Edge degrees and dominating cycles

Kiyoshi Yoshimoto^a

Department of Mathematics, College of Science and Technology Nihon University, Tokyo 101-8308, Japan

Abstract. The edge degree d(e) of the edge e = uv is defined as the number of neighbours of e, i.e., $|N(u) \cup N(v)| - 2$. Two edges are called remote if they are disjoint and there is no edge joining them. In this article, we prove that in a 2-connected graph G, if $d(e_1) + d(e_2) > |V(G)| - 4$ for any remote edges e_1, e_2 , then all longest cycles C in G are dominating, i.e., G - V(C) is edgeless. This lower bound is best possible.

As a corollary, it holds that if G is a 2-connected triangle-free graph with $\sigma_2(G) > |V(G)|/2$, then all longest cycles are dominating.

1 Introduction

The order of a simple graph G is denoted by n throughout this article, and a cycle C is called *dominating* if G - V(C) is a stable set. Nash-Williams [13] showed that if G is 2-connected and $\delta(G) \ge (n+2)/3$, then all longest cycles of G are dominating. Bondy generalized this fact as follows. Let

$$\sigma_k(G) = \min\{\sum_{i \le k} d(x_i) \mid x_1, x_2, \dots, x_k \text{ are independent vertices in } G\}.$$

Theorem 1 (Bondy [6]). Let G be a 2-connected graph. If $\sigma_3(G) \ge n+2$, then all longest cycles in G are dominating.

For studying dominating cycles in triangle-free graphs, an invariant called an edge degree is useful, and it seems essential. The edge degree d(e) of an edge e = uvis defined as the number of neighbours of e, i.e., $|N(u) \cup N(v)| - 2$. Two edges are called *remote* if they are disjoint and there is no edge joining them. Veldman [15] proved a k-connected graph has a dominating cycle if $\sum_{l\leq k} d(e_l) > k(n-k)/2$ for any k + 1 mutually remote edges e_0, e_1, \ldots, e_k . Yamashita [17] improved this result by replacing the sufficient condition with the existence of three edges e_0, e_1, e_2 such that $\sum_{l\leq 2} d(e_l) > n-2$ in any k+1 mutually remote edges.

For the existence of a longest cycle which is dominating, the following fact holds.

Theorem 2 (Broersma, Yoshimoto and Zhang [7]). Let G be a 2-connected graph. If $d(e_0) + d(e_1) + d(e_2) > n - 2$ for any mutually remote edges e_0, e_1, e_2 , then G contains a longest cycle which is dominating.

^aSupported by JSPS. KAKENHI (14740087)

The lower bound in Theorem 2 is best possible. Consider the vertex disjoint graphs $K_{m_1,k_1}, K_{m_2,k_2}, K_{m_3,k_3}$ and $\overline{K_2} = \{x, y\}$, and let X_i and Y_i be the partite sets of K_{m_i,k_i} . Then the graph

$$H_1 = K_{m_1,k_1} \cup K_{m_2,k_2} \cup K_{m_3,k_3} \cup \overline{K_2} \cup \{xx' \mid x' \in \bigcup_{i \le 3} X_i\} \cup \{yy' \mid y' \in \bigcup_{i \le 3} Y_i\}$$

has no dominating cycle, and the degree sum of any three mutually remote edges is n-2. See Figure 1.

Figure 1:

The purpose of this article is to establish the following.

Theorem 3. Let G be a 2-connected graph. If $d(e_1) + d(e_2) > n - 4$ for any remote edges e_1, e_2 , then all longest cycles in G are dominating.

The lower bound in Theorem 3 is also best possible. Consider the graphs K_{m_4,k_4} and K_{m_5,k_5} , where $|X_i| \ge 2$ and $|Y_i| = |X_i| + 2$, and let $\{y_1^i, y_2^i, y_3^i\} \subset Y_i$ for i = 4, 5. Then the graph

$$H_2 = K_{m_4,k_4} \cup K_{m_5,k_5} \cup \{y_1^4 y_1^5, y_2^4 y_2^5, y_3^4 y_3^5\}$$

has a longest cycle which is not dominating and the minimum edge degree is (n - 4)/2. See Figure 2. The graphs H_1 and H_2 generalize the examples due to Ash and Jackson in [1].

Ore [14] showed that the circumference of a 2-connected graph is at least σ_2 or the graph is hamiltonian. In the same way, can we measure the circumference using edge degrees? For this question, we have the following conjecture.

Conjecture 4. If G is a 1-tough graph, then the circumference of G is at least

 $2 + \min\{d(e_1) + d(e_2) \mid e_1, e_2 \text{ are remote edges}\}$

or all longest cycles in G are dominating.

Figure 2:

In this conjecture, we cannot replace 1-toughness with 2-connectedness by H_1 .

If a graph is triangle-free, then an edge degree is obtained immediately from the degree sum of it's ends, and so $d(e_0) + d(e_1) + d(e_2) \ge 2(\sigma_3(G) - 3)$ for mutually remote edges e_0, e_1, e_2 . Hence, using Theorem 2 we can improve Aung's theorem [3], which states that a 2-connected triangle-free graph with $\delta(G) > (n+5)/6$ contains a longest cycle which is dominating.

Corollary 5. Let G be a 2-connected triangle-free graph. If $\sigma_3(G) > (n+4)/2$, then G contains a longest cycle which is dominating.

Theorem 1.1 in [3] implies that in a 2-connected triangle-free graph with $\delta > n/4$, all longest cycles are dominating. Theorem 3 improves this fact.

Corollary 6. Let G be a 2-connected triangle-free graph. If $\sigma_2(G) > n/2$, then all longest cycles in G are dominating.

Let G be a bipartite graph with partite sets X and Y, and $\sigma_{1,1}(G) = \min\{d(x) + d(y) \mid xy \notin E(G), x \in X, y \in Y\}$. Moon and Moser showed that a 2-connected balanced bipartite graph with $\sigma_{1,1} > n/2$ is hamiltonian. Kaneko and Yoshimoto [10] generalized this by showing that if G is a 2-connected balanced bipartite graph and is not hamiltonian, then G has a cycle of length at least $2\sigma_{1,1} - 2$. For dominating cycles, Theorem 3 implies the following.

Corollary 7. Let G be a 2-connected bipartite graph. If $\sigma_{1,1}(G) > n/2$, then all longest cycles in G are dominating.

These results lead to a question.

Is a 1-tough triangle-free graph with $\sigma_2 > (n+2)/2$ hamiltonian?

The unbalance complete bipartite graphs show that 1-toughness cannot be replaced with 2-connectedness. But the minimum degree of the Petersen graph is (n+2)/4, perhaps the graph is a special case. However, it is not possible to replace (n+2)/2 by n/2 because Bauer et al. [5] constructed a class of non-hamiltonian 1-tough triangle-free graphs with $\delta = (n+1)/4$.

Finally, we give some additional definitions and notations. The set of all the neighbours of a vertex $x \in V(G)$ is denoted by $N_G(x)$ or simply N(x), and its cardinality by $d_G(x)$ or d(x). For a subgraph $H \subset G$, we denote $N_G(x) \cap V(H)$ by $N_H(x)$ and its cardinality by $d_H(x)$. The set of neighbours $\bigcup_{v \in H} N_G(v) \setminus V(H)$ is written by $N_G(H)$ or N(H). For a subgraph $F \subset G$, $N_G(H) \cap V(F)$ is denoted by $N_F(H)$. If the meaning is clear, we denote the vertex subset V(H) by simply H.

All notation and terminology not explained here is given in [8].

2 The Proof of Theorem 3

We assume that G has a longest cycle $C = u_1 u_2 \dots u_{|C|} u_1$ such that $E(G - C) \neq \emptyset$, and reach a contradiction.

The successor u_{i+1} of u_i is denoted by u_i^+ and the predecessor by u_i^- . For $A \subset V(C)$, we write $\{u_i^+ \mid u_i \in A\}$ and $\{u_i^- \mid u_i \in A\}$ by A^+ and A^- , respectively. The segment $u_i u_{i+1} \ldots u_j$ is denoted by $u_i \overrightarrow{C} u_j$ where the subscripts are to be taken modulo |C|. The reverse segment $u_j u_{j-1} \ldots u_i$ is given by $u_j \overleftarrow{C} u_i$. For each $u_i \in C$, we denote the edge $u_i u_{i+1}$ by e_i .

Let *H* be a component in G - C containing at least two vertices and *P* a longest path in *H* such that it's ends x, y are adjacent to distinct vertices on *C*. If |V(P)| =1, then *G* has a cut vertex, and so $|V(P)| \ge 2$. Let $N_C(x) \cup N_C(y) = \{u_{\tau(1)}, u_{\tau(2)}, \ldots\}$ which occur on *C* in the order of their indices.

Case 1. $|V(P)| \ge 3$.

Let $u_{\tau(i)} \in N(x)$ and $u_{\tau(j)} \in N(y)$ such that $i \neq j$ and $u_{\tau(i+1)} \in N(y)$ and $u_{\tau(j+1)} \in N(x)$. If $e_{\tau(i)+1} = u_{\tau(i)+1}u_{\tau(i)+2}$ is adjacent to H, then $N_H(e_{\tau(i)+1})$ contains a vertex $z \neq x$ because $u_{\tau(i+1)} \in N(y)$. Hence the cycle

$$xu_{\tau(i)}\overline{C}wzQx,$$

where $w \in N_{e_{\tau(i)+1}}(z)$ and Q is a path joining z and x in H, is longer than C. Thus neither $e_{\tau(i)+1}$ nor (by symmetry) $e_{\tau(j)+1}$ is adjacent to H.

Let $I = u_{\tau(i)+1} \overrightarrow{C} u_{\tau(j)}$ and $J = u_{\tau(j)+1} \overrightarrow{C} u_{\tau(i)}$. If there exists a vertex $u_l \in N_I(e_{\tau(i)+1})^- \cap N_I(e_{\tau(j)+1})$, then the cycle:

$$xPyu_{\tau(j)}\overleftarrow{C}u_l^+w\overrightarrow{C}u_lw'\overrightarrow{C}u_{\tau(i)}x$$

is longer than C, where $w \in N_{e_{\tau(i)+1}}(u_l^+)$ and $w' \in N_{e_{\tau(j)+1}}(u_l)$. See Figure 3. Hence

Figure 3:

by symmetry, we have:

$$N_I(e_{\tau(i)+1})^- \cap N_I(e_{\tau(j)+1}) = \emptyset$$
 and $N_J(e_{\tau(i)+1}) \cap N_J(e_{\tau(j)+1})^- = \emptyset$.

Similarly, if $u_{\tau(i)+1} \in N(e_{\tau(j)+1})$, then the cycle:

$$xPyu_{\tau(j)}\overleftarrow{C}u_{\tau(i)+1}w\overrightarrow{C}u_{\tau(i)}x$$

is longer than C, where $w \in N_{e_{\tau(j)+1}}(u_{\tau(i)+1})$. Thus, $u_{\tau(i)+1} \notin N(e_{\tau(j)+1})$ and $u_{\tau(j)+1} \notin N(e_{\tau(i)+1})$ by symmetry.

Since $N_I(e_{\tau(i)+1})^- \cup N_I(e_{\tau(j)+1}) \subset I - u_{\tau(i)+1}$ and $N_J(e_{\tau(i)+1}) \cup N_J(e_{\tau(j)+1})^- \subset J - u_{\tau(j)+1}$,

$$|C| \geq |N_I(e_{\tau(i)+1})^-| + |N_I(e_{\tau(j)+1})| + |N_J(e_{\tau(i)+1})| + |N_J(e_{\tau(j)+1})^-| + |\{u_{\tau(i)+1}, u_{\tau(j)+1}\}| = |N_C(e_{\tau(i)+1})| + |N_C(e_{\tau(j)+1})| + 2.$$

Similarly we can show that $e_{\tau(i)+1}$ and $e_{\tau(j)+1}$ have no common neighbours in $G - (C \cup H)$. Since neither $e_{\tau(i)+1}$ nor $e_{\tau(j)+1}$ is adjacent to H,

$$n \geq |N_{G-C}(e_{\tau(i)+1})| + |N_{G-C}(e_{\tau(j)+1})| + |N_C(e_{\tau(i)+1})| + |N_C(e_{\tau(j)+1})| + 2 + |H| \geq d(e_{\tau(i)+1}) + d(e_{\tau(j)+1}) + 5 > (n-4) + 5 > n,$$

a contradiction.

Case 2. |V(P)| = 2.

Let $P = e_0 = xy$ and $\widetilde{N}_C(e_0) = N_C(e_0)^+ \cup N_C(e_0)^-$. For an edge $e_i = u_i u_{i+1}$ on C, we denote $N_C(e_i) \cup \{u_i, u_{i+1}\}$ by $N_C[e_i]$.

Fact 1. If an edge e_i on C is remote to e_0 , then $|\widetilde{N}_C(e_0) \setminus N_C[e_i]| < d_C(e_0)$.

Proof. Suppose e_i is remote to e_0 . If e_i is adjacent to a vertex $z \in H - \{x, y\}$, then there exists a path joining e_0 and z in H, which contradicts our assumption of P. Hence, $N_H(e_i) = \emptyset$ and

$$N(e_i) \subset G - H - \{u_i, u_{i+1}\} - \widetilde{N}_C(e_0) \setminus N_C[e_i].$$

If $|\widetilde{N}_C(e_0) \setminus N_C[e_i]| \ge d_C(e_0)$, then:

$$d(e_i) \leq n - |H| - 2 - |\tilde{N}_C(e_0) \setminus N_C[e_i]|$$

$$\leq n - (d_H(e_0) + 2) - 2 - d_C(e_0) = n - d(e_0) - 4$$

since $|H| \ge d_H(e_0) + 2$ and $d(e_0) = d_H(e_0) + d_C(e_0)$. Hence $d(e_0) + d(e_i) \le n - 4$, a contradiction.

Let $u_{\tau(i)} \in N_C(y)$ such that $u_{\tau(i+1)} \in N_C(x)$, and let

$$X = (N_C(x) \setminus N_C(y)) \cup u_{\tau(i+1)}$$
 and $Y = N_C(e_0) \setminus X$.

If there exists a vertex $u_{\tau(l)}^- \in Y^- \cap N(e_{\tau(i+1)-2})$, then the cycle:

$$xyu_{\tau(l)}\overrightarrow{C}wu_{\tau(l)}\overrightarrow{C}u_{\tau(i+1)}x$$

is longer than C, where $w \in N_{e_{\tau(i+1)-2}}(u_{\tau(l)}^-)$. Hence $Y^- \cap N(e_{\tau(i+1)-2}) = \emptyset$. If $X^+ \cap N(e_{\tau(i+1)-2}) = \emptyset$, then

$$|\widetilde{N}_C(e_0) \setminus N_C[e_{\tau(i+1)-2}]| \ge |Y^-| + |X^+| \ge d_C(e_0)$$

because Y^- , X^+ and $N_C[e_{\tau(i+1)-2}]$ are pairwise disjoint. Since this contradicts Fact 1, $X^+ \cap N(e_{\tau(i+1)-2}) \neq \emptyset$.

Let $k = \min\{l \mid u_l \in u_{\tau(i)}^+ \overrightarrow{C} u_{\tau(i+1)}^- \text{ and } X^+ \cap N(u_l) \neq \emptyset\}$. Clearly $u_k \notin e_{\tau(i)+1}$; otherwise there exists a cycle longer than C. Thus $e_{k-2} \in u_{\tau(i)}^+ \overrightarrow{C} u_{\tau(i+1)}^-$ and $X^+ \cap N(e_{k-2}) = \emptyset$.

Let $u_{\tau(l)}^+ \in X^+ \cap N(u_k)$ and $Y_1 = Y \cap u_{\tau(l)} \overrightarrow{C} u_{\tau(i)}$ and $Y_2 = Y \cap u_{\tau(i+1)} \overrightarrow{C} u_{\tau(l)}$. Notice that $u_{\tau(l)} \notin Y = Y_1 \cup Y_2$ since $u_{\tau(l)} \in X$. If there exists $u_{\tau(m)}^- \in Y_1^- \cap N(e_{k-2})$, then the cycle

$$xyu_{\tau(m)}\overrightarrow{C}wu_{\tau(m)}^{-}\overleftarrow{C}u_{\tau(l)}^{+}u_{k}\overrightarrow{C}u_{\tau(l)}x$$

Figure 4:

is longer than C, where $w \in N_{e_{k-2}}(u_{\tau(m)}^-)$. See Figure 4(i).

If there exists $u_{\tau(m)}^+ \in Y_2^+ \cap N(e_{k-2})$, then the cycle

$$xyu_{\tau(m)}\overleftarrow{C}u_ku_{\tau(l)}^+\overrightarrow{C}wu_{\tau(m)}^+\overrightarrow{C}u_{\tau(l)}x$$

is longer than C, where $w \in N_{e_{k-2}}(u_{\tau(m)}^+)$. See Figure 4(ii). Hence $N(e_{k-2}) \cap (Y_1^- \cup Y_2^+) = \emptyset$. Since X^+, Y_1^-, Y_2^+ and $N_C[e_{k-2}]$ are pairwise disjoint,

$$|\tilde{N}_C(e_0) \setminus N[e_{k-2}]| \ge |X^+| + |Y_1^-| + |Y_2^+| \ge d_C(e_0).$$

This contradicts Fact 1. The proof is completed now.

References

- P. Ash and B. Jackson, Dominating cycles in bipartite graphs, Progress in graph theory (1984), 81-87
- [2] A. Asratian, T. Denley and R. Häggkvist, *Bipartite graphs and their applications*, Cambridge Tracts in Mathematics 131, Cambridge University Press (1998)
- [3] M. Aung, Longest cycles in triangle-free graphs, J. Combin. Theory Ser. B 47 (1989) 171-186
- [4] D. Bauer, A. Morgana, E. Schmeichel, H.J. Veldman, Longest cycles in graphs with large degree sums, Discrete Math. 79 (1989-1990) 59-70
- [5] D. Bauer, J. van den Heuvel and E. Schmeichel, 2-factors in triangle-free graphs, J. Graph Theory 21 (1996) 405-412
- [6] J. A. Bondy, Longest Paths and Cycles in Graphs of High Degree, Research Report CORR 80-16 (1980)
- [7] H. J. Broersma, K. Yoshimoto and S. Zhang, On longest cycles in a balanced bipartite graph with Ore type condition, submitted

- [8] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000)
- [9] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81
- [10] A. Kaneko and K. Yoshimoto, On longest cycles in a balanced bipartite graph with Ore type condition, submitted
- [11] X. Li, B. Wei, Z. Yu and Y. Zhu, Hamilton cycles in 1-tough triangle-free graphs, Discrete Math. 254 (2002) 275-287
- [12] J. Moon and L. Moser, On hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163-165.
- [13] C. St. J. A. Nash-Williams, Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency, Studies in Pure Mathematics (Presented to Richard Rado) (1971) 157-183
- [14] O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
- [15] H. J. Veldman, Existence of dominating cycles and paths in graphs, Discrete Math. 44 (1983) 309-316
- [16] H. Wang, On long cycles in a 2-connected bipartite graph, Graphs and Combin. 12 (1996) 373-384.
- [17] T. Yamashita, Degree sum conditions and Chvatal-Erdos conditions for dominating cycles, Sem. Math. Sci., 31 (2004) 185–199.