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Abstract

By Petersen’s theorem, a bridgeless cubic graph has a 2-factor. H. Fleis-
chner extended this result to bridgeless graphs of minimum degree at least
three by showing that every such graph has a spanning even subgraph. Our
main result is that, under the stronger hypothesis of 3-edge-connectivity, we
can find a spanning even subgraph in which every component has at least five
vertices. We show that this is in some sense best possible by constructing
an infinite family of 3-edge-connected graphs in which every spanning even
subgraph has a 5-cycle as a component.

1 Introduction

A classical result of Petersen [9] is that every bridgeless cubic graph has a 2-factor.

This result has been extended in many directions. A related question of Thomassen,

see [7], is whether there exists a positive integer k such that every cyclically k-edge-

connected cubic graph has a connected 2-factor i.e. a Hamilton cycle. (The Coxeter

graph shows that we must take k ≥ 8 to have an affirmative answer to this question.)

We will consider the weaker property of having a 2-factor which contains no short

cycles. We show that every 3-edge-connected cubic graph has a 2-factor in which

all cycles have length at least five. We also show that our result is best possible by

constructing an infinite family of cyclically 4-edge-connected cubic graphs in which

every 2-factor has a cycle of length five.
1This research was carried out while the second author was visiting Queen Mary, University of

London.
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We shall in fact consider a more general problem. Fleischner [3] extended the

above mentioned result of Petersen to bridgeless graphs of minimum degree at least

three, by showing that every such graph has a spanning even subgraph i.e. a span-

ning subgraph in which each vertex has positive even degree. Jaeger [5] showed

that every 4-edge-connected graph has a connected spanning even subgraph. Zhan

[11] showed that the same conclusion holds for 3-edge-connected, essentially 7-edge-

connected graphs and Chen and Lai [1] conjecture that this result can be extended

to 3-edge-connected, essentially 5-edge-connected graphs. We will be concerned

with the weaker property of having a spanning even subgraph which has no small

components. In this context, we proved the following result in [4].

Theorem 1. Every bridgeless simple graph G with minimum degree at least three

has a spanning even subgraph in which each component has at least four vertices.

The same conclusion need not hold for graphs which are not simple. Consider

a bridgeless graph H with minimum degree at least 3, which contains a 3-edge cut

{e1, e2, e3}. Let G be obtained from H by inserting either a vertex incident to a

loop, or two vertices joined by a multiple edge, or a triangle with one edge replaced

by a multiple edge, into each edge ei, 1 ≤ i ≤ 3, see Figure 1. Then every spanning

e1

e2

e3
H G

Figure 1:

even subgraph of G contains at least one of the inserted loops, multiple edges, or

triangles.

We will show, however, that Theorem 1 can be strengthened when we consider

3-edge-connected graphs.

Theorem 2. Let G be a 3-edge-connected graph with n vertices. Then G has a

spanning even subgraph in which each component has at least min{n, 5} vertices.
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The Petersen graph is an example of a 3-edge-connected, essentially 4-edge-

connected graph in which every spanning even subgraph has a component with five

vertices. We give an infinite family of such graphs in Section 4.

2 Notation and Preliminary Results

All graphs considered are finite and may contain loops and multiple edges. We refer

to graphs without loops and multiple edges as simple graphs. A graph is said to

be even if every vertex has positive even degree. All notation and terminology not

explained in this paper is given in [2].

The set of neighbours of a vertex x in a graph G is denoted by NG(x), or simply

N(x), and the degree of x by dG(x), or d(x). The set of edges incident to x is

denoted by E(x). For a connected subgraph H of G, we denote by G/H the graph

obtained from G by contracting every edge in H and use [H] to denote the vertex of

G/H corresponding to H. The maximum and minimum degrees of G are denoted

by ∆(G) and δ(G), respectively. We refer to the number of vertices in a graph as

its order. We consistently use n to denote the order of a graph G and extend this

notation using subscripts and superscripts. Thus we denote the order of a graph G′
1

by n′
1. We use σ(G) to represent the minimum order of a component of G.

An edge-cut S in a graph G is said to be essential, or cyclic, if at least two

components of G − S contain edges, respectively cycles. The graph G is essentially

k-edge-connected, or cyclically k-edge-connected, if all essential, respectively cyclic,

edge-cuts of G have at least k edges.

Given two distinct edges e1 = vx1, e2 = vx2 incident to a vertex v in a graph

G, let Ge1,e2
v be the graph obtained from G − {e1, e2} by adding a new vertex v′

and new edges x1v
′ and x2v

′. We say that Ge1,e2
v has been obtained by splitting the

vertex v. We will abuse notation somewhat by labeling the edges x1v
′ and x2v

′ as

e1 and e2, respectively, so that E(Ge1,e2
v ) = E(G). We will need the following result

on splitting in k-edge-connected graphs due to Mader [8, Theorem 10].

Theorem 3 ([8]). Let G be a k-edge-connected graph, v ∈ V (G) with d(v) ≥ k + 2.
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Then there exist edges e1, e2 ∈ E(v) such that Ge1,e2
v is homeomorphic to a k-edge-

connected graph.

3 Even Subgraphs

We first prove a slight strengthening of the result of Fleischner mentioned in the

Introduction.

Theorem 4. Suppose G is a bridgeless graph with δ(G) ≥ 3 and f1, f2 ∈ E(G).

Then G has a spanning even subgraph X with f1, f2 ∈ E(X).

Proof. We proceed by contradiction. Suppose the theorem is false and choose a

counterexample G such that ∆ = ∆(G) is as small as possible and, subject to this

condition, the number of vertices of G of degree ∆ is as small as possible. Clearly

G is 2-edge-connected.

We first show that G is cubic. Suppose ∆ ≥ 4 and choose a vertex v ∈ V

with d(v) = ∆. By Theorem 3 we can choose two edges e1 = x1v, e2 = x2v ∈ E

incident to v such that the graph Ge1,e2
v is 2-edge-connected, see Figure 2(i). Thus

G - v

...

v

x1 x2

G - v

...

v

x1 x2

G - v

...

v

x1 x2

G - v

...

v

x1 x2

v'

(i) (ii)
Gv

e1,e2
G1

v'

Figure 2:

the graph G1 obtained from Ge1,e2
v by adding the new edge vv′ is 2-edge-connected,

see Figure 2(ii). By induction G1 has a spanning even subgraph X1 containing f1, f2.

If vv′ ̸∈ E(X1), then x1v
′, x2v

′ ∈ E(X1) and we let X = (X1 − v′) + {x1v, x2v}. On

the other hand, if vv′ ∈ E(X1), then relabelling if necessary, we have x1v
′ ∈ E(X1)

and x2v
′ ̸∈ E(X1) and we let X = X1 − v′ + x1v. In both cases X is a spanning

even subgraph of G containing f1, f2. This contradicts the choice of G.

Thus G is cubic. By a well known strengthening of Petersen’s Theorem, see for

example Plesńık [10], G has a 2-factor containing f1, f2. This again contradicts the

choice of G.
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Notice that we cannot obtain a similar strengthening of Theorem 2. In the graphs

drawn in Figure 3, every spanning even subgraph which contains e1, e2 has a 4-cycle

as a component. (We know of no other example of a 3-connected graph G of order

at least five and edges e1, e2 with the property that all spanning even subgraphs of

G which contain e1, e2 have a component of order at most four.)

e2

e1

(i) (ii)

e1

e2

Figure 3:

We will show, however, that we can find an even subgraph X with σ(X) ≥ 5

which contains two specified edges e1, e2 in a 3-connected graph G as long as e1, e2

are incident to a common vertex of degree three. Indeed, we need this stronger

statement for our inductive proof.

Theorem 5. Let G be a 3-edge-connected graph with n vertices, u2 be a vertex of

G with d(u2) = 3, and e1 = u1u2, e2 = u2u3 be edges of G. (We allow the possibility

that u1 = u3.) Then G has a spanning even subgraph X with {e1, e2} ⊂ E(X) and

σ(X) ≥ min{n, 5}.

Proof. Suppose the theorem is false and choose a counterexample G such that:

(a) ∆ = ∆(G) is as small as possible;

(b) subject to (a), the number of vertices of degree ∆ in G is as small as possible;

(c) subject to (a) and (b), |E(G)| is as small as possible.

Claim 1. ∆ ≤ 4.
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Proof. Suppose ∆ ≥ 5 and let x be a vertex with d(x) = ∆. By Theorem 3,

there exist two edges f1 = xy1, f2 = xy2 ∈ E(x) such that the graph G′ = G −

{f1, f2}+y1y2 is 3-edge-connected. Note that, since d(u2) = 3, u2 ̸= x. Furthermore,

since G′ is 3-edge-connected, we cannot have y1 = y2 = u2 and u1 = u3 = x so

{e1, e2} ̸= {f1, f2}. Relabelling if necessary, we may suppose that e1 ̸∈ {f1, f2}. Let

e′2 = y1y2 if e2 ∈ {f1, f2}, and otherwise let e′2 = e2. By induction, G′ has a spanning

even subgraph X ′ such that {e1, e
′
2} ⊂ E(X ′) and σ(X ′) ≥ min{n′, 5}. Then X ′

readily gives rise to the required even subgraph of G.

Claim 2. G is essentially 4-edge-connected.

Proof. Suppose that {f1, f2, f3} is an essential 3-edge-cut in G. Let G′
1, G

′
2 be the

two components of G−{f1, f2, f3} and let G1 = G/G′
2 and G2 = G/G′

1. We denote

by f j
i the edge in Gj corresponding to fi for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2.

By symmetry, we may assume that u2 ∈ V (G′
1). Let e1

1, e
1
2 be the edges of

G1 corresponding to e1, e2, respectively. By induction, G1 has a spanning even

subgraph X1 such that {e1
1, e

1
2} ⊂ E(X1) and σ(X1) ≥ min{n1, 5}. By symmetry,

we may suppose that:

E(X1) ∩ {f 1
1 , f 1

2 , f 1
3} = {f1

1 , f 1
2}.

By induction, G2 has a spanning even subgraph X2 such that {f 2
1 , f 2

2} ⊂ E(X2)

and σ(X2) ≥ min{n2, 5}. Then ((X1 − [G′
2])∪ (X2 − [G′

1]) + {f1, f2} is the required

spanning even subgraph of G.

Claim 3. No edge of G is incident to two vertices of degree four.

Proof. Suppose there is an edge f = xy incident to two vertices of degree four.

Then G1 = G − f is 3-edge-connected by Claim 2. Since d(u2) = 3, f /∈ {e1, e2}.

By induction, G1 has a spanning even subgraph X such that {e1, e2} ⊂ E(X) and

σ(X) ≥ min{n1, 5}. Then X is the required subgraph of G.

Claim 4. G is simple and hence u1 ̸= u3.

Proof. This follows easily from Claims 1, 2 and 3.
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Claim 5. Let x be a vertex of G of degree four and f1, f2 ∈ E(x). Then the graph

G′ obtained from Gf1,f2
x by adding the edge xx′ is 3-edge-connected.

Proof. This follows easily from Claim 2.

Claim 6. G is cubic.

Proof. Suppose that G has a vertex x of degree four. Let N(x) = {z1, z2, z3, z4}

and fi = xzi. Let G′ be the graph obtained from Gf2,f3
x by adding the edge xx′.

See Figure 4(i),(ii). Since d(u2) = 3, u2 ̸= x. By induction, G′ has a spanning

z3
x

(i)

z1

z2

z3

z4

x

x'z1

z4

z2

(ii)

x

x'z1

z4

z2

z3

(iii) (iv)

xz1

z2

z3

z4

CC'

x

x'z1

z4

z2

z3

(v) (vi)

xz1

z2

z3

z4

w1

C

w1

C'

Figure 4:

even subgraph X ′ such that {e1, e2} ⊂ X ′ and σ(X ′) ≥ 5. Then xx′ ∈ E(X ′);

otherwise X ′ gives rise to the required subgraph of G. Let C ′ be the component

of X ′ passing through xx′. Since X = X ′/xx′ is a spanning even subgraph of G

containing {e1, e2}, C = C ′/xx′ has exactly four vertices; otherwise X would be the

required subgraph of G. Since G is simple, C is a 4-cycle.

Suppose C contained three vertices in N(x), say z1, z2, z3. Then, since each

neighbour of x has degree three by Claim 3, the edges joining C and G − C form a

3-edge-cut of G. See Figure 4(iii)-(iv). Claim 2 now implies that G−C has exactly

one vertex, and hence G is a wheel on five vertices. Since the theorem holds for the

wheel on five vertices this gives a contradiction.
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Thus C contains exactly two vertices in N(x), one from {z1, z4} and one from

{z2, z3}. Relabelling if necessary we may suppose that C = xz1w1z2x. See Fig-

ure 4(v)-(vi). Since {e1, e2} ⊂ E(X) we have,

{e1, e2} ⊂ E(C) or {e1, e2} ∩ E(C) = ∅. (1)

Let G′′ be the graph obtained from Gf3,f4
x by adding the edge xx′′, where x′′ is

the vertex of degree two which is ‘split’ from x in Gf3,f4
x . See Figure 5(i). We may

x

z1

x" z3

z4
(i)

z2w1

xz1

x" z3

z4
(ii)

z2
w1=w2

C

xz1

x" z3

z4(iii)

z2w1
w2

D
C

D'

(iv)

xz1

z2

z3

z4

C

w1 w2

Figure 5:

apply the above argument to G′′, and relabel z1 and z2, and z3 and z4 if necessary,

to deduce that G has a spanning even subgraph Y with {e1, e2} ⊂ E(Y ), and such

that D = xz2w2z3x is a component of Y . If w1 = w2, then since z1x, z1w1 ̸∈

E(Y ) and dG(z1) = 3 we would have z1 ̸∈ V (Y ), see Figure 5(ii). This would

contradict the fact that Y is a spanning even subgraph of G. Thus w1 ̸= w2. See

Figure 5(iii). Since z1x, z2w1 ̸∈ E(Y ) we have {z1x, z2w1} ∩ {e1, e2} = ∅. Now

(1) implies that E(C) ∩ {e1, e2} = ∅. Since dG(z1) = 3 and z1x ̸∈ E(Y ), the

component of Y containing z1 passes through the edge z1w1. See Figure 5(iv).

Hence Y − {z1w1, z2x} + {w1z2, z1x} is the required even subgraph of G.

Claim 7. G is triangle-free.

Proof. This follows immediately from Claims 2 and 6.
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Claim 8. G contains no 4-cycles.

Proof. Suppose C = x1x2x3x4x1 is a 4-cycle in G. For 1 ≤ i ≤ 4, let yi be the

neighbour of xi in G−C. Let G∗ = G−{x3, x4}+ {x1y3, x2y4}. See Figure 7(i),(ii).

We abuse notation somewhat by labeling the edges x1y3 and x2y4 in G∗ with the

same labels as x3y3 and x2y2, respectively, in G. Thus E(G∗) ⊆ E(G).

Suppose G∗ has a 2-edge-cut {e, f}. If x1x2 ̸∈ {e, f} then {e, f} would be a

2-edge-cut of G and would contradict the hypothesis that G is 3-edge-connected.

Relabeling if necessary, we may suppose that e = x1x2 and f = z1z2. See Figure 6.

By Claim 2, neither {x1y1, x3y3, f} nor {x2y2, x4y4, f} are essential 3-edge-cuts of

G

f

x1

x2

x3

x4

y1

y2

y3

y4 z2

z1

G*

x1

x2

y1

y2

y3

y4

f

z2

z1

Figure 6:

G. This implies that y1 = y3 = z1, y2 = y4 = z2, and hence that G is isomorphic

to the complete bipartite graph K3,3. Since the theorem holds for K3,3, this gives a

contradiction.

Thus G∗ is 3-edge-connected. Consider the following three cases.

Case 1 E(C) ∩ {e1, e2} = ∅.

By induction, G∗ has a 2-factor F ∗ such that {e1, e2} ⊂ F ∗ and σ(F ∗) ≥ min{n∗, 5}.

Suppose F ∗ passes through the edge x1x2. If F ∗ contains x1y1, x2y2, then the

set of edges (E(F ∗) − {x1x2}) ∪ {x1x4, x4x3, x3x2} induces the required 2-factor of

G. See Figure 7(iii),(iv). A similar contradiction can be obtained if F ∗ contains

x1y1, x2y4, or x1y3, x2y2, or x1y3, x2y4.

Thus x1x2 /∈ E(F ∗). Let F be the subgraph of G induced by E(F ∗)∪{x1x2, x3x4}.

Then F is a 2-factor of G containing {e1, e2}. See Figure 7(v)-(vi). Let D1, D2 be

the cycles of F passing through x1x2 and x3x4, respectively. (We allow the possi-

bility D1 = D2.) If neither D1 nor D2 is a 4-cycle, then F is the required 2-factor
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G G*

x1 x2 x1 x2 x1 x2

x3 x4

x1 x2

x3 x4

x1 x2 x1 x2

x3 x4

x1 x2

x3 x4

(i) (ii) (iii) (iv)

(v) (vi) (vii)

y1 y2

y1 y2y3 y4 y1 y2y3 y4y1 y2y3 y4

y1 y2y3 y4 y1 y2y3 y4 y1 y2

Figure 7:

of G. Hence either D1 or D2 is a 4-cycle, and so D1 ̸= D2. We may now deduce

that the set of edges E(F ∗) ∪ {x1x4, x3x2} induces the required 2-factor of G, see

Figure 7(vii).

Case 2 {e1, e2} ⊂ E(C).

By symmetry, we may assume that e1 = x1x4 and e2 = x4x3. Let e∗1 = x1x2 and

e∗2 = x2y2 in G∗. By induction, G∗ has a 2-factor F ∗ such that {e∗1, e∗2} ⊂ E(F ∗) and

σ(F ∗) ≥ min{n∗, 5}. If x1y1 ∈ E(F ∗), then (E(F ∗) − {x1x2}) ∪ {x1x4, x4x3, x3x2}

induces the required 2-factor of G. See Figure 7(iii)-(iv). Thus x1y3 ∈ E(F ∗), and

(E(F ∗) − {x1x2}) ∪ {x2x1, x1x4, x4x3} induces the required 2-factor of G. See Fig-

ure 8.

x1 x2 x1 x2

x3 x4

y1 y2y3 y4y1 y2y3 y4

Figure 8:

Case 3 |E(C) ∩ {e1, e2}| = 1.

By symmetry, we may assume that e1 = y1x1 and e2 = x1x2. Let e∗2 = x1y3. By
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induction, G∗ has a 2-factor F ∗ such that {e1, e
∗
2} ⊂ E(F ∗) and σ(F ∗) ≥ min{n∗, 5}.

See Figure 7(v). Then E(F ∗)∪{x1x2, x3x4} induces a 2-factor F of G with {e1, e2} ⊂

E(F ). See Figure 7(vi). Since G is a counterexample to the theorem, F must con-

tain a 4-cycle C ′. Since σ(F ∗) ≥ min{n∗, 5}, C ′ passes through x1x2 or x3x4. If the

first alternative holds then C ′ is a 4-cycle of G with {e1, e2} ⊂ E(C ′). If the second

alternative holds then C ′ is a 4-cycle of G with {e1, e2} ∩ E(C ′) = ∅. We can now

obtain a contradiction by returning to Case 1 or 2 with C replaced by C ′.

We can now complete the proof of the theorem. By the above-mentioned strength-

ening of Petersen’s theorem, G has a 2-factor F with {e1, e2} ⊂ E(F ). Since G has

girth at least 5, σ(F ) ≥ 5.

Proof of Theorem 2

We use induction on the number of edges of G. If G−e is 3-edge-connected for some

e ∈ E(G) then we are through by induction. Thus G − e is not 3-edge-connected

for all e ∈ E(G). By a result of Mader [8, Lemma 13], G has a vertex u2 of degree

three. We can now choose a pair of edges incident to u2 and apply Theorem 5. ¤

4 Closing Remarks

The construction illustrated in Figure 9 shows that there exists an infinite family

of 3-edge-connected, essentially 4-edge-connected graphs G in which every spanning

even subgraph has a component with at most five vertices. To see this let X be a

spanning even subgraph of G. Since u, v have degree three in G we have dX(u) =

2 = dX(v). Hence, by symmetry, we may suppose that X contains at most one

edge from {e1, e2}. If X contains exactly one edge from {e1, e2}, then X must also

contain exactly one of f1, f2 and exactly one of g1, g2. The fact that every 2-factor

of the Petersen graph contains a 5-cycle now implies that X ∩H2 contains a 5-cycle.

Thus we may assume that E(X) ∩ {e1, e2} = ∅. Then either E(X) ∩ {f1, f2} = ∅

or {f1, f2} ⊂ E(X). In both cases we have that X ∩ H1 contains a 5-cycle. Thus

σ(X) ≤ 5.
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e1

e2

f1

f2

g1

g2

u

v

H2
H1

Figure 9:

As mentioned in the Introduction, Chen and Lai [1] conjecture that every 3-

edge-connected, essentially 5-edge-connected graph has a spanning connected even

subgraph. We propose the following problem which is significantly weaker than their

conjecture.

Problem 6. Does there exist an unbounded function f : N → N such that every 3-

edge-connected, essentially 6-edge-connected graph G has a spanning even subgraph

X with σ(X) ≥ f(n)?

One could also ask whether a cubic graph with high cyclic edge-connectivity

must contain a 2-factor in which all cycles are long.

Problem 7. Is there a value of k for which there exists an unbounded function

g : N → N such that every cyclically k-edge-connected cubic graph G has a 2-factor

X with σ(X) ≥ g(n)?

Kochol [6, Theorem10.5] has constructed an infinite family of cyclically 6-edge-

connected cubic graphs in which every 2-factor has at least ⌊n/118⌋ components.
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One of these components must therefore be a cycle of length at most 118. Hence we

must take k ≥ 7 to have an affirmative answer to Problem 7.
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[7] E. Máčajová and M. Škoviera, Constructing hypohamiltonian snarks with cyclic
connectivity 5 and 6, Electronic J. Combin. 14 (2007), R18.

[8] W. Mader, A reduction method for edge-connectivity in graphs, Ann. Discrete
Math. 3 (1978), 145–164.
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