}}\left(e_{i}\right) \cap N_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)^{-}=\emptyset$.

Proof. Suppose there is a vertex $u_{l} \in N_{I_{i}}\left(e_{i}\right)^{-} \cap N_{I_{i}}\left(u_{\tau(i+1)}^{+}\right)$, and let $y \in V\left(e_{i}\right) \cap$ $N\left(u_{l}^{+}\right)$. Then the cycle:

$$
D=y \vec{C} u_{l} u_{\tau(i+1)}^{+} \vec{C} u_{\tau(i)} x u_{\tau(i+1)} \overleftarrow{C} u_{l}^{+} y
$$

contains all vertices of $V(C) \cup x$ if $y=u_{\tau(i)}^{+}$, i.e, $|D|=|C \cap S|+1$. See Figure 3(i). This contradicts the assumption that $C \in \mathcal{C}$. If $y=u_{\tau(i)}^{++}$, then $D \in \mathcal{C}$ and $d\left(u_{\tau(i)}^{+}\right) \geq$

Figure 3:
$\sigma_{4} / 4$. This contradicts (1). Hence $N_{I_{i}}\left(e_{i}\right)^{-} \cap N_{I_{i}}\left(u_{\tau(i+1)}^{+}\right)=\emptyset$. Similarly, we can show the other statements. See Figure 3(ii)-(iii).

Let $\alpha_{i}=\left|N_{J_{i}}(x)^{+} \cap N_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)^{-}\right|$. By this number, we will divide our argument into three cases, and in each case, the following claim will be used.

Claim 3. For any $u_{\tau(i)}^{+} \in L, n \geq d\left(u_{\tau(i)}^{+}\right)+d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d(x)-2-\alpha_{i}$. Especially if the equality holds, then $u_{\tau(i+1)}^{++} \in N\left(e_{i}\right)$ and $u_{\tau(i+1)}^{+} \in S$ and:

$$
J_{i}=\left(N_{J_{i}}(x) \backslash u_{\tau(i)}\right)^{+} \cup N_{J_{i}}\left(e_{i}\right) \cup N_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)^{-} .
$$

Proof. By the previous claim, we have:

$$
\begin{aligned}
\left|I_{i}\right| & \geq\left|N_{I_{i}}\left(e_{i}\right)^{-} \cup N_{I_{i}}\left(u_{\tau(i+1)}^{+}\right) \cup\left\{u_{\tau(i)}^{+}\right\}\right| \\
& \geq\left|N_{I_{i}}\left(e_{i}\right)^{-}\right|+\left|N_{I_{i}}\left(u_{\tau(i+1)}^{+}\right)\right|+\left|\left\{u_{\tau(i)}^{+}\right\}\right| \\
& =d_{I_{i}}\left(e_{i}\right)+d_{I_{i}}\left(u_{\tau(i+1)}^{+}\right)+1 \\
\left|J_{i}\right| & \geq\left|\left(N_{J_{i}}(x) \backslash u_{\tau(i)}\right)^{+} \cup N_{J_{i}}\left(e_{i}\right) \cup N_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)^{-}\right| \\
& \geq\left|\left(N_{J_{i}}(x) \backslash u_{\tau(i)}\right)^{+}\right|+\left|N_{J_{i}}\left(e_{i}\right)\right|+\left|N_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)^{-}\right|-\alpha_{i} \\
& =d_{J_{i}}(x)-1+d_{J_{i}}\left(e_{i}\right)+d_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)-\alpha_{i} .
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
n & \geq|C|+d_{G-C}\left(e_{i}\right)+|\{x\}|=\left|I_{i}\right|+\left|J_{i}\right|+d_{G-C}\left(e_{i}\right)+1 \\
& \geq\left(d_{I_{i}}\left(e_{i}\right)+d_{I_{i}}\left(u_{\tau(i+1)}^{+}\right)\right)+\left(d_{J_{i}}(x)+d_{J_{i}}\left(e_{i}\right)+d_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)-\alpha_{i}\right)+d_{G-C}\left(e_{i}\right)+1 \\
& =\left(d_{I_{i}}\left(e_{i}\right)+d_{J_{i}}\left(e_{i}\right)+d_{G-C}\left(e_{i}\right)\right)+\left(d_{I_{i}}\left(u_{\tau(i+1)}^{+}\right)+d_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)\right)+\left(d_{J_{i}}(x)+1\right)-\alpha_{i} \\
& =d\left(e_{i}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d(x)-\alpha_{i} \\
& =d\left(u_{\tau(i)}^{+}\right)+d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d(x)-2-\alpha_{i} .
\end{aligned}
$$

If equalities hold in the above inequalities, then:

$$
\left|J_{i}\right|=\left|\left(N_{J_{i}}(x) \backslash u_{\tau(i)}\right)^{+} \cup N_{J_{i}}\left(e_{i}\right) \cup N_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)^{-}\right|
$$

also holds and so:

$$
J_{i}=\left(N_{J_{i}}(x) \backslash u_{\tau(i)}\right)^{+} \cup N_{J_{i}}\left(e_{i}\right) \cup N_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)^{-} .
$$

Because G is triangle-free, $u_{\tau(i+1)}^{++} \notin N\left(u_{\tau(i+1)}^{+}\right)^{-}$and $u_{\tau(i+1)}^{++} \notin N(x)^{+}$, and so $u_{\tau(i+1)}^{++} \in N\left(e_{i}\right)$.

Let $y=V\left(e_{i}\right) \cap N\left(u_{\tau(i+1)}^{++}\right)$and:

$$
C^{\prime}=y \vec{C} u_{\tau(i+1)} x u_{\tau(i)} \overleftarrow{C} u_{\tau(i+1)}^{++} y
$$

Suppose $u_{\tau(i+1)}^{+} \notin S$. Because C^{\prime} does not contain $|C \cap S|+1$ vertices of S, we have $y \neq u_{\tau(i)}^{+}$and $u_{\tau(i)}^{+} \in S$. Therefore $N\left(u_{\tau(i)}^{+}\right) \subset V\left(C^{\prime}\right)$ by (2) and (3). This contradicts Claim 1 as $u_{\tau(i)}^{+} \in L$. See Figure 3(iv). Hence $u_{\tau(i+1)}^{+} \in S$.

For $u_{\tau(i)}^{+} \in L$, if the vertex $u_{\tau(i+1)}^{+}$is adjacent to $u_{\tau(s)}^{++} \in\left(N_{J_{i}}(x) \backslash u_{\tau(i)}\right)^{++}$, then the cycle

$$
C^{\prime}=u_{\tau(i+1)}^{+} u_{\tau(s)}^{++} \vec{C} u_{\tau(i+1)} x u_{\tau(s)} \overleftarrow{C} u_{\tau(i+1)}^{+}
$$

is a longest swaying cycle of S. Hence $u_{\tau(s)}^{+} \in S$; otherwise $\left|C^{\prime} \cap S\right| \geq|C \cap S|+1$. Therefore from (1), it holds that:

$$
\begin{equation*}
u_{\tau(s)}^{+} \in S \text { and } d\left(u_{\tau(s)}^{+}\right)<\sigma_{4} / 4 \text { for all } u_{\tau(s)}^{+} \in N_{J_{i}}(x)^{+} \cap N_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)^{-} . \tag{5}
\end{equation*}
$$

If there are three vertices in $N_{J_{i}}(x)^{+} \cap N_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)^{-}$, then the three vertices and x are independent by (2), however, the sum of these degrees are less than σ_{4}. Therefore, $\alpha_{i} \leq 2$. Now we divide our argument.

Case 1. There is $u_{\tau(i)}^{+} \in L$ such that $\alpha_{i}=1$.
Let $\left\{u_{\tau(s)}^{+}\right\}=N_{J_{i}}(x)^{+} \cap N_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)^{-}$. By (5), $d\left(u_{\tau(s)}^{+}\right)<\sigma_{4} / 4 \leq d\left(u_{\tau(i)}^{+}\right)$, and by (2) and (4), $\left\{u_{\tau(i)}^{++}, u_{\tau(i+1)}^{+}, u_{\tau(s)}^{+}, x\right\}$ is an independent set. Hence by Claim 3, it holds that:

$$
\begin{aligned}
n \geq & d\left(u_{\tau(i)}^{+}\right)+d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d(x)-2-1 \\
\geq & d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d\left(u_{\tau(s)}^{+}\right)+d(x) \\
& +\left(d\left(u_{\tau(i)}^{+}\right)-d\left(u_{\tau(s)}^{+}\right)\right)-3 \\
\geq & \sigma_{4}+\left(d\left(u_{\tau(i)}^{+}\right)-d\left(u_{\tau(s)}^{+}\right)\right)-3 \\
\geq & (n+2)+1-3=n .
\end{aligned}
$$

Therefore all equalities have to hold in the above inequalities, and so we have

$$
\begin{array}{r}
n=d\left(u_{\tau(i)}^{+}\right)+d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d(x)-3 \\
d\left(u_{\tau(i)}^{+}\right)=d\left(u_{\tau(s)}^{+}\right)+1, \tag{7}
\end{array}
$$

Because $u_{\tau(i+1)}^{+} u_{\tau(s)}^{++} \vec{C} u_{\tau(i+1)} x u_{\tau(s)} \overleftarrow{C} u_{\tau(i+1)}^{+} \in \mathcal{C}$, we have $d(x) \geq d\left(u_{\tau(s)}^{+}\right)$by the maximality of $d(x)$. Then $d(x)+1 \geq d\left(u_{\tau(s)}^{+}\right)+1=d\left(u_{\tau(i)}^{+}\right) \geq \sigma_{4} / 4$ by (7). On the other hand, $d(x)+1 \leq|C \cap S|+1 \leq|S|<\sigma_{4} / 4+1$ by Claim 1. Thus:

$$
\frac{\sigma_{4}}{4} \leq d(x)+1 \leq|S|<\frac{\sigma_{4}}{4}+1
$$

i.e., $|S|=d(x)+1$. Therefore $\left|u_{\tau(l)}^{+} \vec{C} u_{\tau(l+1)}^{-} \cap S\right|=1$ for all $l \leq d(x)$; otherwise we can easily obtain a cycle containing $|C \cap S|+1$ vertices of S as in the proof of Claim 1. However, by (6) and Claim 3, $u_{\tau(i+1)}^{+} \in S$, and by (5), $u_{\tau(s)}^{+} \in S$, and hence:

$$
u_{\tau(i+1)}^{++} \vec{C} u_{\tau(i+2)}^{-} \cap S=u_{\tau(s)}^{++} \vec{C} u_{\tau(s+1)}^{-} \cap S=\emptyset
$$

Then, the cycle $u_{\tau(i+1)}^{+} u_{\tau(s)}^{++} \overleftarrow{C} u_{\tau(i+2)} x u_{\tau(s+1)} \vec{C} u_{\tau(i+1)}^{+}$contains $|C \cap S|+1$ vertices in S. See Figure 4. This contradicts the assumption that C is a swaying cycle.

Figure 4:

Case 2. There exists $u_{\tau(i)}^{+} \in L$ such that $\alpha_{i}=2$.
Let $\left\{u_{\tau(s)}^{++}, u_{\tau(t)}^{++}\right\}=N_{J_{i}}(x)^{+} \cap N_{J_{i}}\left(u_{\tau(i+1)}^{+}\right)^{-}$. By (2), $\left\{u_{\tau(s)}^{+}, u_{\tau(t)}^{+}, x, u_{\tau(i+1)}^{+}\right\}$is an independent set. By (5), both of the degrees of $u_{\tau(s)}^{+}$and $u_{\tau(t)}^{+}$are less than $\sigma_{4} / 4$, and so $d\left(u_{\tau(i+1)}^{+}\right) \geq \sigma_{4} / 4$. Thus, it holds that:

$$
d\left(u_{\tau(s)}^{+}\right)<\sigma_{4} / 4 \leq d\left(u_{\tau(i)}^{+}\right) \text {and } d\left(u_{\tau(t)}^{+}\right)<\sigma_{4} / 4 \leq d\left(u_{\tau(i+1)}^{+}\right) .
$$

Therefore by Claim 3,

$$
\begin{aligned}
n \geq & d\left(u_{\tau(i)}^{+}\right)+d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d(x)-2-2 \\
\geq & d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(s)}^{+}\right)+d\left(u_{\tau(t)}^{+}\right)+d(x) \\
& +\left(d\left(u_{\tau(i)}^{+}\right)-d\left(u_{\tau(s)}^{+}\right)\right)+\left(d\left(u_{\tau(i+1)}^{+}\right)-d\left(u_{\tau(t)}^{+}\right)\right)-4 \\
\geq & \sigma_{4}+\left(d\left(u_{\tau(i)}^{+}\right)-d\left(u_{\tau(s)}^{+}\right)\right)+\left(d\left(u_{\tau(i+1)}^{+}\right)-d\left(u_{\tau(t)}^{+}\right)\right)-4 \\
\geq & (n+2)+1+1-4=n
\end{aligned}
$$

because $\left\{u_{\tau(i)}^{++}, u_{\tau(s)}^{+}, u_{\tau(t)}^{+}, x\right\}$ is an independent set by (2) and (4). Thus all equalities hold in the above inequalities, and we can use the same arguments as in Case 1.

Case 3. $\alpha_{i}=0$ for any $u_{\tau(i)^{+}} \in L$.
For any $u_{\tau(s)}^{+} \in\left(N(x) \backslash\left\{u_{\tau(i)}, u_{\tau(i+1)}\right\}\right)^{+}$,

$$
\begin{aligned}
n \geq & d\left(u_{\tau(i)}^{+}\right)+d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d(x)-2 \\
\geq & d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d\left(u_{\tau(s)}^{+}\right)+d(x) \\
& +\left(d\left(u_{\tau(i)}^{+}\right)-d\left(u_{\tau(s)}^{+}\right)\right)-2 \\
\geq & \sigma_{4}+\left(d\left(u_{\tau(i)}^{+}\right)-d\left(u_{\tau(s)}^{+}\right)\right)-2 \\
\geq & (n+2)-2=n
\end{aligned}
$$

by Claim 3 because $\left\{u_{\tau(i)}^{++}, u_{\tau(i+1)}^{+}, u_{\tau(s)}^{+}, x\right\}$ is an independent set from (2) and (4). Therefore all equalities hold in the above inequalities, and so we have:

$$
\begin{array}{r}
n=d\left(u_{\tau(i)}^{+}\right)+d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d(x)-2=\sigma_{4}-2 \\
d\left(u_{\tau(i)}^{+}\right)=d\left(u_{\tau(s)}^{+}\right) . \tag{9}
\end{array}
$$

From (9), we obtain $u_{\tau(s)}^{+} \in L$, and so, by symmetry, $N(x)^{+} \subset L$.
Claim 4. $u_{\tau(i)}^{++}$is adjacent to all of $\left\{u_{\tau(s)}^{++} \mid s \neq i\right\}$.
Proof. By (8) and Claim 3, $u_{\tau(i+1)}^{++} \in N\left(e_{i}\right)$. Because $u_{\tau(i+1)}^{+} \in L, u_{\tau(i+1)}^{++}$is not adjacent to $u_{\tau(i)}^{+}$by (4). Hence $u_{\tau(i)}^{++} u_{\tau(i+1)}^{++} \in E(G)$.

Suppose the vertex $u_{\tau(i)}^{++}$is not adjacent to $u_{\tau(s)}^{++}(s \neq i, i+1)$. If $u_{\tau(i+1)}^{+} u_{\tau(s)}^{+++} \notin$ $E(G)$, i.e., $u_{\tau(s)}^{++} \notin N\left(u_{\tau(i+1)}^{+}\right)^{-}$, then $u_{\tau(s)}^{++} \in N\left(e_{i}\right)$ by (8) and Claim 3, and so $u_{\tau(i)}^{+} u_{\tau(s)}^{++} \in E(G)$. This contradicts (4) because $u_{\tau(s)}^{+} \in L$.

Assume $u_{\tau(i+1)}^{+} u_{\tau(s)}^{+++} \in E(G)$. By (4), (8) and (9) we have

$$
\begin{aligned}
& d\left(u_{\tau(s)}^{++}\right)+d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d(x) \\
\geq & \sigma_{4} \\
= & d\left(u_{\tau(i)}^{+}\right)+d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d(x) \\
= & d\left(u_{\tau(s)}^{+}\right)+d\left(u_{\tau(i)}^{++}\right)+d\left(u_{\tau(i+1)}^{+}\right)+d(x) .
\end{aligned}
$$

Hence $d\left(u_{\tau(s)}^{++}\right) \geq d\left(u_{\tau(s)}^{+}\right) \geq \sigma_{4} / 4$. Let:

$$
D=u_{\tau(i+1)}^{+} \vec{C} u_{\tau(s)} x u_{\tau(i+1)} \overleftarrow{C} u_{\tau(s)}^{+++} u_{\tau(i+1)}^{+}
$$

By (3), $N\left(u_{\tau(s)}^{+}\right) \subset V(C)$. As $u_{\tau(s)}^{+} \in L$, the vertex $u_{\tau(s)}^{++}$is not adjacent to x. If $u_{\tau(s)}^{++}$is adjacent to the vertex $y \in G-C$, then the order of the path
$y u_{\tau(s)}^{++} \overleftarrow{C} u_{\tau(i+1)}^{+} u_{\tau(s)}^{+++} \vec{C} u_{\tau(i+1)} x$ is $|C|+2$. As in the proof of (3), this contradicts the assumption that $C \in \mathcal{C}$ by Theorem 1. Hence, we obtain $N\left(u_{\tau(s)}^{++}\right) \subset V(C)$. Thus $N\left(e_{s}\right) \subset V(D)$. Because $|D \cap S| \leq|C \cap S|<\sigma_{4} / 4$,

$$
d\left(e_{s}\right) \geq \sigma_{4} / 2-2 \geq \sigma_{4} / 4>|S \cap D|
$$

Therefore, there exist vertices $y, z \in D \cap N\left(e_{s}\right)$ such that $y^{+}=z$ or $y^{+} \vec{D} z^{-} \cap S=$ \emptyset and $y^{+} \vec{D} z^{-} \cap N\left(e_{s}\right)=\emptyset$. If y and z are adjacent to distinct ends of e_{s}, say $y u_{\tau(s)}^{+}, z u_{\tau(s)}^{++} \in E(G)$, then $y u_{\tau(s)}^{+} u_{\tau(s)}^{++} z \vec{D} y$ contains $|C \cap S|+1$ vertices of S. Hence, by symmetry, we may assume $u_{\tau(s)}^{+}$is adjacent to both y and z. Then the cycle $D^{\prime}=y u_{\tau(s)}^{+} z \vec{D} y$ is a swaying cycle and $N\left(u_{\tau(s)}^{++}\right) \subset N\left(D^{\prime}\right)$. This contradicts Claim 1 because $d\left(u_{\tau(s)}^{++}\right) \geq \sigma_{4} / 4$.

By symmetry, the vertex $u_{\tau(i+1)}^{++}$is adjacent to $u_{\tau(s)}^{++}$, and so there is the triangle $u_{\tau(i)}^{++} u_{\tau(i+1)}^{++} u_{\tau(s)}^{++}$. This is a contradiction.

References

[1] P. Ash and B. Jackson, Dominating cycles in bipartite graphs, in Progress in Graph Theory (J. A. Bondy, U. S. R. Murty, eds.), Academic Press (1984), 81-87.
[2] B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993), 137-155.
[3] J. A. Bondy, Longest Paths and Cycles in Graphs of High Degree, Research Report CORR 80-16 (1980).
[4] J. A. Bondy and L. Lovász, Cycles through specified vertices of a graph, Combinatorica 1 (1981), 117-140.
[5] H. Broersma, H. Li, J. Li, F. Tian and H. J. Veldman, Cycles through subsets with large degree sums, Discrete Mathematics 171 (1997), 43-54.
[6] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000).
[7] Y. Egawa, R. Glas and S. C. Locke, Cycles and paths trough specified vertices in k-connected graphs, Journal of Combinatorial Theory. Series B 52 (1991), 20-29.
[8] J. Harant, On paths and cycles through specified vertices, Discrete Mathematics 286 (2004), 95-98.
[9] H. Enomoto, J. van den Heuvel, A. Kaneko and A. Saito, Relative length of long paths and cycles in graphs with large degree sums, Journal of Graph Theory 20 (1995) 213-225.
[10] D. A. Holton, Cycles through specified vertices in k-connected regular graphs, Ars Combinatoria 13 (1982), 129-143.
[11] O. Ore, Note on hamiltonian circuits, American Mathematical Monthly 67 (1960) 55.
[12] K. Ota, Cycles through prescribed vertices with large degree sum, Discrete Mathematics 145 (1995), 201-210.
[13] D. Paulusma and K. Yoshimoto, Relative length of longest paths and longest cycles in triangle-free graphs, submitted, http://www.math.cst.nihon-u.ac.jp/~yosimoto/paper/related_length1_sub.pdf.
[14] A. Saito, Long cycles through specified vertices in a graph, Journal of Combinatorial Theory. Series B 47 (1989), 220-230.
[15] L. Stacho, Cycles through specified vertices in 1-tough graphs, Ars Combinatoria 56 (2000), 263-269.
[16] K. Yoshimoto, Edge degree conditions and all longest cycles which are dominating, submitted.
[17] S. J. Zheng, Cycles and paths through specified vertices, Journal of Nanjing Normal University. Natural Science Edition. Nanjing Shida Xuebao. Ziran Kexue Ban 23 (2000), 9-13.

[^0]: ${ }^{1}$ Supported by JSPS. KAKENHI (14740087)

