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Abstract

By Petersen’s theorem, a bridgeless cubic graph has a 2-factor. H. Fleis-
chner extended this result to bridgeless graphs of minimum degree at least
three by showing that every such graph has a spanning even subgraph. Our
main result is that, under the stronger hypothesis of 3-edge-connectivity, we
can find a spanning even subgraph in which every component has at least five
vertices. We show that this is in some sense best possible by constructing
an infinite family of 3-edge-connected graphs in which every spanning even
subgraph has a 5-cycle as a component.

Introduction

A classical result of Petersen [9] is that every bridgeless cubic graph has a 2-factor.

This result has been extended in many directions. A related question of Thomassen,

see [7], is whether there exists a positive integer k such that every cyclically k-edge-

connected cubic graph has a connected 2-factor i.e. a Hamilton cycle. (The Coxeter

graph shows that we must take £ > 8 to have an affirmative answer to this question.)

We will consider the weaker property of having a 2-factor which contains no short

cycles. We show that every 3-edge-connected cubic graph has a 2-factor in which

all cycles have length at least five. We also show that our result is best possible by

constructing an infinite family of cyclically 4-edge-connected cubic graphs in which

every 2-factor has a cycle of length five.

! This research was carried out while the second author was visiting Queen Mary, University of

London.



We shall in fact consider a more general problem. Fleischner [3] extended the
above mentioned result of Petersen to bridgeless graphs of minimum degree at least
three, by showing that every such graph has a spanning even subgraph i.e. a span-
ning subgraph in which each vertex has positive even degree. Jaeger [5] showed
that every 4-edge-connected graph has a connected spanning even subgraph. Zhan
[11] showed that the same conclusion holds for 3-edge-connected, essentially 7-edge-
connected graphs and Chen and Lai [1] conjecture that this result can be extended
to 3-edge-connected, essentially 5-edge-connected graphs. We will be concerned
with the weaker property of having a spanning even subgraph which has no small

components. In this context, we proved the following result in [4].

Theorem 1. Fvery bridgeless simple graph G with minimum degree at least three

has a spanning even subgraph in which each component has at least four vertices.

The same conclusion need not hold for graphs which are not simple. Consider

a bridgeless graph H with minimum degree at least 3, which contains a 3-edge cut

{e1,e2,e3}. Let G be obtained from H by inserting either a vertex incident to a

loop, or two vertices joined by a multiple edge, or a triangle with one edge replaced

by a multiple edge, into each edge e;, 1 < i < 3, see Figure 1. Then every spanning
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Figure 1:
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even subgraph of G contains at least one of the inserted loops, multiple edges, or
triangles.
We will show, however, that Theorem 1 can be strengthened when we consider

3-edge-connected graphs.

Theorem 2. Let G be a 3-edge-connected graph with n vertices. Then G has a

spanning even subgraph in which each component has at least min{n, 5} vertices.
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The Petersen graph is an example of a 3-edge-connected, essentially 4-edge-
connected graph in which every spanning even subgraph has a component with five

vertices. We give an infinite family of such graphs in Section 4.

2 Notation and Preliminary Results

All graphs considered are finite and may contain loops and multiple edges. We refer
to graphs without loops and multiple edges as simple graphs. A graph is said to
be even if every vertex has positive even degree. All notation and terminology not
explained in this paper is given in [2].

The set of neighbours of a vertex x in a graph G is denoted by Ng(z), or simply
N(z), and the degree of x by dg(z), or d(z). The set of edges incident to x is
denoted by E(x). For a connected subgraph H of G, we denote by G/H the graph
obtained from G by contracting every edge in H and use [H] to denote the vertex of
G/H corresponding to H. The maximum and minimum degrees of G' are denoted
by A(G) and §(G), respectively. We refer to the number of vertices in a graph as
its order. We consistently use n to denote the order of a graph GG and extend this
notation using subscripts and superscripts. Thus we denote the order of a graph G|
by n}. We use 0(G) to represent the minimum order of a component of G.

An edge-cut S in a graph G is said to be essential, or cyclic, if at least two
components of G — S contain edges, respectively cycles. The graph G is essentially
k-edge-connected, or cyclically k-edge-connected, if all essential, respectively cyclic,
edge-cuts of G have at least k edges.

Given two distinct edges e; = vxy,es = v incident to a vertex v in a graph
G, let G¢°2 be the graph obtained from G — {ej,e2} by adding a new vertex v’
and new edges v’ and zov’. We say that G¢1°> has been obtained by splitting the
vertex v. We will abuse notation somewhat by labeling the edges z1v" and 20" as
e; and eq, respectively, so that E(GS-?) = E(G). We will need the following result

on splitting in k-edge-connected graphs due to Mader [8, Theorem 10].

Theorem 3 ([8]). Let G be a k-edge-connected graph, v € V(G) with d(v) > k + 2.



Then there exist edges ey, es € E(v) such that GE+°* is homeomorphic to a k-edge-

connected graph.

3 Even Subgraphs

We first prove a slight strengthening of the result of Fleischner mentioned in the

Introduction.

Theorem 4. Suppose G is a bridgeless graph with §(G) > 3 and fi, fo € E(QG).
Then G has a spanning even subgraph X with fi, fo € E(X).

Proof. We proceed by contradiction. Suppose the theorem is false and choose a
counterexample G such that A = A(G) is as small as possible and, subject to this
condition, the number of vertices of G of degree A is as small as possible. Clearly
G is 2-edge-connected.

We first show that G is cubic. Suppose A > 4 and choose a vertex v € V
with d(v) = A. By Theorem 3 we can choose two edges e; = xjv,65 = 290 € E

incident to v such that the graph G&°* is 2-edge-connected, see Figure 2(i). Thus

Figure 2:

the graph G obtained from G2 by adding the new edge vv' is 2-edge-connected,
see Figure 2(ii). By induction GG; has a spanning even subgraph X containing fi, fo.
If vv' ¢ E(X), then 10/, 290" € E(X;) and we let X = (X; — ') + {z1v, z9v}. On
the other hand, if v’ € E(X;), then relabelling if necessary, we have z1v' € E(X))
and zov' € E(X;) and we let X = X; — v/ + zyv. In both cases X is a spanning
even subgraph of GG containing f1, fo. This contradicts the choice of G.

Thus G is cubic. By a well known strengthening of Petersen’s Theorem, see for
example Plesnik [10], G has a 2-factor containing f1, fo. This again contradicts the
choice of G. 0



Notice that we cannot obtain a similar strengthening of Theorem 2. In the graphs
drawn in Figure 3, every spanning even subgraph which contains e;, e; has a 4-cycle
as a component. (We know of no other example of a 3-connected graph G of order
at least five and edges ey, e5 with the property that all spanning even subgraphs of

G which contain ey, e; have a component of order at most four.)
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Figure 3:

We will show, however, that we can find an even subgraph X with o(X) > 5
which contains two specified edges eq, e5 in a 3-connected graph G as long as eq, €5
are incident to a common vertex of degree three. Indeed, we need this stronger

statement for our inductive proof.

Theorem 5. Let G be a 3-edge-connected graph with n vertices, us be a vertex of
G with d(ug) = 3, and e; = ujug, es = ugug be edges of G. (We allow the possibility
that u; = us.) Then G has a spanning even subgraph X with {e1,ea} C E(X) and
o(X) > min{n,5}.

Proof. Suppose the theorem is false and choose a counterexample G such that:
(a) A = A(G) is as small as possible;
(b) subject to (a), the number of vertices of degree A in G is as small as possible;

(c) subject to (a) and (b), |E(G)] is as small as possible.

Claim 1. A <4.



Proof. Suppose A > 5 and let x be a vertex with d(z) = A. By Theorem 3,
there exist two edges f1 = xy1, fo = xys € E(x) such that the graph G’ = G —
{f1, f2} + 112 is 3-edge-connected. Note that, since d(uz) = 3, us # . Furthermore,
since G’ is 3-edge-connected, we cannot have y; = yo = up and u; = ug3 = = so
{e1,e2} # {f1, f2}. Relabelling if necessary, we may suppose that e; & {f1, fo}. Let
eh, = 1y1y9 if es € {f1, fo}, and otherwise let €}, = e5. By induction, G’ has a spanning
even subgraph X’ such that {e;,e}} € E(X’) and o(X’) > min{n’,5}. Then X’

readily gives rise to the required even subgraph of G. [
Claim 2. G is essentially 4-edge-connected.

Proof. Suppose that {f1, f2, f3} is an essential 3-edge-cut in G. Let G|, G} be the
two components of G — { f1, fa2, f3} and let G; = G/G), and Gy = G/G. We denote
by ff the edge in G; corresponding to f; for 1 <7 <3 and 1 <j < 2.

By symmetry, we may assume that uy € V(G)). Let e}, el be the edges of
(G corresponding to e, eq, respectively. By induction, G; has a spanning even
subgraph X such that {ej,el} C F(X;) and o(X;) > min{n;,5}. By symmetry,

we may suppose that:

By induction, G5 has a spanning even subgraph X, such that {f2, f2} C E(X3)
and o(X3) > min{ny, 5}. Then ((X; — [G5]) U (X2 — [G]]) + {f1, fo} is the required
spanning even subgraph of G. ]

Claim 3. No edge of G is incident to two vertices of degree four.

Proof. Suppose there is an edge f = xy incident to two vertices of degree four.
Then G; = G — f is 3-edge-connected by Claim 2. Since d(ug) = 3, f ¢ {e1,ea}.
By induction, G has a spanning even subgraph X such that {ej,es} C E(X) and
o(X) > min{ny,5}. Then X is the required subgraph of G. O

Claim 4. G is simple and hence uy # ug.
Proof. This follows easily from Claims 1, 2 and 3. O]
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Claim 5. Let x be a vertex of G of degree four and fi, fo € E(x). Then the graph

G’ obtained from GI1/2 by adding the edge xa' is S-edge-connected.
Proof. This follows easily from Claim 2. O
Claim 6. G is cubic.

Proof. Suppose that G has a vertex x of degree four. Let N(z) = {z1, 22, 23, 24}
and f; = zz;. Let G’ be the graph obtained from GJ2/* by adding the edge zx’.

See Figure 4(i),(ii). Since d(ug) = 3, us # z. By induction, G’ has a spanning

22

Figure 4:

even subgraph X’ such that {e;,es} € X’ and o(X’) > 5. Then za’ € E(X');
otherwise X’ gives rise to the required subgraph of G. Let C’ be the component
of X' passing through za’. Since X = X'/xz’ is a spanning even subgraph of GG
containing {ey, ea}, C' = C’"/xa’ has exactly four vertices; otherwise X would be the
required subgraph of GG. Since G is simple, C' is a 4-cycle.

Suppose C' contained three vertices in N(z), say zi,22,23. Then, since each
neighbour of x has degree three by Claim 3, the edges joining C' and G — C' form a
3-edge-cut of G. See Figure 4(iii)-(iv). Claim 2 now implies that G — C' has exactly
one vertex, and hence G is a wheel on five vertices. Since the theorem holds for the

wheel on five vertices this gives a contradiction.



Thus C contains exactly two vertices in N(z), one from {21, 24} and one from
{22, 23}. Relabelling if necessary we may suppose that C' = zzjwizex. See Fig-

ure 4(v)-(vi). Since {e1,e2} C E(X) we have,
{e1,e2} C E(C) or {e1,ea} NE(C) = 0. (1)

Let G” be the graph obtained from G/*/4 by adding the edge za”, where 2" is

the vertex of degree two which is ‘split’ from z in GJ*#4. See Figure 5(i). We may

Figure 5:

apply the above argument to G”, and relabel z; and 2o, and 23 and z if necessary,
to deduce that G has a spanning even subgraph Y with {e;,e2} C E(Y'), and such
that D = zz9wsz3x is a component of Y. If w; = wy, then since zix, zyw; &
E(Y) and dg(z1) = 3 we would have z; ¢ V(Y), see Figure 5(ii). This would
contradict the fact that Y is a spanning even subgraph of G. Thus w; # ws. See
Figure 5(iii). Since z1x, 20wy ¢ E(Y) we have {z1x, z0w1} N {e1,e2} = 0. Now
(1) implies that E(C) N {e;,ea} = 0. Since dg(z) = 3 and zx ¢ E(Y), the
component of Y containing z; passes through the edge zjw;. See Figure 5(iv).

Hence Y — {zjwy, 222} + {w129, 212} is the required even subgraph of G. O
Claim 7. G is triangle-free.

Proof. This follows immediately from Claims 2 and 6. m



Claim 8. G contains no 4-cycles.

Proof. Suppose C' = xx9x32421 is a 4-cycle in G. For 1 < ¢ < 4, let y; be the
neighbour of z; in G — C. Let G* = G —{x3, 24} + {x1y3, x2ys}. See Figure 7(i),(ii).
We abuse notation somewhat by labeling the edges x1y3 and x5y, in G* with the
same labels as z3y3 and zoys, respectively, in G. Thus F(G*) C E(G).

Suppose G* has a 2-edge-cut {e, f}. If z129 & {e, f} then {e, f} would be a
2-edge-cut of G and would contradict the hypothesis that G is 3-edge-connected.
Relabeling if necessary, we may suppose that e = zyx9 and f = 2125. See Figure 6.

By Claim 2, neither {z1y1, x3ys, f} nor {xays, z4y4, f} are essential 3-edge-cuts of

Figure 6:

G. This implies that y; = y3 = 21, ¥y2 = ya = 29, and hence that G is isomorphic
to the complete bipartite graph K3 3. Since the theorem holds for Kj 3, this gives a
contradiction.

Thus G* is 3-edge-connected. Consider the following three cases.
Case 1 E(C)Nn{ey,ea} = 0.
By induction, G* has a 2-factor F** such that {e;,es} C F* and o(F*) > min{n*,5}.

Suppose F™* passes through the edge xixo. If F* contains z1yq, x2y2, then the
set of edges (E(F*) — {z122}) U {124, 2423, x322} induces the required 2-factor of
G. See Figure 7(iii),(iv). A similar contradiction can be obtained if F* contains
L1Y1, T2Y4, OF T1Y3, T2Y2, O T1Y3, Tals.

Thus z129 ¢ E(F™*). Let F be the subgraph of G induced by E(F*)U{x122, x324}.
Then F' is a 2-factor of G containing {e;,es}. See Figure 7(v)-(vi). Let D, Dy be
the cycles of F' passing through z25 and x3x4, respectively. (We allow the possi-

bility Dy = Ds.) If neither Dy nor Dy is a 4-cycle, then F' is the required 2-factor



Y4 Y2

Y1 y3 Ya V2

(vii)

Figure 7:

of G. Hence either D; or D, is a 4-cycle, and so Dy # D;. We may now deduce
that the set of edges E(F™*) U {z124, x322} induces the required 2-factor of G, see
Figure 7(vii).

Case 2 {e1,e5} C E(C).

By symmetry, we may assume that e; = z124 and e; = x423. Let e] = 2125 and
el = xays in G*. By induction, G* has a 2-factor F* such that {e},es} C E(F*) and
o(F*) > min{n*,5}. If zyy; € E(F*), then (E(F*) — {x122}) U {x124, T423, T322}
induces the required 2-factor of G. See Figure 7(iii)-(iv). Thus zyy3 € E(F*), and
(E(F*) — {x129}) U {wox1, 1124, x423} induces the required 2-factor of G. See Fig-

ure 8.

Figure 8:

Case 3 |E(C) N{ep,ex}| = 1.

By symmetry, we may assume that e; = y;21 and es = x129. Let €5 = 21y3. By
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induction, G* has a 2-factor F** such that {e;,e3} C E(F*) and o(F*) > min{n*,5}.
See Figure 7(v). Then E(F*)U{x122, z3x4} induces a 2-factor F' of G with {e1,es} C
E(F). See Figure 7(vi). Since G is a counterexample to the theorem, F' must con-
tain a 4-cycle C’. Since o(F*) > min{n*,5}, C’ passes through z x5 or z3z4. If the
first alternative holds then C” is a 4-cycle of G with {e1,es} C E(C"). If the second
alternative holds then C” is a 4-cycle of G with {ej,e2} N E(C") = (). We can now

obtain a contradiction by returning to Case 1 or 2 with C' replaced by C". m

We can now complete the proof of the theorem. By the above-mentioned strength-
ening of Petersen’s theorem, G has a 2-factor F' with {e;,es} C E(F). Since G has
girth at least 5, o(F) > 5. O

Proof of Theorem 2

We use induction on the number of edges of G. If G — e is 3-edge-connected for some
e € F(G) then we are through by induction. Thus G — e is not 3-edge-connected
for all e € E(G). By a result of Mader [8, Lemma 13], G has a vertex uy of degree

three. We can now choose a pair of edges incident to us and apply Theorem 5. [J

4 Closing Remarks

The construction illustrated in Figure 9 shows that there exists an infinite family
of 3-edge-connected, essentially 4-edge-connected graphs GG in which every spanning
even subgraph has a component with at most five vertices. To see this let X be a
spanning even subgraph of G. Since u, v have degree three in G we have dx(u) =
2 = dx(v). Hence, by symmetry, we may suppose that X contains at most one
edge from {ej,es}. If X contains exactly one edge from {e;, e}, then X must also
contain exactly one of fi, fo and exactly one of gy, go. The fact that every 2-factor
of the Petersen graph contains a 5-cycle now implies that X N H, contains a 5-cycle.
Thus we may assume that E(X) N {ej,ea} = 0. Then either E(X)N{f1, fo} =0
or {f1, fa} € E(X). In both cases we have that X N H; contains a 5-cycle. Thus
o(X) <5.
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Figure 9:

As mentioned in the Introduction, Chen and Lai [1] conjecture that every 3-
edge-connected, essentially 5-edge-connected graph has a spanning connected even
subgraph. We propose the following problem which is significantly weaker than their

conjecture.

Problem 6. Does there ezist an unbounded function f : N — N such that every 3-

edge-connected, essentially 6-edge-connected graph G has a spanning even subgraph

X with o(X) > f(n)?

One could also ask whether a cubic graph with high cyclic edge-connectivity

must contain a 2-factor in which all cycles are long.

Problem 7. Is there a value of k for which there exists an unbounded function
g : N — N such that every cyclically k-edge-connected cubic graph G has a 2-factor
X with o(X) > g(n)?

Kochol [6, Theorem10.5] has constructed an infinite family of cyclically 6-edge-

connected cubic graphs in which every 2-factor has at least |n/118] components.
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One of these components must therefore be a cycle of length at most 118. Hence we

must take k£ > 7 to have an affirmative answer to Problem 7.
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