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Roman Čada1∗ Shuya Chiba2† Kenta Ozeki3,4‡

Petr Vrána1§
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Abstract

In 1986, Thomassen posed the following conjecture; every 4-connected line

graph has a Hamiltonian cycle. As a possible approach to the conjecture, many

researchers have considered statements that are equivalent or related to it. One

of them is the conjecture by Bondy; there exists a constant c0 with 0 < c0 ≤ 1

such that every cyclically 4-edge-connected cubic graph H has a cycle of length

at least c0|V (H)|. It is known that Thomassen’s conjecture implies Bondy’s

conjecture, but nothing about the converse has been shown. In this paper, we

show that Bondy’s conjecture implies a slightly weaker version of Thomassen’s
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conjecture; every 4-connected line graph with minimum degree at least 5 has a

Hamiltonian cycle.

Keywords: Hamiltonian cycles, line graphs, Thomassen’s conjecture, dominating cy-

cles, Bondy’s conjecture,

1 Introduction

The motivation of this paper is the following well-known conjecture due to Thomassen.

Conjecture 1 (Thomassen [18]) Every 4-connected line graph has a Hamiltonian

cycle.

As a possible approach to Conjecture 1, many researchers have considered state-

ments that are equivalent or related to it. For example, Ryjáček [16] showed that

Conjecture 1 is equivalent to the conjecture by Matthews and Sumner [15] stating that

every 4-connected claw-free graph has a Hamiltonian cycle. The conjecture by Ash and

Jackson [1] stating that every cyclically 4-edge-connected cubic graph has a dominating

cycle, is also known to be equivalent to Conjecture 1, see the paper by Fleischner and

Jackson [8]. Recall that for an integer k, a graph G is called cyclically k-edge-connected

if deleting any k − 1 edges from G does not create two components having a cycle. A

dominating cycle C of a graph G is one such that for any edge e of G, at least one

of the end vertices of e is contained in C. See [3, 7, 13, 14, 17] for other results and

conjectures, and also a survey [5].

In addition to those conjectures that are equivalent to Conjecture 1, it is known

that Conjecture 1 implies the following conjecture.

Conjecture 2 (Bondy, see [8]) There exists a constant c0 with 0 < c0 ≤ 1 such that

every cyclically 4-edge-connected cubic graph H has a cycle of length at least c0|V (H)|.

Proposition 3 If Conjecture 1 is true, then Conjecture 2 is also true.

For the proof of Proposition 3, see Section 3 in a survey [5]. Indeed, we can prove

Proposition 3, by combining the argument on the relation between line graphs and

preimage graphs (see Section 2 in this paper), the result in [8] (see Theorem 7 in this

paper), and an observation that every dominating cycle in a cubic graph G has length

at least 3
4
|V (G)|. (Recall that for a line graph G of a graph H, H is called the preimage

graph of G, or sometimes called the root graph of G.) Then if Conjecture 1 is true,

then Conjecture 2 is also true with c0 =
3
4
.

Although Proposition 3 holds, nothing about the converse has been shown. In fact,

the converse of Proposition 3 was posed in [5] as an open problem. In this paper, we

focus on this problem, and show that Conjecture 2 implies the following conjecture,

which is a slightly weaker version of Conjecture 1.

Conjecture 4 Every 4-connected line graph with minimum degree at least 5 has a

Hamiltonian cycle.
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Theorem 5 If Conjecture 2 is true, then Conjecture 4 is also true.

Zhan [20], and independently Jackson [11] proved that every 7-connected line graph

has a Hamiltonian cycle, and several researchers [10, 19] have shown results on Hamil-

tonicity of 6-connected line graphs with additional conditions on the set of vertices

of degree exactly 6. Recently, Kaiser and Vrána [12] improved this result by showing

that every 5-connected line graph with minimum degree at least 6 has a Hamiltonian

cycle. Theorem 5 suggests that Conjecture 2 is at least more difficult than the result

by Kaiser and Vrána [12].

This paper is organized as follows. In Section 2, we give several definitions and

lemmas for the proof of Theorem 5. The proof of Theorem 5 appears in Section 3, and

is divided into two theorems (Theorems 11 and 12). We will prove them in Sections 4

and 5, respectively. In the last section of this paper (Section 6), we give a conclusion

and open problems concerning Theorem 5.

2 Preliminaries

In this paper, we consider only finite graphs that may have multiple edges, but no

loops. For terminology and notation not defined in this paper, we refer readers to [6].

Let H be a graph. A closed trail T in H is called a dominating closed trail in H

if for any edge e of H, at least one of the end vertices of e is contained in T . (Note

that in case that T is a cycle, we call T a dominating cycle.) In [9], it is shown that

for a connected graph H with |E(H)| ≥ 3, H has a dominating closed trail if and only

if the line graph of H has a Hamiltonian cycle. For a closed trail T in a graph H,

domH(T ) denotes the number of edges e in H such that at least one of the end vertices

of e is contained in T . Specifically, T is a dominating closed trail in H if and only if

domH(T ) = |E(H)|.
An edge-cut of a graph H is an inclusionwise minimal set of edges whose removal

makes H disconnected. An essential edge-cut X (resp. cyclic edge-cut) of a graph

H is an edge-cut such that H − X has exactly two components of orders at least 2

(resp. exactly two components having a cycle). For a positive integer k, a graph H is

called essentially k-edge-connected if H has no essential edge-cut X with |X| ≤ k − 1.

It is known that a graph H is essentially k-edge-connected if and only if the line graph

of H is k-connected or H is a complete graph, see Section 3 in [5]. Recall that a graph

H is called cyclically k-edge-connected if H has no cyclic edge-cut X with |X| ≤ k− 1.

The edge degree of an edge e in a graph H is defined as the number of edges adjacent

with e. Hence the edge degree of e in H corresponds to the degree of e in the line graph

of H.

The above arguments directly imply that Conjecture 4 is equivalent to the following

conjecture.

Conjecture 6 Every essentially 4-edge-connected graph with minimum edge degree

at least 5 has a dominating closed trail.
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Let H be a graph. An edge e of H is called a pendant edge if one of the end

vertices of e has degree exactly 1 in H. For a vertex v in H, we denote, by degH(v) and

penH(v), the degree of v in H and the number of pendant edges that are incident with

v in H, respectively. For a vertex v of degree exactly 2 in a graph H, suppressing v is

an operation to replace the path u1vu2 in H by an edge connecting u1 and u2, where

u1 and u2 are the neighbors of v. Note that suppressing a vertex may create multiple

edges. For an integer k, we denote, by Vk(H), V≥k(H) and V≤k(H), the set of vertices

v of degree exactly k, at least k and at most k in H, respectively.

Let H be a graph and v ∈ V≥4(H), and let u1, u2, . . . , ud (d = degH(v)) be an

ordering of neighbors of v (we allow repetition in case of parallel edges). Then the

graph obtained from the disjoint union of H − v and the cycle Cv = v1v2 . . . vdv1 by

adding the edges uivi for each 1 ≤ i ≤ d is called an inflation of H at v. If δ(H) ≥ 3,

then, by successively taking an inflation at each vertex of degree greater than 3, we

obtain a cubic graph HI , called a cubic inflation of H. An inflation of a graph at a

vertex is not unique (since it depends on the ordering of neighbors of v) and it might

happen that the operation decreases the edge-connectivity of the graph. However, the

following was proven in [8].

Theorem 7 (Fleischner and Jackson [8]) Let H be an essentially 4-edge-connected

graph with δ(H) ≥ 3. Then some cubic inflation of H is cyclically 4-edge-connected.

We also need the following lemma in Section 4.

Lemma 8 Let H be an cyclically 4-edge-connected cubic graph. Let u1u2 and v1v2 be

two edges in H such that ui ̸= vj for i, j = 1, 2. Let H ′ be the graph obtained from

H by subdividing the edges u1u2 and v1v2, and adding a new edge connecting w and

z, where w and z are the vertices obtained by subdivision of the edges u1u2 and v1v2,

respectively. Then H ′ is also a cyclically 4-edge-connected cubic graph.

Proof of Lemma 8. Suppose not. Then there exists a cyclic edge-cut X ′ of H ′ with

|X ′| ≤ 3. Let X be the set of edges of H obtained from X ′ by deleting the edge wz,

replacing the edge wui with u1u2 for i = 1, 2, and replacing the edge zvj with v1v2 for

i = 1, 2, if X ′ contains them, respectively. Since X ′ is an edge-cut of H ′, it follows from

the construction of H ′ and X that X is an edge-cut of H. Since |X| ≤ |X ′| ≤ 3 and H

is cyclically 4-edge-connected, at least one component D of H − X cannot contain a

cycle. By the construction of X, H ′ −X ′ has the component D′ containing all vertices

in D. Since X ′ is a cyclic edge-cut of H ′, D′ has a cycle. However, since D contains

no cycle, we obtain w, z ∈ V (D′) and D′ has exactly one cycle, which passes through

the edge wz. In particular, D′ has exactly |V (D′)| edges, since D′ is connected and

has exactly one cycle. On the other hand, since ui ̸= vj for i, j = 1, 2, D′ has at least

four vertices, that is, w, z, ui and vj for some i, j = 1, 2. Hence

|X ′| =
∑

v∈V (D′)

degH′(v)− 2|E(D′)| = 3|V (D′)| − 2|V (D′)| ≥ 4,
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contradicting the assumption that |X ′| ≤ 3. This completes the proof of Lemma 8.

□

3 Proof of Theorem 5

The proof of Theorem 5 is divided into two parts. To do that, we need the following two

“intermediate” conjectures and two theorems, which might be interesting themselves,

see Section 6.

Conjecture 9 There exists a constant c1 with 0 < c1 ≤ 1 such that every essentially

4-edge-connected graph H has a closed trail T with domH(T ) ≥ c1|E(H)|.

Conjecture 10 There exists a constant c2 with 0 < c2 ≤ 1 such that every essentially

4-edge-connected graph H with minimum edge degree at least 5 has a closed trail T

with domH(T ) ≥ c2|E(H)|.

Theorem 11 If Conjecture 2 is true, then Conjecture 9 is also true.

Theorem 12 If Conjecture 10 is true, then Conjecture 4 is also true.

Here we prove Theorem 5 assuming Theorems 11 and 12. We will show Theorems

11 and 12 in Sections 4 and 5, respectively.

Proof of Theorem 5. Suppose that Conjecture 2 is true. Then by Theorem 11,

Conjecture 9 is also true, that is, there exists a constant c1 with 0 < c1 ≤ 1 such

that every essentially 4-edge-connected graph H has a closed trail T with domH(T ) ≥
c1|E(H)|. Indeed, the constant c1 satisfies that 0 < c1 ≤ 1 and every essentially 4-

edge-connected graph H with minimum edge degree at least 5 has a closed trail T with

domH(T ) ≥ c1|E(H)|. Hence Conjecture 10 is also true for c2 = c1. Then by Theorem

12, Conjecture 4 is true. □

4 Proof of Theorem 11

In order to prove Theorem 11, we further divide the proof into two parts, using the

following conjecture.

Conjecture 13 There exists a constant c′1 with 0 < c′1 ≤ 1 such that every essen-

tially 4-edge-connected graph H without vertices of degree 2 has a closed trail T with

domH(T ) ≥ c′1|E(H)|.

Theorem 14 If Conjecture 2 is true, then Conjecture 13 is also true.

Theorem 15 If Conjecture 13 is true, then Conjecture 9 is also true.
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It is easy to prove Theorem 11 assuming Theorems 14 and 15. Hence we omit the

proof of Theorem 11, and it is enough to prove Theorems 14 and 15.

Proof of Theorem 14. Suppose that Conjecture 2 is true. Then there exists a

constant c0 with 0 < c0 ≤ 1 such that every cyclically 4-edge-connected cubic graph H

has a cycle of length at least c0|V (H)|.
Let

c′1 =
c0
6
.

We will show that every essentially 4-edge-connected graphH without vertices of degree

2 has a closed trail T with domH(T ) ≥ c′1|E(H)|. Let H be an essentially 4-edge-

connected graph without vertices of degree 2. If H is a star, then the center of it can

form a closed trail T with domH(T ) = |E(H)|. Hence we may assume that H is not

a star. Let H0 be the graph obtained from H by deleting all pendant edges of H.

Note that H0 is essentially 4-edge-connected, and δ(H0) ≥ 3, since H has no vertices

of degree 2. Since H is essentially 4-edge-connected, penH(v) = 0 for v ∈ V3(H0);

Otherwise the set of edges in H0 incident with v is an essential edge-cut of size 3, a

contradiction. Notice also that for each v ∈ V (H), degH(v) = degH0
(v) + penH(v), in

particular, degH(v) = degH0
(v) if degH(v) = 3. This implies that

|E(H)| = |E(H0)|+
∑

v∈V≥4(H0)

penH(v). (1)

Now from H, we construct new graphs H1 and H2 as follows; First using Theorem 7

to H0, we obtain a cubic inflation H1 of H0 such that H1 is cyclically 4-edge-connected.

Clearly, |E(H1)| ≥ |E(H0)|. Let v ∈ V≥4(H0). Note that v corresponds to the cycle

Cv in H1 of length exactly degH0
(v). Let v1, v2, v3, v4 be four consecutive vertices of

Cv and let p = penH(v). We subdivide the edges v1v2 and v3v4 exactly p times, and

obtain the paths v1v1v2 . . . vpv
2 and v3vp+1vp+2 . . . v2pv

4, respectively. Then we add an

edge connecting vi and v2p+1−i for 1 ≤ i ≤ p. See Figure 1. We perform the above

operation to all vertices v in V≥4(H0), and let H2 be the obtained graph. Using Lemma

8 repeatedly (more precisely, using Lemma 8
∑

v∈V≥4(H0)
penH(v) times), we see that

H2 is a cyclically 4-edge-connected cubic graph.

Let Dv = V (Cv) ∪ {vi : 1 ≤ i ≤ 2p} for every vertex v ∈ V≥4(H0). For simplifying

the argument, we let Dv = {v} for a vertex v in V3(H0). Then for each vertex v in H0,

|Dv| =

{
degH0

(v) + 2 penH(v) if degH0
(v) ≥ 4,

1 if degH0
(v) = 3.

(2)

Clearly from the construction, for each v ∈ V≥4(H0), there are at least penH(v) edges

inside of Dv. Hence by equality (1),

|E(H2)| ≥ |E(H1)|+
∑

v∈V≥4(H0)

penH(v)

≥ |E(H0)|+
∑

v∈V≥4(H0)

penH(v) = |E(H)|. (3)
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v1

v2 v3

v4 v1

v2 v3

v4

v1

vp vp+1

v2p

H1 H2

Figure 1: A cubic inflation H1 of H0 and the graph H2.

Since H2 is a cubic graph,

|E(H2)| =
3

2
|V (H2)|. (4)

Since we assumed that Conjecture 2 is true, H2 has a cycle T2 of length at least

c0|V (H2)|, that is,

|V (T2)| ≥ c0|V (H2)|. (5)

Let UT2(H0) be the set of vertices v of H0 with Dv ∩V (T2) ̸= ∅. Note that V (T2) ⊂∪
v∈UT2

(H0)
Dv, and hence |V (T2)| ≤

∑
v∈UT2

(H0)
|Dv|. Let T be the subgraph of H

obtained from T2 by contracting all vertices inDv into one vertex for each v ∈ UT2(H0)∩
V≥4(H0) and deleting all loops (but we remain multiple edges if exist). Note that T is

a closed trail of H and V (T ) = UT2(H0). Since each edge is dominated by T from at

most two end vertices of it, we have 2 · domH(T ) ≥
∑

v∈V (T ) degH(v). Then it follows

from the above arguments and (in)equalities (2)–(5) that

domH(T ) ≥ 1

2

∑
v∈UT2

(H0)

degH(v)

=
1

2

∑
v∈UT2

(H0)∩V≥4(H0)

(
degH0

(v) + penH(v)
)
+

1

2

∑
v∈UT2

(H0)∩V3(H0)

degH0
(v)

≥ 1

4

∑
v∈UT2

(H0)∩V≥4(H0)

(
degH0

(v) + 2 penH(v)
)
+

3

2

∑
v∈UT2

(H0)∩V3(H0)

1

=
1

4

∑
v∈UT2

(H0)∩V≥4(H0)

|Dv|+
3

2

∑
v∈UT2

(H0)∩V3(H0)

|Dv|

≥ 1

4

∑
v∈UT2

(H0)

|Dv| ≥ 1

4
|V (T2)|

≥ c0
4
|V (H2)| =

c0
6
|E(H2)| ≥ c0

6
|E(H)| = c′1|E(H)|.

Then T is a closed trail ofH with domH(T ) ≥ c′1|E(H)|. This holds for every essentially
4-edge-connected graph H without vertices of degree 2, and hence Conjecture 13 is also

true. This completes the proof of Theorem 14. □
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Proof of Theorem 15. Suppose that Conjecture 13 is true. Then there exists a

constant c′1 with 0 < c′1 ≤ 1 such that every essentially 4-edge-connected graph H

without vertices of degree 2 has a closed trail T with domH(T ) ≥ c′1|E(H)|. Let

c1 =
c′1
2
.

Note that 0 < c1 ≤ 1. We will show that every essentially 4-edge-connected graph H

has a closed trail T with domH(T ) ≥ c1|E(H)|.
Let H be an essentially 4-edge-connected graph. We construct the new graph H̃ by

suppressing all vertices of degree 2 inH. Note that H̃ is an essentially 4-edge-connected

graph without vertices of degree 2. Hence by the assumption that Conjecture 13 is true,

H̃ has a closed trail T̃ with domH̃(T̃ ) ≥ c′1|E(H̃)|. We obtain the closed trail T of H by

subdividing all suppressed edges in T̃ . Note that domH(T ) ≥ domH̃(T̃ ). On the other

hand, since H is essentially 4-edge-connected, there are no two consecutive vertices of

degree 2 in H. Hence each edge of H̃ is obtained by suppressing a vertex of degree 2

in H at most once, and hence |E(H̃)| ≥ 1
2
|E(H)|. These imply that

domH(T ) ≥ domH̃(T̃ ) ≥ c′1|E(H̃)|

≥ c′1
2
|E(H)| = c1|E(H)|,

which completes the proof of Theorem 15. □

Remark: As mentioned before, combining Theorems 14 and 15, we obtain Theorem

11. Indeed, if Conjecture 2 is true for some c0, then Conjecture 9 is also true with

c1 =
1
12
c0.

5 Proof of Theorem 12

Proof of Theorem 12. By the argument in Section 2, it is enough to show that if

Conjecture 6 is false, then Conjecture 10 is also false. Suppose that Conjecture 6 is

false. Then there exists an essentially 4-edge-connected graph H with minimum edge

degree at least 5 such that H has no dominating closed trail. If there exists an edge

e of H connecting two vertices in V≤3(H), then the edge degree of e is at most 4,

contradicting the minimum edge degree condition on H. Hence there exists no such

an edge e of H, which implies that every vertex in V≤3(H) has a neighbor in V≥4(H).

Then if H has a closed trail T that passes through all vertices in V≥4(H), then T is

a dominating closed trail in H, contradicting the choice of H. Hence we have the

following claim.

Claim 1 For any closed trail T in H, there exists a vertex v in V≥4(H) such that v is

not visited by T .
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We construct an infinite sequence of graphs H0, H1, . . . as follows; Let H0 = H,

and take any vertex v in V≥4(H). For i ≥ 1, the graph Hi is obtained from Hi−1 and

|V≥4(Hi−1)| copies of H by identifying each vertex in V≥4(Hi−1) and the vertex v in a

copy of H. Since degH(v) ≥ 4, for i ≥ 0, Hi is an essentially 4-edge-connected graph

with minimum edge degree at least 5. Notice also that |V≥4(Hi)| = h · |V≥4(Hi−1)|,
where h := |V≥4(H)|. Since |V≥4(H0)| = h,

|V≥4(Hi)| = hi+1. (6)

For a graph H ′, let f≥4(H
′) be the maximum number of vertices v in V≥4(H

′) such

that v is visited by a closed trail T ′, where T ′ is taken over all closed trails in H ′. The

following plays a crucial role in the proof of Theorem 12.

Claim 2 f≥4(Hi) ≤ (h− 1)i+1.

Proof. First we show that f≥4(Hi) ≤ (h−1) ·f≥4(Hi−1). Let Ti be any closed trail in

Hi. Let Ti−1 be the closed trail in Hi−1 such that Ti−1 is the restriction of Ti on Hi−1.

By the definition of f≥4(Hi−1), Ti−1 visits at most f≥4(Hi−1) vertices in V≥4(Hi−1). Let

u be a vertex in V≥4(Hi−1) that is visited by Ti−1. By the above argument, we have at

most f≥4(Hi−1) choices for such a vertex u. Let Hu be the copy of H that is added to

u when we construct Hi from Hi−1, and let Tu be the closed trail in Hu such that Tu

is the restriction of Ti on Hu. By Claim 1, at most h − 1 vertices in V≥4(Hu) can be

visited by Tu. Hence Ti can visit at most (h− 1) · f≥4(Hi−1) vertices in V≥4(Hi). This

implies that f≥4(Hi) ≤ (h− 1) · f≥4(Hi−1).

Since f≥4(H0) ≤ h− 1 by Claim 1, we obtain f≥4(Hi) ≤ (h− 1)i+1. This completes

the proof of Claim 2. □

Now we are ready to show that Conjecture 10 does not hold. Let c2 be any constant

with 0 < c2 ≤ 1. Since

lim
i→∞

1 + (h− 1)i+1

1 + hi+1
= lim

i→∞

1
hi+1 +

(
1− 1

h

)i+1

1
hi+1 + 1

= 0,

there exists an integer i such that

1 + (h− 1)i+1

1 + hi+1
< c2. (7)

For a non-negative integer t, let Hi(t) be the graph obtained from Hi by adding t

pendant edges to all vertices in V≥4(Hi). Since we added pendant edges only to vertices

in V≥4(Hi), Hi(t) is still essentially 4-edge-connected, and moreover, the minimum edge

degree of Hi(t) is at least 5 if t ≥ 2. Note that
∣∣E(

Hi(t)
)∣∣ = |E(Hi)|+ t · |V≥4(Hi)|.

Let T be any closed trail in Hi(t). By the definition of f≥4(Hi), T can pass through

at most f≥4(Hi) vertices in V≥4(Hi). Hence T can dominate at most t · f≥4(Hi) added

pendant edges. This implies that for any closed trail T in Hi(t), we have domHi(t)(T ) ≤
|E(Hi)|+ t · f≥4(Hi).
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Let H ′ = Hi(m), where m = |E(Hi)|. Then by equality (6), Claim 2, and inequality

(7), for each closed trail T ′ in H ′,

domH′(T ′)

|E(H ′)|
≤ |E(Hi)|+m · f≥4(Hi)

|E(Hi)|+m · |V≥4(Hi)|

≤ 1 + (h− 1)i+1

1 + hi+1
< c2.

This means that for each constant c2 with 0 < c2 ≤ 1, there exists an essentially

4-edge-connected graph H ′ with minimum edge degree at least 5 such that any closed

trail T ′ in H ′ satisfies domH′(T ′) < c2|E(H ′)|. So Conjecture 10 does not hold. This

completes the proof of Theorem 12. □

Remark: In the proof of Theorem 12, assuming that Conjecture 6 is not true, we

construct, for each constant c2 with 0 < c2 ≤ 1, the graph H ′ with
domH′ (T ′)
|E(H′)| < c2. We

here point out that if Conjecture 6 is not true, the correct magnitude of domH′(T ′) is at

most |E(H ′)|α, where α = logh(h−1). Indeed, the proof of Theorem 12 also shows that

if Conjecture 6 is not true, then there exist infinitely many essentially 4-edge-connected

graphs H ′ with minimum edge degree at least 5 such that for any closed trail T ′ in H ′,

domH′(T ′) ∈ O
(
|E(H ′)|α

)
. Recall that h = |V≥4(H)| and H is a counterexample of

Conjecture 6.

It should be mentioned here that Blinski, Jackson, Ma, and Yu [2] recently showed

that every essentially 3-edge-connected graph H ′ has a closed trail T ′ with dom′
H(T

′) ≥( |E(H)|
12

)β
+ 2, where β ≈ 0.753, consider the preimage version of Theorem 1.2 in [2].

So, if Conjecture 6 is not true, the gap of bounds on domH′(T ′) between the essentially

4-edge-connected case and the essentially 3-edge-connected case would be only the

difference between α and β.

6 Conclusion and open problems

In this paper, we have shown that Conjecture 2 implies Conjecture 4, which is a weaker

version of Conjecture 1. Together with Proposition 3, we see the following situation;

Conjecture 1
Proposition 3

=========⇒ Conjecture 2
Theorem 5

========⇒ Conjecture 4

However, we do not know about the converse of these two implications. Indeed,

as mentioned in Section 1, the converse of Proposition 3 appeared in [5] as an open

problem. In addition to that, we left an open problem on the converse of Theorem 5.

Problem 16 Is Conjecture 4 equivalent to Conjecture 2, or moreover to Conjecture

1?

On the other hand, now we point out that Theorem 12 gives a corollary concerning

Conjecture 4. It shows the equivalence of Conjecture 4 and the following conjecture,

which is the line graph version of Conjecture 10, see Section 2. This corollary might

be interesting itself.
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Conjecture 17 There exists a constant c3 with 0 < c3 ≤ 1 such that every 4-connected

line graph G with δ(G) ≥ 5 has a cycle of length at least c3|V (G)|.

Corollary 18 Conjecture 4 is equivalent to Conjecture 17.

Proof. It is easy to see that if Conjecture 4 is true, then Conjecture 17 is also true

with c3 = 1. On the other hand, suppose that Conjecture 17 is true. Since Conjecture

10 is the preimage version of Conjecture 17, Conjecture 10 is also true with c2 = c3.

By Theorem 12, Conjecture 4 is also true. □

Thus, by Corollary 18, in order to solve Conjecture 4, instead of a Hamiltonian

cycle, it is enough to find a cycle of length c3 times the order of a given graph, even

for c3 = 1/1000000. We hope that Corollary 18 gives a step to solve Conjecture 4.

Now we consider the above situation for Conjecture 1. It is shown in [4] that

Conjecture 1 is equivalent to the following statement; there exists a function f such

that limn→∞
f(n)
n

= 0, and every 4-connected line graph of order n has a cycle of length

at least n − f(n). So, in order to solve Conjecture 1, it is enough to find a cycle of

length at least n − f(n) in 4-connected line graphs. However, we do not know if it

is enough to find a cycle of length linear on the order of a graph. Indeed, we can

consider the following conjecture, which is analogous to Conjecture 17 and seemingly

weaker than Conjecture 1. Considering Corollary 18, we expect that Conjecture 19 is

equivalent to Conjecture 1, and left it as an open problem.

Conjecture 19 There exists a constant c4 with 0 < c4 ≤ 1 such that every 4-connected

line graph G has a cycle of length at least c4|V (G)|.

Problem 20 Is Conjecture 19 equivalent to Conjecture 1?
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tractible subgraphs, Thomassen’s conjecture and the dominating cycle conjecture

for snarks, Discrete Math. 308 (2008) 6064–6077.

[4] H.J. Broersma, M. Kriesell, and Z. Ryjáček, On factors of 4-connected claw-free
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