Spanning Even Subgraphs of 3-edge-connected Graphs

Bill Jackson
School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England
B.Jackson@qmul.ac.uk
and
Kiyoshi Yoshimoto ${ }^{1}$
Department of Mathematics, Collage of Science and Technology
Nihon University, Tokyo 101-8308, Japan
yosimoto@math.cst.nihon-u.ac.jp

Abstract

By Petersen's theorem, a bridgeless cubic graph has a 2 -factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3 -edge-connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that this is in some sense best possible by constructing an infinite family of 3 -edge-connected graphs in which every spanning even subgraph has a 5 -cycle as a component.

1 Introduction

A classical result of Petersen [9] is that every bridgeless cubic graph has a 2-factor. This result has been extended in many directions. A related question of Thomassen, see [7], is whether there exists a positive integer k such that every cyclically k-edgeconnected cubic graph has a connected 2-factor i.e. a Hamilton cycle. (The Coxeter graph shows that we must take $k \geq 8$ to have an affirmative answer to this question.) We will consider the weaker property of having a 2 -factor which contains no short cycles. We show that every 3 -edge-connected cubic graph has a 2 -factor in which all cycles have length at least five. We also show that our result is best possible by constructing an infinite family of cyclically 4 -edge-connected cubic graphs in which every 2 -factor has a cycle of length five.

[^0]We shall in fact consider a more general problem. Fleischner [3] extended the above mentioned result of Petersen to bridgeless graphs of minimum degree at least three, by showing that every such graph has a spanning even subgraph i.e. a spanning subgraph in which each vertex has positive even degree. Jaeger [5] showed that every 4-edge-connected graph has a connected spanning even subgraph. Zhan [11] showed that the same conclusion holds for 3 -edge-connected, essentially 7 -edgeconnected graphs and Chen and Lai [1] conjecture that this result can be extended to 3 -edge-connected, essentially 5 -edge-connected graphs. We will be concerned with the weaker property of having a spanning even subgraph which has no small components. In this context, we proved the following result in [4].

Theorem 1. Every bridgeless simple graph G with minimum degree at least three has a spanning even subgraph in which each component has at least four vertices.

The same conclusion need not hold for graphs which are not simple. Consider a bridgeless graph H with minimum degree at least 3 , which contains a 3 -edge cut $\left\{e_{1}, e_{2}, e_{3}\right\}$. Let G be obtained from H by inserting either a vertex incident to a loop, or two vertices joined by a multiple edge, or a triangle with one edge replaced by a multiple edge, into each edge $e_{i}, 1 \leq i \leq 3$, see Figure 1. Then every spanning

Figure 1:
even subgraph of G contains at least one of the inserted loops, multiple edges, or triangles.

We will show, however, that Theorem 1 can be strengthened when we consider 3 -edge-connected graphs.

Theorem 2. Let G be a 3-edge-connected graph with n vertices. Then G has a spanning even subgraph in which each component has at least $\min \{n, 5\}$ vertices.

The Petersen graph is an example of a 3-edge-connected, essentially 4-edgeconnected graph in which every spanning even subgraph has a component with five vertices. We give an infinite family of such graphs in Section 4.

2 Notation and Preliminary Results

All graphs considered are finite and may contain loops and multiple edges. We refer to graphs without loops and multiple edges as simple graphs. A graph is said to be even if every vertex has positive even degree. All notation and terminology not explained in this paper is given in [2].

The set of neighbours of a vertex x in a graph G is denoted by $N_{G}(x)$, or simply $N(x)$, and the degree of x by $d_{G}(x)$, or $d(x)$. The set of edges incident to x is denoted by $E(x)$. For a connected subgraph H of G, we denote by G / H the graph obtained from G by contracting every edge in H and use $[H]$ to denote the vertex of G / H corresponding to H. The maximum and minimum degrees of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. We refer to the number of vertices in a graph as its order. We consistently use n to denote the order of a graph G and extend this notation using subscripts and superscripts. Thus we denote the order of a graph G_{1}^{\prime} by n_{1}^{\prime}. We use $\sigma(G)$ to represent the minimum order of a component of G.

An edge-cut S in a graph G is said to be essential, or cyclic, if at least two components of $G-S$ contain edges, respectively cycles. The graph G is essentially k-edge-connected, or cyclically k-edge-connected, if all essential, respectively cyclic, edge-cuts of G have at least k edges.

Given two distinct edges $e_{1}=v x_{1}, e_{2}=v x_{2}$ incident to a vertex v in a graph G, let $G_{v}^{e_{1}, e_{2}}$ be the graph obtained from $G-\left\{e_{1}, e_{2}\right\}$ by adding a new vertex v^{\prime} and new edges $x_{1} v^{\prime}$ and $x_{2} v^{\prime}$. We say that $G_{v}^{e_{1}, e_{2}}$ has been obtained by splitting the vertex v. We will abuse notation somewhat by labeling the edges $x_{1} v^{\prime}$ and $x_{2} v^{\prime}$ as e_{1} and e_{2}, respectively, so that $E\left(G_{v}^{e_{1}, e_{2}}\right)=E(G)$. We will need the following result on splitting in k-edge-connected graphs due to Mader [8, Theorem 10].

Theorem 3 ([8]). Let G be a k-edge-connected graph, $v \in V(G)$ with $d(v) \geq k+2$.

Then there exist edges $e_{1}, e_{2} \in E(v)$ such that $G_{v}^{e_{1}, e_{2}}$ is homeomorphic to a k-edgeconnected graph.

3 Even Subgraphs

We first prove a slight strengthening of the result of Fleischner mentioned in the Introduction.

Theorem 4. Suppose G is a bridgeless graph with $\delta(G) \geq 3$ and $f_{1}, f_{2} \in E(G)$. Then G has a spanning even subgraph X with $f_{1}, f_{2} \in E(X)$.

Proof. We proceed by contradiction. Suppose the theorem is false and choose a counterexample G such that $\Delta=\Delta(G)$ is as small as possible and, subject to this condition, the number of vertices of G of degree Δ is as small as possible. Clearly G is 2-edge-connected.

We first show that G is cubic. Suppose $\Delta \geq 4$ and choose a vertex $v \in V$ with $d(v)=\Delta$. By Theorem 3 we can choose two edges $e_{1}=x_{1} v, e_{2}=x_{2} v \in E$ incident to v such that the graph $G_{v}^{e_{1}, e_{2}}$ is 2-edge-connected, see Figure 2(i). Thus

Figure 2:
the graph G_{1} obtained from $G_{v}^{e_{1}, e_{2}}$ by adding the new edge $v v^{\prime}$ is 2-edge-connected, see Figure 2(ii). By induction G_{1} has a spanning even subgraph X_{1} containing f_{1}, f_{2}. If $v v^{\prime} \notin E\left(X_{1}\right)$, then $x_{1} v^{\prime}, x_{2} v^{\prime} \in E\left(X_{1}\right)$ and we let $X=\left(X_{1}-v^{\prime}\right)+\left\{x_{1} v, x_{2} v\right\}$. On the other hand, if $v v^{\prime} \in E\left(X_{1}\right)$, then relabelling if necessary, we have $x_{1} v^{\prime} \in E\left(X_{1}\right)$ and $x_{2} v^{\prime} \notin E\left(X_{1}\right)$ and we let $X=X_{1}-v^{\prime}+x_{1} v$. In both cases X is a spanning even subgraph of G containing f_{1}, f_{2}. This contradicts the choice of G.

Thus G is cubic. By a well known strengthening of Petersen's Theorem, see for example Plesník [10], G has a 2 -factor containing f_{1}, f_{2}. This again contradicts the choice of G.

Notice that we cannot obtain a similar strengthening of Theorem 2. In the graphs drawn in Figure 3, every spanning even subgraph which contains e_{1}, e_{2} has a 4-cycle as a component. (We know of no other example of a 3 -connected graph G of order at least five and edges e_{1}, e_{2} with the property that all spanning even subgraphs of G which contain e_{1}, e_{2} have a component of order at most four.)

Figure 3:

We will show, however, that we can find an even subgraph X with $\sigma(X) \geq 5$ which contains two specified edges e_{1}, e_{2} in a 3 -connected graph G as long as e_{1}, e_{2} are incident to a common vertex of degree three. Indeed, we need this stronger statement for our inductive proof.

Theorem 5. Let G be a 3-edge-connected graph with n vertices, u_{2} be a vertex of G with $d\left(u_{2}\right)=3$, and $e_{1}=u_{1} u_{2}, e_{2}=u_{2} u_{3}$ be edges of G. (We allow the possibility that $u_{1}=u_{3}$.) Then G has a spanning even subgraph X with $\left\{e_{1}, e_{2}\right\} \subset E(X)$ and $\sigma(X) \geq \min \{n, 5\}$.

Proof. Suppose the theorem is false and choose a counterexample G such that:
(a) $\Delta=\Delta(G)$ is as small as possible;
(b) subject to (a), the number of vertices of degree Δ in G is as small as possible;
(c) subject to (a) and (b), $|E(G)|$ is as small as possible.

Claim 1. $\Delta \leq 4$.

Proof. Suppose $\Delta \geq 5$ and let x be a vertex with $d(x)=\Delta$. By Theorem 3, there exist two edges $f_{1}=x y_{1}, f_{2}=x y_{2} \in E(x)$ such that the graph $G^{\prime}=G-$ $\left\{f_{1}, f_{2}\right\}+y_{1} y_{2}$ is 3 -edge-connected. Note that, since $d\left(u_{2}\right)=3, u_{2} \neq x$. Furthermore, since G^{\prime} is 3-edge-connected, we cannot have $y_{1}=y_{2}=u_{2}$ and $u_{1}=u_{3}=x$ so $\left\{e_{1}, e_{2}\right\} \neq\left\{f_{1}, f_{2}\right\}$. Relabelling if necessary, we may suppose that $e_{1} \notin\left\{f_{1}, f_{2}\right\}$. Let $e_{2}^{\prime}=y_{1} y_{2}$ if $e_{2} \in\left\{f_{1}, f_{2}\right\}$, and otherwise let $e_{2}^{\prime}=e_{2}$. By induction, G^{\prime} has a spanning even subgraph X^{\prime} such that $\left\{e_{1}, e_{2}^{\prime}\right\} \subset E\left(X^{\prime}\right)$ and $\sigma\left(X^{\prime}\right) \geq \min \left\{n^{\prime}, 5\right\}$. Then X^{\prime} readily gives rise to the required even subgraph of G.

Claim 2. G is essentially 4-edge-connected.
Proof. Suppose that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is an essential 3-edge-cut in G. Let $G_{1}^{\prime}, G_{2}^{\prime}$ be the two components of $G-\left\{f_{1}, f_{2}, f_{3}\right\}$ and let $G_{1}=G / G_{2}^{\prime}$ and $G_{2}=G / G_{1}^{\prime}$. We denote by f_{i}^{j} the edge in G_{j} corresponding to f_{i} for $1 \leq i \leq 3$ and $1 \leq j \leq 2$.

By symmetry, we may assume that $u_{2} \in V\left(G_{1}^{\prime}\right)$. Let e_{1}^{1}, e_{2}^{1} be the edges of G_{1} corresponding to e_{1}, e_{2}, respectively. By induction, G_{1} has a spanning even subgraph X_{1} such that $\left\{e_{1}^{1}, e_{2}^{1}\right\} \subset E\left(X_{1}\right)$ and $\sigma\left(X_{1}\right) \geq \min \left\{n_{1}, 5\right\}$. By symmetry, we may suppose that:

$$
E\left(X_{1}\right) \cap\left\{f_{1}^{1}, f_{2}^{1}, f_{3}^{1}\right\}=\left\{f_{1}^{1}, f_{2}^{1}\right\} .
$$

By induction, G_{2} has a spanning even subgraph X_{2} such that $\left\{f_{1}^{2}, f_{2}^{2}\right\} \subset E\left(X_{2}\right)$ and $\sigma\left(X_{2}\right) \geq \min \left\{n_{2}, 5\right\}$. Then $\left(\left(X_{1}-\left[G_{2}^{\prime}\right]\right) \cup\left(X_{2}-\left[G_{1}^{\prime}\right]\right)+\left\{f_{1}, f_{2}\right\}\right.$ is the required spanning even subgraph of G.

Claim 3. No edge of G is incident to two vertices of degree four.
Proof. Suppose there is an edge $f=x y$ incident to two vertices of degree four. Then $G_{1}=G-f$ is 3-edge-connected by Claim 2. Since $d\left(u_{2}\right)=3, f \notin\left\{e_{1}, e_{2}\right\}$. By induction, G_{1} has a spanning even subgraph X such that $\left\{e_{1}, e_{2}\right\} \subset E(X)$ and $\sigma(X) \geq \min \left\{n_{1}, 5\right\}$. Then X is the required subgraph of G.

Claim 4. G is simple and hence $u_{1} \neq u_{3}$.
Proof. This follows easily from Claims 1, 2 and 3.

Claim 5. Let x be a vertex of G of degree four and $f_{1}, f_{2} \in E(x)$. Then the graph G^{\prime} obtained from $G_{x}^{f_{1}, f_{2}}$ by adding the edge $x x^{\prime}$ is 3-edge-connected.

Proof. This follows easily from Claim 2.
Claim 6. G is cubic.
Proof. Suppose that G has a vertex x of degree four. Let $N(x)=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ and $f_{i}=x z_{i}$. Let G^{\prime} be the graph obtained from $G_{x}^{f_{2}, f_{3}}$ by adding the edge $x x^{\prime}$. See Figure 4(i),(ii). Since $d\left(u_{2}\right)=3, u_{2} \neq x$. By induction, G^{\prime} has a spanning

Figure 4:
even subgraph X^{\prime} such that $\left\{e_{1}, e_{2}\right\} \subset X^{\prime}$ and $\sigma\left(X^{\prime}\right) \geq 5$. Then $x x^{\prime} \in E\left(X^{\prime}\right)$; otherwise X^{\prime} gives rise to the required subgraph of G. Let C^{\prime} be the component of X^{\prime} passing through $x x^{\prime}$. Since $X=X^{\prime} / x x^{\prime}$ is a spanning even subgraph of G containing $\left\{e_{1}, e_{2}\right\}, C=C^{\prime} / x x^{\prime}$ has exactly four vertices; otherwise X would be the required subgraph of G. Since G is simple, C is a 4-cycle.

Suppose C contained three vertices in $N(x)$, say z_{1}, z_{2}, z_{3}. Then, since each neighbour of x has degree three by Claim 3, the edges joining C and $G-C$ form a 3-edge-cut of G. See Figure 4(iii)-(iv). Claim 2 now implies that $G-C$ has exactly one vertex, and hence G is a wheel on five vertices. Since the theorem holds for the wheel on five vertices this gives a contradiction.

Thus C contains exactly two vertices in $N(x)$, one from $\left\{z_{1}, z_{4}\right\}$ and one from $\left\{z_{2}, z_{3}\right\}$. Relabelling if necessary we may suppose that $C=x z_{1} w_{1} z_{2} x$. See Figure $4(\mathrm{v})$-(vi). Since $\left\{e_{1}, e_{2}\right\} \subset E(X)$ we have,

$$
\begin{equation*}
\left\{e_{1}, e_{2}\right\} \subset E(C) \text { or }\left\{e_{1}, e_{2}\right\} \cap E(C)=\emptyset . \tag{1}
\end{equation*}
$$

Let $G^{\prime \prime}$ be the graph obtained from $G_{x}^{f_{3}, f_{4}}$ by adding the edge $x x^{\prime \prime}$, where $x^{\prime \prime}$ is the vertex of degree two which is 'split' from x in $G_{x}^{f_{3}, f_{4}}$. See Figure 5(i). We may

Figure 5:
apply the above argument to $G^{\prime \prime}$, and relabel z_{1} and z_{2}, and z_{3} and z_{4} if necessary, to deduce that G has a spanning even subgraph Y with $\left\{e_{1}, e_{2}\right\} \subset E(Y)$, and such that $D=x z_{2} w_{2} z_{3} x$ is a component of Y. If $w_{1}=w_{2}$, then since $z_{1} x, z_{1} w_{1} \notin$ $E(Y)$ and $d_{G}\left(z_{1}\right)=3$ we would have $z_{1} \notin V(Y)$, see Figure $5($ ii). This would contradict the fact that Y is a spanning even subgraph of G. Thus $w_{1} \neq w_{2}$. See Figure 5 (iii). Since $z_{1} x, z_{2} w_{1} \notin E(Y)$ we have $\left\{z_{1} x, z_{2} w_{1}\right\} \cap\left\{e_{1}, e_{2}\right\}=\emptyset$. Now (1) implies that $E(C) \cap\left\{e_{1}, e_{2}\right\}=\emptyset$. Since $d_{G}\left(z_{1}\right)=3$ and $z_{1} x \notin E(Y)$, the component of Y containing z_{1} passes through the edge $z_{1} w_{1}$. See Figure 5(iv). Hence $Y-\left\{z_{1} w_{1}, z_{2} x\right\}+\left\{w_{1} z_{2}, z_{1} x\right\}$ is the required even subgraph of G.

Claim 7. G is triangle-free.
Proof. This follows immediately from Claims 2 and 6.

Claim 8. G contains no 4-cycles.
Proof. Suppose $C=x_{1} x_{2} x_{3} x_{4} x_{1}$ is a 4 -cycle in G. For $1 \leq i \leq 4$, let y_{i} be the neighbour of x_{i} in $G-C$. Let $G^{*}=G-\left\{x_{3}, x_{4}\right\}+\left\{x_{1} y_{3}, x_{2} y_{4}\right\}$. See Figure 7(i),(ii). We abuse notation somewhat by labeling the edges $x_{1} y_{3}$ and $x_{2} y_{4}$ in G^{*} with the same labels as $x_{3} y_{3}$ and $x_{2} y_{2}$, respectively, in G. Thus $E\left(G^{*}\right) \subseteq E(G)$.

Suppose G^{*} has a 2-edge-cut $\{e, f\}$. If $x_{1} x_{2} \notin\{e, f\}$ then $\{e, f\}$ would be a 2 -edge-cut of G and would contradict the hypothesis that G is 3 -edge-connected. Relabeling if necessary, we may suppose that $e=x_{1} x_{2}$ and $f=z_{1} z_{2}$. See Figure 6. By Claim 2, neither $\left\{x_{1} y_{1}, x_{3} y_{3}, f\right\}$ nor $\left\{x_{2} y_{2}, x_{4} y_{4}, f\right\}$ are essential 3-edge-cuts of

Figure 6:
G. This implies that $y_{1}=y_{3}=z_{1}, y_{2}=y_{4}=z_{2}$, and hence that G is isomorphic to the complete bipartite graph $K_{3,3}$. Since the theorem holds for $K_{3,3}$, this gives a contradiction.

Thus G^{*} is 3 -edge-connected. Consider the following three cases.
Case $1 E(C) \cap\left\{e_{1}, e_{2}\right\}=\emptyset$.
By induction, G^{*} has a 2 -factor F^{*} such that $\left\{e_{1}, e_{2}\right\} \subset F^{*}$ and $\sigma\left(F^{*}\right) \geq \min \left\{n^{*}, 5\right\}$.
Suppose F^{*} passes through the edge $x_{1} x_{2}$. If F^{*} contains $x_{1} y_{1}, x_{2} y_{2}$, then the set of edges $\left(E\left(F^{*}\right)-\left\{x_{1} x_{2}\right\}\right) \cup\left\{x_{1} x_{4}, x_{4} x_{3}, x_{3} x_{2}\right\}$ induces the required 2-factor of G. See Figure 7(iii),(iv). A similar contradiction can be obtained if F^{*} contains $x_{1} y_{1}, x_{2} y_{4}$, or $x_{1} y_{3}, x_{2} y_{2}$, or $x_{1} y_{3}, x_{2} y_{4}$.

Thus $x_{1} x_{2} \notin E\left(F^{*}\right)$. Let F be the subgraph of G induced by $E\left(F^{*}\right) \cup\left\{x_{1} x_{2}, x_{3} x_{4}\right\}$. Then F is a 2-factor of G containing $\left\{e_{1}, e_{2}\right\}$. See Figure 7(v)-(vi). Let D_{1}, D_{2} be the cycles of F passing through $x_{1} x_{2}$ and $x_{3} x_{4}$, respectively. (We allow the possibility $D_{1}=D_{2}$.) If neither D_{1} nor D_{2} is a 4-cycle, then F is the required 2-factor

Figure 7:
of G. Hence either D_{1} or D_{2} is a 4-cycle, and so $D_{1} \neq D_{2}$. We may now deduce that the set of edges $E\left(F^{*}\right) \cup\left\{x_{1} x_{4}, x_{3} x_{2}\right\}$ induces the required 2-factor of G, see Figure 7(vii).

Case $2\left\{e_{1}, e_{2}\right\} \subset E(C)$.
By symmetry, we may assume that $e_{1}=x_{1} x_{4}$ and $e_{2}=x_{4} x_{3}$. Let $e_{1}^{*}=x_{1} x_{2}$ and $e_{2}^{*}=x_{2} y_{2}$ in G^{*}. By induction, G^{*} has a 2 -factor F^{*} such that $\left\{e_{1}^{*}, e_{2}^{*}\right\} \subset E\left(F^{*}\right)$ and $\sigma\left(F^{*}\right) \geq \min \left\{n^{*}, 5\right\}$. If $x_{1} y_{1} \in E\left(F^{*}\right)$, then $\left(E\left(F^{*}\right)-\left\{x_{1} x_{2}\right\}\right) \cup\left\{x_{1} x_{4}, x_{4} x_{3}, x_{3} x_{2}\right\}$ induces the required 2 -factor of G. See Figure 7(iii)-(iv). Thus $x_{1} y_{3} \in E\left(F^{*}\right)$, and $\left(E\left(F^{*}\right)-\left\{x_{1} x_{2}\right\}\right) \cup\left\{x_{2} x_{1}, x_{1} x_{4}, x_{4} x_{3}\right\}$ induces the required 2-factor of G. See Figure 8 .

Figure 8:

Case $3\left|E(C) \cap\left\{e_{1}, e_{2}\right\}\right|=1$.
By symmetry, we may assume that $e_{1}=y_{1} x_{1}$ and $e_{2}=x_{1} x_{2}$. Let $e_{2}^{*}=x_{1} y_{3}$. By
induction, G^{*} has a 2-factor F^{*} such that $\left\{e_{1}, e_{2}^{*}\right\} \subset E\left(F^{*}\right)$ and $\sigma\left(F^{*}\right) \geq \min \left\{n^{*}, 5\right\}$. See Figure 7(v). Then $E\left(F^{*}\right) \cup\left\{x_{1} x_{2}, x_{3} x_{4}\right\}$ induces a 2-factor F of G with $\left\{e_{1}, e_{2}\right\} \subset$ $E(F)$. See Figure 7(vi). Since G is a counterexample to the theorem, F must contain a 4 -cycle C^{\prime}. Since $\sigma\left(F^{*}\right) \geq \min \left\{n^{*}, 5\right\}, C^{\prime}$ passes through $x_{1} x_{2}$ or $x_{3} x_{4}$. If the first alternative holds then C^{\prime} is a 4 -cycle of G with $\left\{e_{1}, e_{2}\right\} \subset E\left(C^{\prime}\right)$. If the second alternative holds then C^{\prime} is a 4-cycle of G with $\left\{e_{1}, e_{2}\right\} \cap E\left(C^{\prime}\right)=\emptyset$. We can now obtain a contradiction by returning to Case 1 or 2 with C replaced by C^{\prime}.

We can now complete the proof of the theorem. By the above-mentioned strengthening of Petersen's theorem, G has a 2-factor F with $\left\{e_{1}, e_{2}\right\} \subset E(F)$. Since G has girth at least $5, \sigma(F) \geq 5$.

Proof of Theorem 2

We use induction on the number of edges of G. If $G-e$ is 3 -edge-connected for some $e \in E(G)$ then we are through by induction. Thus $G-e$ is not 3 -edge-connected for all $e \in E(G)$. By a result of Mader [8, Lemma 13], G has a vertex u_{2} of degree three. We can now choose a pair of edges incident to u_{2} and apply Theorem 5 .

4 Closing Remarks

The construction illustrated in Figure 9 shows that there exists an infinite family of 3 -edge-connected, essentially 4 -edge-connected graphs G in which every spanning even subgraph has a component with at most five vertices. To see this let X be a spanning even subgraph of G. Since u, v have degree three in G we have $d_{X}(u)=$ $2=d_{X}(v)$. Hence, by symmetry, we may suppose that X contains at most one edge from $\left\{e_{1}, e_{2}\right\}$. If X contains exactly one edge from $\left\{e_{1}, e_{2}\right\}$, then X must also contain exactly one of f_{1}, f_{2} and exactly one of g_{1}, g_{2}. The fact that every 2 -factor of the Petersen graph contains a 5-cycle now implies that $X \cap H_{2}$ contains a 5-cycle. Thus we may assume that $E(X) \cap\left\{e_{1}, e_{2}\right\}=\emptyset$. Then either $E(X) \cap\left\{f_{1}, f_{2}\right\}=\emptyset$ or $\left\{f_{1}, f_{2}\right\} \subset E(X)$. In both cases we have that $X \cap H_{1}$ contains a 5 -cycle. Thus $\sigma(X) \leq 5$.

Figure 9:

As mentioned in the Introduction, Chen and Lai [1] conjecture that every 3-edge-connected, essentially 5-edge-connected graph has a spanning connected even subgraph. We propose the following problem which is significantly weaker than their conjecture.

Problem 6. Does there exist an unbounded function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every 3-edge-connected, essentially 6 -edge-connected graph G has a spanning even subgraph X with $\sigma(X) \geq f(n)$?

One could also ask whether a cubic graph with high cyclic edge-connectivity must contain a 2 -factor in which all cycles are long.

Problem 7. Is there a value of k for which there exists an unbounded function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that every cyclically k-edge-connected cubic graph G has a 2 -factor X with $\sigma(X) \geq g(n)$?

Kochol [6, Theorem10.5] has constructed an infinite family of cyclically 6 -edgeconnected cubic graphs in which every 2 -factor has at least $\lfloor n / 118\rfloor$ components.

One of these components must therefore be a cycle of length at most 118. Hence we must take $k \geq 7$ to have an affirmative answer to Problem 7.

Acknowledgement We would like to thank an anonymous referee for suggesting the second example in Figure 3 and also for comments which significantly improved the presentation of this paper.

References

[1] Z. H. Chen and H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics-a survey, Combinatorics and Graph Theory'95, Vol. 1 (Hefei), 5369, World Sci. Publishing, River Edge, NJ, 1995.
[2] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000)
[3] H. Fleischner, Spanning Eulerian subgraphs, the splitting lemma, and Petersen's theorem, Disc. Math. 101 (1992) 33-37.
[4] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2-factors of line graphs, Discrete Math. 307 (2007), 2775-2785.
[5] F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B 26 (1979) 205-216.
[6] M. Kochol, Superposition and constructions of graphs without nowhere-zero k flows, European J. Combin. (2002) 23, 281-306.
[7] E. Máčajová and M. Škoviera, Constructing hypohamiltonian snarks with cyclic connectivity 5 and 6, Electronic J. Combin. 14 (2007), R18.
[8] W. Mader, A reduction method for edge-connectivity in graphs, Ann. Discrete Math. 3 (1978), 145-164.
[9] J. Petersen, Die Theorie der regulären Graphs, Acta Math. 15 (1891) 193-220.
[10] J. Plesník, Connectivity of regular graphs and the existence of 1-factors, Mat. Časopis Sloven. Akad. Vied 22 (1972), 310-318.
[11] S. Zhan, On hamiltonian line graphs and connectivity, Discrete Math. 89 (1991) 89-95.

[^0]: ${ }^{1}$ This research was carried out while the second author was visiting Queen Mary, University of London.

