Edge degrees and dominating cycles

Kiyoshi Yoshimoto ${ }^{\text {a }}$
Department of Mathematics, College of Science and Technology
Nihon University, Tokyo 101-8308, Japan

Abstract

The edge degree $d(e)$ of the edge $e=u v$ is defined as the number of neighbours of e, i.e., $|N(u) \cup N(v)|-2$. Two edges are called remote if they are disjoint and there is no edge joining them. In this article, we prove that in a 2-connected graph G, if $d\left(e_{1}\right)+d\left(e_{2}\right)>|V(G)|-4$ for any remote edges e_{1}, e_{2}, then all longest cycles C in G are dominating, i.e., $G-V(C)$ is edgeless. This lower bound is best possible.

As a corollary, it holds that if G is a 2-connected triangle-free graph with $\sigma_{2}(G)>|V(G)| / 2$, then all longest cycles are dominating.

1 Introduction

The order of a simple graph G is denoted by n throughout this article, and a cycle C is called dominating if $G-V(C)$ is a stable set. Nash-Williams [13] showed that if G is 2 -connected and $\delta(G) \geq(n+2) / 3$, then all longest cycles of G are dominating. Bondy generalized this fact as follows. Let

$$
\sigma_{k}(G)=\min \left\{\sum_{i \leq k} d\left(x_{i}\right) \mid x_{1}, x_{2}, \ldots, x_{k} \text { are independent vertices in } G\right\}
$$

Theorem 1 (Bondy [6]). Let G be a 2-connected graph. If $\sigma_{3}(G) \geq n+2$, then all longest cycles in G are dominating.

For studying dominating cycles in triangle-free graphs, an invariant called an edge degree is useful, and it seems essential. The edge degree $d(e)$ of an edge $e=u v$ is defined as the number of neighbours of e, i.e., $|N(u) \cup N(v)|-2$. Two edges are called remote if they are disjoint and there is no edge joining them. Veldman [15] proved a k-connected graph has a dominating cycle if $\sum_{l \leq k} d\left(e_{l}\right)>k(n-k) / 2$ for any $k+1$ mutually remote edges $e_{0}, e_{1}, \ldots, e_{k}$. Yamashita [17] improved this result by replacing the sufficient condition with the existence of three edges e_{0}, e_{1}, e_{2} such that $\sum_{l \leq 2} d\left(e_{l}\right)>n-2$ in any $k+1$ mutually remote edges.

For the existence of a longest cycle which is dominating, the following fact holds.
Theorem 2 (Broersma, Yoshimoto and Zhang [7]). Let G be a 2-connected graph. If $d\left(e_{0}\right)+d\left(e_{1}\right)+d\left(e_{2}\right)>n-2$ for any mutually remote edges e_{0}, e_{1}, e_{2}, then G contains a longest cycle which is dominating.

[^0]The lower bound in Theorem 2 is best possible. Consider the vertex disjoint graphs $K_{m_{1}, k_{1}}, K_{m_{2}, k_{2}}, K_{m_{3}, k_{3}}$ and $\overline{K_{2}}=\{x, y\}$, and let X_{i} and Y_{i} be the partite sets of $K_{m_{i}, k_{i}}$. Then the graph

$$
H_{1}=K_{m_{1}, k_{1}} \cup K_{m_{2}, k_{2}} \cup K_{m_{3}, k_{3}} \cup \overline{K_{2}} \cup\left\{x x^{\prime} \mid x^{\prime} \in \bigcup_{i \leq 3} X_{i}\right\} \cup\left\{y y^{\prime} \mid y^{\prime} \in \bigcup_{i \leq 3} Y_{i}\right\}
$$

has no dominating cycle, and the degree sum of any three mutually remote edges is $n-2$. See Figure 1.

Figure 1:

The purpose of this article is to establish the following.
Theorem 3. Let G be a 2-connected graph. If $d\left(e_{1}\right)+d\left(e_{2}\right)>n-4$ for any remote edges e_{1}, e_{2}, then all longest cycles in G are dominating.

The lower bound in Theorem 3 is also best possible. Consider the graphs $K_{m_{4}, k_{4}}$ and $K_{m_{5}, k_{5}}$, where $\left|X_{i}\right| \geq 2$ and $\left|Y_{i}\right|=\left|X_{i}\right|+2$, and let $\left\{y_{1}^{i}, y_{2}^{i}, y_{3}^{i}\right\} \subset Y_{i}$ for $i=4,5$. Then the graph

$$
H_{2}=K_{m_{4}, k_{4}} \cup K_{m_{5}, k_{5}} \cup\left\{y_{1}^{4} y_{1}^{5}, y_{2}^{4} y_{2}^{5}, y_{3}^{4} y_{3}^{5}\right\}
$$

has a longest cycle which is not dominating and the minimum edge degree is $(n-$ 4) $/ 2$. See Figure 2. The graphs H_{1} and H_{2} generalize the examples due to Ash and Jackson in [1].

Ore [14] showed that the circumference of a 2-connected graph is at least σ_{2} or the graph is hamiltonian. In the same way, can we measure the circumference using edge degrees? For this question, we have the following conjecture.

Conjecture 4. If G is a 1-tough graph, then the circumference of G is at least

$$
2+\min \left\{d\left(e_{1}\right)+d\left(e_{2}\right) \mid e_{1}, e_{2} \text { are remote edges }\right\}
$$

or all longest cycles in G are dominating.

Figure 2:

In this conjecture, we cannot replace 1-toughness with 2-connectedness by H_{1}.
If a graph is triangle-free, then an edge degree is obtained immediately from the degree sum of it's ends, and so $d\left(e_{0}\right)+d\left(e_{1}\right)+d\left(e_{2}\right) \geq 2\left(\sigma_{3}(G)-3\right)$ for mutually remote edges e_{0}, e_{1}, e_{2}. Hence, using Theorem 2 we can improve Aung's theorem [3], which states that a 2-connected triangle-free graph with $\delta(G)>(n+5) / 6$ contains a longest cycle which is dominating.

Corollary 5. Let G be a 2-connected triangle-free graph. If $\sigma_{3}(G)>(n+4) / 2$, then G contains a longest cycle which is dominating.

Theorem 1.1 in [3] implies that in a 2-connected triangle-free graph with $\delta>n / 4$, all longest cycles are dominating. Theorem 3 improves this fact.

Corollary 6. Let G be a 2-connected triangle-free graph. If $\sigma_{2}(G)>n / 2$, then all longest cycles in G are dominating.

Let G be a bipartite graph with partite sets X and Y, and $\sigma_{1,1}(G)=\min \{d(x)+$ $d(y) \mid x y \notin E(G), x \in X, y \in Y\}$. Moon and Moser showed that a 2-connected balanced bipartite graph with $\sigma_{1,1}>n / 2$ is hamiltonian. Kaneko and Yoshimoto [10] generalized this by showing that if G is a 2 -connected balanced bipartite graph and is not hamiltonian, then G has a cycle of length at least $2 \sigma_{1,1}-2$. For dominating cycles, Theorem 3 implies the following.

Corollary 7. Let G be a 2-connected bipartite graph. If $\sigma_{1,1}(G)>n / 2$, then all longest cycles in G are dominating.

These results lead to a question.
Is a 1-tough triangle-free graph with $\sigma_{2}>(n+2) / 2$ hamiltonian?

The unbalance complete bipartite graphs show that 1-toughness cannot be replaced with 2-connectedness. But the minimum degree of the Petersen graph is $(n+2) / 4$, perhaps the graph is a special case. However, it is not possible to replace $(n+2) / 2$ by $n / 2$ because Bauer et al. [5] constructed a class of non-hamiltonian 1 -tough triangle-free graphs with $\delta=(n+1) / 4$.

Finally, we give some additional definitions and notations. The set of all the neighbours of a vertex $x \in V(G)$ is denoted by $N_{G}(x)$ or simply $N(x)$, and its cardinality by $d_{G}(x)$ or $d(x)$. For a subgraph $H \subset G$, we denote $N_{G}(x) \cap V(H)$ by $N_{H}(x)$ and its cardinality by $d_{H}(x)$. The set of neighbours $\bigcup_{v \in H} N_{G}(v) \backslash V(H)$ is written by $N_{G}(H)$ or $N(H)$. For a subgraph $F \subset G, N_{G}(H) \cap V(F)$ is denoted by $N_{F}(H)$. If the meaning is clear, we denote the vertex subset $V(H)$ by simply H.

All notation and terminology not explained here is given in [8].

2 The Proof of Theorem 3

We assume that G has a longest cycle $C=u_{1} u_{2} \ldots u_{|C|} u_{1}$ such that $E(G-C) \neq \emptyset$, and reach a contradiction.

The successor u_{i+1} of u_{i} is denoted by u_{i}^{+}and the predecessor by u_{i}^{-}. For $A \subset V(C)$, we write $\left\{u_{i}^{+} \mid u_{i} \in A\right\}$ and $\left\{u_{i}^{-} \mid u_{i} \in A\right\}$ by A^{+}and A^{-}, respectively. The segment $u_{i} u_{i+1} \ldots u_{j}$ is denoted by $u_{i} \vec{C} u_{j}$ where the subscripts are to be taken modulo $|C|$. The reverse segment $u_{j} u_{j-1} \ldots u_{i}$ is given by $u_{j} \overleftarrow{C} u_{i}$. For each $u_{i} \in C$, we denote the edge $u_{i} u_{i+1}$ by e_{i}.

Let H be a component in $G-C$ containing at least two vertices and P a longest path in H such that it's ends x, y are adjacent to distinct vertices on C. If $|V(P)|=$ 1, then G has a cut vertex, and so $|V(P)| \geq 2$. Let $N_{C}(x) \cup N_{C}(y)=\left\{u_{\tau(1)}, u_{\tau(2)}, \ldots\right\}$ which occur on C in the order of their indices.

Case 1. $|V(P)| \geq 3$.
Let $u_{\tau(i)} \in N(x)$ and $u_{\tau(j)} \in N(y)$ such that $i \neq j$ and $u_{\tau(i+1)} \in N(y)$ and $u_{\tau(j+1)} \in$ $N(x)$. If $e_{\tau(i)+1}=u_{\tau(i)+1} u_{\tau(i)+2}$ is adjacent to H, then $N_{H}\left(e_{\tau(i)+1}\right)$ contains a vertex $z \neq x$ because $u_{\tau(i+1)} \in N(y)$. Hence the cycle

$$
x u_{\tau(i)} \overleftarrow{C} w z Q x
$$

where $w \in N_{e_{\tau(i)+1}}(z)$ and Q is a path joining z and x in H, is longer than C. Thus neither $e_{\tau(i)+1}$ nor (by symmetry) $e_{\tau(j)+1}$ is adjacent to H.

Let $I=u_{\tau(i)+1} \vec{C} u_{\tau(j)}$ and $J=u_{\tau(j)+1} \vec{C} u_{\tau(i)}$. If there exists a vertex $u_{l} \in$ $N_{I}\left(e_{\tau(i)+1}\right)^{-} \cap N_{I}\left(e_{\tau(j)+1}\right)$, then the cycle:

$$
x P y u_{\tau(j)} \overleftarrow{C} u_{l}^{+} w \vec{C} u_{l} w^{\prime} \vec{C} u_{\tau(i)} x
$$

is longer than C, where $w \in N_{e_{\tau(i)+1}}\left(u_{l}^{+}\right)$and $w^{\prime} \in N_{e_{\tau(j)+1}}\left(u_{l}\right)$. See Figure 3. Hence

Figure 3:
by symmetry, we have:

$$
N_{I}\left(e_{\tau(i)+1}\right)^{-} \cap N_{I}\left(e_{\tau(j)+1}\right)=\emptyset \text { and } N_{J}\left(e_{\tau(i)+1}\right) \cap N_{J}\left(e_{\tau(j)+1}\right)^{-}=\emptyset .
$$

Similarly, if $u_{\tau(i)+1} \in N\left(e_{\tau(j)+1}\right)$, then the cycle:

$$
x P y u_{\tau(j)} \overleftarrow{C} u_{\tau(i)+1} w \vec{C} u_{\tau(i)} x
$$

is longer than C, where $w \in N_{e_{\tau(j)+1}}\left(u_{\tau(i)+1}\right)$. Thus, $u_{\tau(i)+1} \notin N\left(e_{\tau(j)+1}\right)$ and $u_{\tau(j)+1} \notin N\left(e_{\tau(i)+1}\right)$ by symmetry.

Since $N_{I}\left(e_{\tau(i)+1}\right)^{-} \cup N_{I}\left(e_{\tau(j)+1}\right) \subset I-u_{\tau(i)+1}$ and $N_{J}\left(e_{\tau(i)+1}\right) \cup N_{J}\left(e_{\tau(j)+1}\right)^{-} \subset$ $J-u_{\tau(j)+1}$,

$$
\begin{aligned}
|C| \geq & \left|N_{I}\left(e_{\tau(i)+1}\right)^{-}\right|+\left|N_{I}\left(e_{\tau(j)+1}\right)\right|+\left|N_{J}\left(e_{\tau(i)+1}\right)\right|+\left|N_{J}\left(e_{\tau(j)+1}\right)^{-}\right| \\
& +\left|\left\{u_{\tau(i)+1}, u_{\tau(j)+1}\right\}\right|=\left|N_{C}\left(e_{\tau(i)+1}\right)\right|+\left|N_{C}\left(e_{\tau(j)+1}\right)\right|+2 .
\end{aligned}
$$

Similarly we can show that $e_{\tau(i)+1}$ and $e_{\tau(j)+1}$ have no common neighbours in $G-$ $(C \cup H)$. Since neither $e_{\tau(i)+1}$ nor $e_{\tau(j)+1}$ is adjacent to H,

$$
\begin{aligned}
n \geq & \left|N_{G-C}\left(e_{\tau(i)+1}\right)\right|+\left|N_{G-C}\left(e_{\tau(j)+1}\right)\right|+\left|N_{C}\left(e_{\tau(i)+1}\right)\right|+\left|N_{C}\left(e_{\tau(j)+1}\right)\right| \\
& +2+|H| \geq d\left(e_{\tau(i)+1}\right)+d\left(e_{\tau(j)+1}\right)+5>(n-4)+5>n,
\end{aligned}
$$

a contradiction.

Case 2. $|V(P)|=2$.
Let $P=e_{0}=x y$ and $\widetilde{N}_{C}\left(e_{0}\right)=N_{C}\left(e_{0}\right)^{+} \cup N_{C}\left(e_{0}\right)^{-}$. For an edge $e_{i}=u_{i} u_{i+1}$ on C, we denote $N_{C}\left(e_{i}\right) \cup\left\{u_{i}, u_{i+1}\right\}$ by $N_{C}\left[e_{i}\right]$.

Fact 1. If an edge e_{i} on C is remote to e_{0}, then $\left|\widetilde{N}_{C}\left(e_{0}\right) \backslash N_{C}\left[e_{i}\right]\right|<d_{C}\left(e_{0}\right)$.
Proof. Suppose e_{i} is remote to e_{0}. If e_{i} is adjacent to a vertex $z \in H-\{x, y\}$, then there exists a path joining e_{0} and z in H, which contradicts our assumption of P. Hence, $N_{H}\left(e_{i}\right)=\emptyset$ and

$$
N\left(e_{i}\right) \subset G-H-\left\{u_{i}, u_{i+1}\right\}-\widetilde{N}_{C}\left(e_{0}\right) \backslash N_{C}\left[e_{i}\right] .
$$

If $\left|\widetilde{N}_{C}\left(e_{0}\right) \backslash N_{C}\left[e_{i}\right]\right| \geq d_{C}\left(e_{0}\right)$, then:

$$
\begin{aligned}
d\left(e_{i}\right) & \leq n-|H|-2-\left|\tilde{N}_{C}\left(e_{0}\right) \backslash N_{C}\left[e_{i}\right]\right| \\
& \leq n-\left(d_{H}\left(e_{0}\right)+2\right)-2-d_{C}\left(e_{0}\right)=n-d\left(e_{0}\right)-4
\end{aligned}
$$

since $|H| \geq d_{H}\left(e_{0}\right)+2$ and $d\left(e_{0}\right)=d_{H}\left(e_{0}\right)+d_{C}\left(e_{0}\right)$. Hence $d\left(e_{0}\right)+d\left(e_{i}\right) \leq n-4$, a contradiction.

Let $u_{\tau(i)} \in N_{C}(y)$ such that $u_{\tau(i+1)} \in N_{C}(x)$, and let

$$
X=\left(N_{C}(x) \backslash N_{C}(y)\right) \cup u_{\tau(i+1)} \text { and } Y=N_{C}\left(e_{0}\right) \backslash X .
$$

If there exists a vertex $u_{\tau(l)}^{-} \in Y^{-} \cap N\left(e_{\tau(i+1)-2}\right)$, then the cycle:

$$
x y u_{\tau(l)} \vec{C} w u_{\tau(l)}^{-} \overleftarrow{C} u_{\tau(i+1)} x
$$

is longer than C, where $w \in N_{e_{\tau(i+1)-2}}\left(u_{\tau(l)}^{-}\right)$. Hence $Y^{-} \cap N\left(e_{\tau(i+1)-2}\right)=\emptyset$. If $X^{+} \cap N\left(e_{\tau(i+1)-2}\right)=\emptyset$, then

$$
\left|\widetilde{N}_{C}\left(e_{0}\right) \backslash N_{C}\left[e_{\tau(i+1)-2}\right]\right| \geq\left|Y^{-}\right|+\left|X^{+}\right| \geq d_{C}\left(e_{0}\right)
$$

because Y^{-}, X^{+}and $N_{C}\left[e_{\tau(i+1)-2}\right]$ are pairwise disjoint. Since this contradicts Fact 1, $X^{+} \cap N\left(e_{\tau(i+1)-2}\right) \neq \emptyset$.

Let $k=\min \left\{l \mid u_{l} \in u_{\tau(i)}^{+} \vec{C} u_{\tau(i+1)}^{-}\right.$and $\left.X^{+} \cap N\left(u_{l}\right) \neq \emptyset\right\}$. Clearly $u_{k} \notin e_{\tau(i)+1}$; otherwise there exists a cycle longer than C. Thus $e_{k-2} \in u_{\tau(i)}^{+} \vec{C} u_{\tau(i+1)}^{-}$and $X^{+} \cap$ $N\left(e_{k-2}\right)=\emptyset$.

Let $u_{\tau(l)}^{+} \in X^{+} \cap N\left(u_{k}\right)$ and $Y_{1}=Y \cap u_{\tau(l)} \vec{C} u_{\tau(i)}$ and $Y_{2}=Y \cap u_{\tau(i+1)} \vec{C} u_{\tau(l)}$. Notice that $u_{\tau(l)} \notin Y=Y_{1} \cup Y_{2}$ since $u_{\tau(l)} \in X$. If there exists $u_{\tau(m)}^{-} \in Y_{1}^{-} \cap N\left(e_{k-2}\right)$, then the cycle

$$
x y u_{\tau(m)} \vec{C} w u_{\tau(m)}^{-} \overleftarrow{C} u_{\tau(l)}^{+} u_{k} \vec{C} u_{\tau(l)} x
$$

Figure 4:
is longer than C, where $w \in N_{e_{k-2}}\left(u_{\tau(m)}^{-}\right)$. See Figure 4(i).
If there exists $u_{\tau(m)}^{+} \in Y_{2}^{+} \cap N\left(e_{k-2}\right)$, then the cycle

$$
x y u_{\tau(m)} \overleftarrow{C} u_{k} u_{\tau(l)}^{+} \vec{C} w u_{\tau(m)}^{+} \vec{C} u_{\tau(l)} x
$$

is longer than C, where $w \in N_{e_{k-2}}\left(u_{\tau(m)}^{+}\right)$. See Figure 4(ii). Hence $N\left(e_{k-2}\right) \cap\left(Y_{1}^{-} \cup\right.$ $\left.Y_{2}^{+}\right)=\emptyset$. Since $X^{+}, Y_{1}^{-}, Y_{2}^{+}$and $N_{C}\left[e_{k-2}\right]$ are pairwise disjoint,

$$
\left|\widetilde{N}_{C}\left(e_{0}\right) \backslash N\left[e_{k-2}\right]\right| \geq\left|X^{+}\right|+\left|Y_{1}^{-}\right|+\left|Y_{2}^{+}\right| \geq d_{C}\left(e_{0}\right)
$$

This contradicts Fact 1. The proof is completed now.

References

[1] P. Ash and B. Jackson, Dominating cycles in bipartite graphs, Progress in graph theory (1984), 81-87
[2] A. Asratian, T. Denley and R. Häggkvist, Bipartite graphs and their applications, Cambridge Tracts in Mathematics 131, Cambridge University Press (1998)
[3] M. Aung, Longest cycles in triangle-free graphs, J. Combin. Theory Ser. B 47 (1989) 171-186
[4] D. Bauer, A. Morgana, E. Schmeichel, H.J. Veldman, Longest cycles in graphs with large degree sums, Discrete Math. 79 (1989-1990) 59-70
[5] D. Bauer, J. van den Heuvel and E. Schmeichel, 2-factors in triangle-free graphs, J. Graph Theory 21 (1996) 405-412
[6] J. A. Bondy, Longest Paths and Cycles in Graphs of High Degree, Research Report CORR 80-16 (1980)
[7] H. J. Broersma, K. Yoshimoto and S. Zhang, On longest cycles in a balanced bipartite graph with Ore type condition, submitted
[8] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000)
[9] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81
[10] A. Kaneko and K. Yoshimoto, On longest cycles in a balanced bipartite graph with Ore type condition, submitted
[11] X. Li, B. Wei, Z. Yu and Y. Zhu, Hamilton cycles in 1-tough triangle-free graphs, Discrete Math. 254 (2002) 275-287
[12] J. Moon and L. Moser, On hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163-165.
[13] C. St. J. A. Nash-Williams, Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency, Studies in Pure Mathematics (Presented to Richard Rado) (1971) 157-183
[14] O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
[15] H. J. Veldman, Existence of dominating cycles and paths in graphs, Discrete Math. 44 (1983) 309-316
[16] H. Wang, On long cycles in a 2-connected bipartite graph, Graphs and Combin. 12 (1996) 373-384.
[17] T. Yamashita, Degree sum conditions and Chvatal-Erdos conditions for dominating cycles, Sem. Math. Sci., 31 (2004) 185-199.

[^0]: ${ }^{\text {a }}$ Supported by JSPS. KAKENHI (14740087)

