Relative length of longest paths and longest cycles in triangle-free graphs

Daniel Paulusma ${ }^{1}$
Department of Applied Mathematics
Faculty of Electrical Engineering, Mathematics and Computer Science University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands d.paulusma@math.utwente.nl and
Kiyoshi Yoshimoto ${ }^{2}$
Department of Mathematics, College of Science and Technology
Nihon University, Tokyo 101-8308, Japan
yosimoto@math.cst.nihon-u.ac.jp

Abstract

In this paper, we prove that if G is a triangle-free graph with minimum degree at least two and $\sigma_{4}(G) \geq|V(G)|+2$, then for any path P, there exists a cycle C such that $|V(P) \backslash V(C)| \leq 1$ or G is isomorphic to an exception.

Using this fact, easily we can show that for any set S of at most δ vertices, there is a cycle C such that $S \subset V(C)$ under same condition.

1 Introduction

The order of a graph is denoted by n throughout this paper and the minimum degree is written by δ, and let:

$$
\sigma_{k}(G)=\min \left\{\sum_{i=1}^{k} d_{G}\left(x_{i}\right) \mid x_{1}, x_{2}, \ldots, x_{k} \text { are independent }\right\}
$$

where $d_{G}\left(x_{i}\right)$ is the degree of a vertex x_{i}. If the independence number of G is less than k, then we define $\sigma_{k}(G)=\infty$. For simplicity, we denote $G-V(H)$ by $G-H$ and a cycle C is called dominating if $G-C$ is edgeless.

Bondy [4] proved that if G is a 2 -connected graph with $\sigma_{3} \geq n+2$, then all longest cycles are dominating. This lower bound is best possible by $\left(K_{k} \cup K_{k} \cup K_{k}\right) * \overline{K_{2}}$.

[^0]Enomoto et al. [7] generalized this fact as follows: if G is a 2-connected graph with $\sigma_{3} \geq n+2$, then $p(G)-c(G) \leq 1$, where $p(G)$ and $c(G)$ are the length of longest paths and the circumference.

For triangle-free graphs, by the theorem of Broersma, Yoshimoto and Zhang [5], it holds that a 2 -connected triangle-free graph with $\sigma_{3} \geq(n+5) / 2$ contains a longest cycle that is dominating. The lower bound is sharp, even for the existence of dominating cycles. In this theorem, longest cycles are not always dominating. However, if $\sigma_{2} \geq(n+1) / 2$, then all longest cycles are dominating [16]. This lower bound is almost best possible by examples due to Ash and Jackson [1]. The purpose of this paper is to show the following fact corresponding to the theorem by Enomoto et al.

Theorem 1. Let G be a triangle-free graph with $\delta \geq 2$. If $\sigma_{4} \geq n+2$, then for any path P, there exists a cycle C such that $|P-C| \leq 1$ or G is isomorphic to the graph in Figure $1 i$.

Figure 1:

The lower bound of σ_{4} is best possible because the graph $H=\overline{K_{k-1}} * \overline{K_{k}} * K_{1} *$ $\overline{K_{k}} * \overline{K_{k-1}}$ contains a hamilton path and the minimum degree is $(n+1) / 4$, and so $\sigma_{4}=n+1$, however, the circumference is $(n+1) / 2$. See Figure 1ii. Moreover, high connectivity is not useful for decreasing the lower bound of σ_{4} because we can add edges between the left K_{k-1} and the right K_{k-1}.

As an application of Theorem 1, the following is shown in Section 3:
Theorem 2. Let G be a triangle-free graph with $\delta \geq 2$. If $\sigma_{4} \geq n+2$, then for any set S of at most δ vertices, there exists a cycle C such that $S \subset V(C)$.

From this fact, it holds that a triangle-fee graph with $\delta \geq 2$ and $\sigma_{4} \geq n+2$ is 2-connected. On the other hand, the graph H has a cut vertex, and so the lower bound $n+2$ of σ_{4} for the 2-connectivity is best possible. Because of the proof of Theorem 2, we shall show a triangle-free graph with $\delta \geq 2$ and $\sigma_{4} \geq n+1$ is connected. This lower bound is also sharp due to $K_{k, k} \cup K_{k, k}$.

Finally, we give some additional definitions and notations. The set of all the neighbours of a vertex $x \in V(G)$ is denoted by $N_{G}(x)$ or simply $N(x)$, and its cardinality by $d_{G}(x)$ or $d(x)$. For a subgraph H of G, we denote $N_{G}(x) \cap V(H)$ by $N_{H}(x)$ and its cardinality by $d_{H}(x)$. For simplicity, we denote $|V(H)|$ by $|H|$ and " $u_{i} \in V(H)$ " by " $u_{i} \in H$ ". The set of neighbours $\bigcup_{v \in H} N_{G}(v) \backslash V(H)$ is written by $N_{G}(H)$ or $N(H)$, and for a subgraph $F \subset G, N_{G}(H) \cap V(F)$ is denoted by $N_{F}(H)$.

Let $C=v_{1} v_{2} \ldots v_{p} v_{1}$ be a cycle with a fixed orientation. The segment $v_{i} v_{i+1} \ldots v_{j}$ is written by $v_{i} \vec{C} v_{j}$ where the subscripts are to be taken modulo $|C|$. The converse segment $v_{j} v_{j-1} \ldots v_{i}$ is written by $v_{j} \overleftarrow{C} v_{i}$. For a path $P=u_{1} u_{2} \ldots u_{p}$, also we denote $u_{i} \vec{P} u_{j}=u_{i} u_{i+1} \ldots u_{j}$ and $u_{j} \overleftarrow{P} u_{i}=u_{j} u_{j-1} \ldots u_{i}$. The successor of u_{i} is denoted by u_{i}^{+}and the predecessor by u_{i}^{-}. For a vertex subset A in C, we write $\left\{u_{i}^{+} \mid u_{i} \in A\right\}$ and $\left\{u_{i}^{-} \mid u_{i} \in A\right\}$ by A^{+}and A^{-}, respectively.

All notation and terminology not explained here is given in [6].

2 The Proof of Theorem 1

For a vertex subset S, if a path P is longest in all paths containing S, then we call P a maximal path for S, and the set of all the maximal paths is denoted by $\mathcal{P}(S)$. At first, we show the following lemma.

Lemma 3. If G is a triangle-free graph with $\delta \geq 2$, then for any path R, there exists a path in $\mathcal{P}(V(R))$ such that the degree sum of the ends is at least $\sigma_{4} / 2$ or a cycle C such that $|R-C| \leq 1$ or G is isomorphic to the graph in Figure $1 i$.

Proof. Let R be any path in G and $P=u_{1} u_{2} \ldots u_{p} \in \mathcal{P}(V(R))$ such that the degree sum of the ends is maximal in $\mathcal{P}(V(R))$. Notice that $N\left(u_{1}\right)=N_{P}\left(u_{1}\right)$ and $N\left(u_{p}\right)=N_{P}\left(u_{p}\right)$. If there exist vertices $u_{i} \in N\left(u_{1}\right) \backslash u_{2}$ and $u_{j} \in N\left(u_{p}\right) \backslash u_{p-1}$ such that $i \leq j$, then $\left\{u_{1}, u_{i-1}, u_{j+1}, u_{p}\right\}$ is an independent set; otherwise there is a triangle or a cycle containing $V(R)$, i.e., the cycle is a desired cycle. Because
$d\left(u_{1}\right)+d\left(u_{i-1}\right)+d\left(u_{j+1}\right)+d\left(u_{p}\right) \geq \sigma_{4}$, one of $d\left(u_{1}\right)+d\left(u_{p}\right)$ and $d\left(u_{i-1}\right)+d\left(u_{j+1}\right)$ is at least $\sigma_{4} / 2$. Therefore P or the path $u_{i-1} \overleftarrow{P} u_{1} u_{i} \vec{P} u_{j} u_{p} \overleftarrow{P} u_{j+1}$ is a desired path.

Assume that:

$$
\begin{equation*}
i>j \text { for any vertices } u_{i} \in N\left(u_{1}\right) \backslash u_{2} \text { and } u_{j} \in N\left(u_{p}\right) \backslash u_{p-1} \text {. } \tag{1}
\end{equation*}
$$

Suppose there is a vertex $u_{s} \in N_{P}\left(u_{1}\right) \backslash\left\{u_{2}, u_{p-2}\right\}$, and let $u_{t} \in N\left(u_{p}\right) \backslash u_{p-1}$. Then $P^{\prime}=u_{t+1} \vec{P} u_{s} u_{1} \vec{P} u_{t} u_{p} \overleftarrow{P} u_{s+1} \in \mathcal{P}(V(R))$. The vertex u_{1} is not adjacent to u_{t+1} nor u_{s+1}; otherwise there is a triangle or a cycle containing $V(R)$. And the vertex u_{p} is not adjacent to u_{t+1} nor u_{s+1} by the assumptions (1) and $u_{s} \neq u_{p-2}$. Thus $\left\{u_{1}, u_{t+1}, u_{s+1}, u_{p}\right\}$ is an independent set, and hence one of the paths P and P^{\prime} is a desired path as in the previous case. Therefore $N\left(u_{1}\right)=\left\{u_{2}, u_{p-2}\right\}$ and, by symmetry, $N\left(u_{p}\right)=\left\{u_{3}, u_{p-1}\right\}$. Furthermore, by the maximality of the degree sum of the ends of P :
the degree of an end of any path in $\mathcal{P}(V(R))$ is two.
Because the path $u_{1} u_{2} u_{3} u_{p} \overleftarrow{P} u_{4}$ is in $\mathcal{P}(V(R))$, the vertex u_{1} has to be adjacent to $u_{4}^{++}=u_{6}$; otherwise, as in the above case, we can obtain a desired cycle or path. Therefore $u_{6}=u_{p-2}$, i.e., $p=8$, and so any vertex in $\left\{u_{1}, u_{2}, u_{4}, u_{5}, u_{7}, u_{8}\right\}$ is the end of some path in $\mathcal{P}(V(R))$, and has degree two. As G is triangle-free, the vertices u_{1}, u_{5} and u_{7} are mutually disjoint. If $G-P$ is not empty, then for any $x \in G-P$, $\left\{x, u_{1}, u_{5}, u_{7}\right\}$ is an independent set. Hence:

$$
d(x) \geq \sigma_{4}-\left(d\left(u_{1}\right)+d\left(u_{5}\right)+d\left(u_{7}\right)\right) \geq n+2-6=n-4 .
$$

However, x is adjacent to none of $\left\{u_{1}, u_{2}, u_{4}, u_{5}, u_{7}, u_{8}\right\}$ because these degrees are two. Thus $d(x) \leq n-7$, a contradiction. Therefore $G-P=\emptyset$ and $n=8$. As u_{3} is adjacent to none of u_{1}, u_{5} nor u_{7}, the vertex u_{3} has to be adjacent to u_{6}; otherwise $d\left(u_{1}\right)+d\left(u_{3}\right)+d\left(u_{5}\right)+d\left(u_{7}\right)=9<n+2$. Hence G is isomorphic to the graph in Figure 1i.

Assume that G is not isomorphic to the graph in Figure 1i. By the previous lemma, we can suppose the independence number of G is at least four; otherwise we are done. Let R be any path in G and $P=u_{1} u_{2} \ldots u_{p} \in \mathcal{P}(V(R))$ such that:
the degree sum of the ends is maximal in $\mathcal{P}(V(R))$.

Then from Lemma $3, d\left(u_{1}\right)+d\left(u_{p}\right) \geq \sigma_{4} / 2$. Notice that we may assume that there is no path in $\mathcal{P}(V(R))$ whose ends are adjacent; otherwise obviously there exists a cycle containing $V(R)$.

If there is $u_{l} \in N_{P}\left(u_{1}\right) \cap N_{P}\left(u_{p}\right)^{+}$, then the cycle $u_{1} \vec{P} u_{l}^{-} u_{p} \overleftarrow{P} u_{l} u_{1}$ is a desired cycle. Thus we can suppose $N_{P}\left(u_{1}\right) \cap N_{P}\left(u_{p}\right)^{+}=\emptyset$. Similarly, we get $N_{P}\left(u_{1}\right) \cap$ $N_{P}\left(u_{p}\right)^{++}=\emptyset$ and $N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(u_{p}\right)^{+}=\emptyset$. If $N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(u_{p}\right)^{++}$is also empty, then $N_{P}\left(u_{1}\right), N_{P}\left(u_{1}\right)^{-}, N_{P}\left(u_{p}\right)^{+}$and $\left(N_{P}\left(u_{p}\right) \backslash u_{p}\right)^{++}$are mutually disjoint. Hence:

$$
\begin{aligned}
n \geq|P| & \geq\left|N_{P}\left(u_{1}\right)\right|+\left|N_{P}\left(u_{1}\right)^{-}\right|+\left|N_{P}\left(u_{p}\right)^{+}\right|+\left|\left(N_{P}\left(u_{p}\right) \backslash u_{p}\right)^{++}\right| \\
& \geq 2 d\left(u_{1}\right)+2 d\left(u_{p}\right)-1 \geq \sigma_{4}-1>n .
\end{aligned}
$$

This is a contradiction. Therefore $N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(u_{p}\right)^{++} \neq \emptyset$.
Let $u_{i} \in N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(u_{p}\right)^{++}$.
Claim 1. If $d\left(u_{i}\right)+d\left(u_{i-1}\right)>n / 2$, then there is a desired cycle.
Proof. Let $e_{0}=x_{1} x_{2}=u_{i-1} u_{i}$ and:

$$
C=u_{1} \vec{P} u_{i-2} u_{p} \overleftarrow{P} u_{i+1} u_{1}=v_{1} v_{2} \ldots v_{p-2} v_{1}
$$

which occur on C in the order of their indices. Notice that $N\left(e_{0}\right)=N\left(x_{1}\right) \cup N\left(x_{2}\right) \backslash$ $\left\{x_{1}, x_{2}\right\} \subset V(C)$ because P is a maximal path for $V(R)$.

If $N\left(e_{0}\right)$ and $N\left(e_{0}\right)^{+}$are not disjoint, then there exists a triangle or a desired cycle. Hence $N\left(e_{0}\right) \cap N\left(e_{0}\right)^{+}=\emptyset$. In the set of segments $C-N\left(e_{0}\right)$, there are two segments $v_{s}^{+} \vec{C} v_{s^{\prime}}^{-}$and $v_{t}^{+} \vec{C} v_{t^{\prime}}^{-}$such that $\left\{v_{s}, v_{t^{\prime}}\right\} \subset N\left(x_{1}\right)$ and $\left\{v_{s^{\prime}}, v_{t}\right\} \subset N\left(x_{2}\right)$. Then $v_{s+2}, v_{t+2} \notin N_{C}\left(e_{0}\right) \cup N_{C}\left(e_{0}\right)^{+}$; otherwise there is a desired cycle. Therefore:

$$
\begin{aligned}
n-2 \geq|C| & \geq\left|N\left(e_{0}\right)\right|+\left|N\left(e_{0}\right)^{+}\right|+\left|\left\{v_{s+2}, v_{t+2}\right\}\right| \\
& =\left|N_{C}\left(x_{1}\right)\right|+\left|N_{C}\left(x_{1}\right)^{+}\right|+\left|N_{C}\left(x_{2}\right)\right|+\left|N_{C}\left(x_{2}\right)^{+}\right|+\left|\left\{v_{s+2}, v_{t+2}\right\}\right| \\
& =2\left(d\left(x_{1}\right)-1\right)+2\left(d\left(x_{2}\right)-1\right)+2=2\left(d\left(x_{1}\right)+d\left(x_{2}\right)\right)-2>n-2 .
\end{aligned}
$$

This is a contradiction.
If $\delta \geq(n+2) / 4$, then our proof is completed now by this claim. We divide our argument into two cases.

Case 1. $\left|N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(u_{p}\right)^{++}\right|=1$

Let $\left\{u_{i}\right\}=N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(u_{p}\right)^{++}$. We show that $d\left(u_{i}\right)+d\left(u_{i-1}\right)>n / 2$. Because:

$$
\begin{aligned}
n \geq|P| \geq & \left|N_{P}\left(u_{1}\right)\right|+\left|N_{P}\left(u_{1}\right)^{-}\right|+\left|N_{P}\left(u_{p}\right)^{+}\right|+\left|\left(N_{P}\left(u_{p}\right) \backslash u_{p-1}\right)^{++}\right| \\
& -\left|N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(u_{p}\right)^{++}\right| \\
= & 2 d\left(u_{1}\right)+2 d\left(u_{p}\right)-1-1 \geq \sigma_{4}-2 \geq n
\end{aligned}
$$

it holds that:

$$
\begin{equation*}
V(G)=V(P)=N_{P}\left(u_{1}\right) \cup N_{P}\left(u_{1}\right)^{-} \cup N_{P}\left(u_{p}\right)^{+} \cup\left(N_{P}\left(u_{p}\right) \backslash u_{p-1}\right)^{++} \tag{3}
\end{equation*}
$$

and:

$$
\begin{equation*}
d\left(u_{1}\right)+d\left(u_{p}\right)=\frac{n}{2}+1 \tag{4}
\end{equation*}
$$

Hence the order n is even.
Because:

$$
u_{i-3} \overleftarrow{P} u_{1} u_{i+1} u_{i} u_{i-1} u_{i-2} u_{p} \overleftarrow{P} u_{i+2} \in \mathcal{P}(V(R))
$$

we have $u_{i-3} u_{i+2} \notin E(G)$. If $u_{i-3} u_{1} \in E(G)$, then:

$$
u_{i-2} \notin N_{P}\left(u_{1}\right) \cup N_{P}\left(u_{1}\right)^{-} \cup N_{P}\left(u_{p}\right)^{+} \cup\left(N_{P}\left(u_{p}\right) \backslash u_{p-1}\right)^{++} .
$$

See Figure 2i. This contradicts (3). Thus $u_{i-3} u_{1} \notin E(G)$. Especially, u_{i-3} is not u_{2}.

Figure 2:

Similarly, if $u_{i+2} u_{p} \in E(G)$, then

$$
u_{i+2} \notin N_{P}\left(u_{1}\right) \cup N_{P}\left(u_{1}\right)^{-} \cup N_{P}\left(u_{p}\right)^{+} \cup\left(N_{P}\left(u_{p}\right) \backslash u_{p-1}\right)^{++} .
$$

See Figure 2ii. This also contradicts (3). Hence, $u_{i+2} u_{p} \notin E(G)$ and especially $u_{i+2} \neq u_{p-1}$. As $u_{1} u_{p} \notin E(G),\left\{u_{1}, u_{i-3}, u_{i+2}, u_{p}\right\}$ is an independent set.

Let $x_{1} x_{2}=u_{i-1} u_{i}$ and $w_{1}=u_{i-3}$ and $w_{2}=u_{i+2}$. Because $d\left(u_{1}\right)+d\left(u_{p}\right)+d\left(w_{1}\right)+$ $d\left(w_{2}\right) \geq \sigma_{4} \geq n+2$, we have:

$$
d\left(w_{1}\right)+d\left(w_{2}\right)=\frac{n}{2}+1
$$

by (2) and (4). Notice that none of $u_{1}, u_{p}, w_{1}, w_{2}$ are adjacent to x_{1} nor x_{2}; otherwise easily we can find a triangle or a desired cycle. Hence for each i, j,

$$
d\left(u_{1}\right)+d\left(u_{p}\right)+d\left(x_{i}\right)+d\left(w_{j}\right) \geq n+2 .
$$

Assume that $n / 2$ is even, say $2 l$. Then $d\left(u_{1}\right)+d\left(u_{p}\right)=d\left(w_{1}\right)+d\left(w_{2}\right)=2 l+1$. By symmetry, we can suppose that $d\left(w_{1}\right) \leq l$. Because:

$$
d\left(u_{1}\right)+d\left(u_{p}\right)+d\left(x_{i}\right)+d\left(w_{1}\right) \geq 4 l+2,
$$

we have $d\left(x_{i}\right) \geq l+1$ for $i=1,2$. Hence $d\left(x_{1}\right)+d\left(x_{2}\right) \geq 2 l+2>n / 2$.
Suppose $n / 2$ is odd, say $2 l+1$. Then $d\left(u_{1}\right)+d\left(u_{p}\right)=d\left(w_{1}\right)+d\left(w_{2}\right)=2 l+2$. By symmetry, we may assume that $d\left(w_{1}\right) \leq l+1$. Because:

$$
d\left(u_{1}\right)+d\left(u_{2}\right)+d\left(w_{1}\right)+d\left(x_{i}\right) \geq 4 l+4,
$$

we have $d\left(x_{i}\right) \geq l+1$ for $i=1,2$. Thus $d\left(x_{1}\right)+d\left(x_{2}\right) \geq 2 l+2>n / 2$.
Therefore, in either cases, $d\left(u_{i}\right)+d\left(u_{i-1}\right)>n / 2$, and hence we are done by Claim 1.

Case 2. $\left|N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(u_{p}\right)^{++}\right| \geq 2$.

Let $u_{i}, u_{j} \in N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(u_{p}\right)^{++}(i>j)$. If u_{i-1} is adjacent to u_{j-1}, then the cycle $u_{1} \vec{P} u_{j-1} u_{i-1} u_{i} u_{i}^{+} \vec{P} u_{p} u_{i-2} \overleftarrow{P} u_{j}^{+} u_{1}$ is a desired cycle. See Figure 3i. Therefore

Figure 3:
$u_{i-1} u_{j-1} \notin E(G)$. Similarly we can obtain $u_{i} u_{j} \notin E(G)$. See Figure 3ii. Hence:

$$
\begin{aligned}
& \left(d\left(u_{1}\right)+d\left(u_{p}\right)+d\left(u_{i-1}\right)+d\left(u_{j-1}\right)\right)+\left(d\left(u_{1}\right)+d\left(u_{p}\right)+d\left(u_{i}\right)+d\left(u_{j}\right)\right) \\
\geq & \sigma_{4}+\sigma_{4} \geq 2 n+4 .
\end{aligned}
$$

By symmetry, without loosing generality, we may assume:

$$
\begin{equation*}
d\left(u_{1}\right)+d\left(u_{p}\right)+d\left(u_{i-1}\right)+d\left(u_{i}\right) \geq n+2 . \tag{5}
\end{equation*}
$$

Let $e_{0}=x_{1} x_{2}=u_{i-1} u_{i}$ and C be the cycle $u_{1} \vec{P} u_{i-2} u_{p} \overleftarrow{P} u_{i+1} u_{1}=v_{1} v_{2} \ldots v_{p-2} v_{1}$ which occur on C in the order of their indices. Notice that a vertex in $N_{C}\left(e_{0}\right)^{+} \cup$ $\left\{x_{1}, x_{2}\right\}$ has no neighbours in $G-P$; otherwise P is not maximal. Let $v_{s} \in N_{C}\left(x_{2}\right)$ and $v_{t} \in N_{C}\left(x_{1}\right)$ and $I_{s}=v_{s}^{+} \vec{C} v_{t}$ and $I_{t}=v_{t}^{+} \vec{C} v_{s}$. If there is a vertex $v_{l} \in$ $N_{I_{s}}\left(v_{s}^{+}\right)^{-} \cap N_{I_{s}}\left(v_{t}^{+}\right)$, then the cycle: $v_{s}^{+} \vec{C} v_{l} v_{t}^{+} \vec{C} v_{s} x_{2} x_{1} v_{t} \overleftarrow{C} v_{l}^{+} v_{s}^{+}$is a desired cycle. See Figure 4i. Hence $N_{I_{s}}\left(v_{s}^{+}\right)^{-} \cap N_{I_{s}}\left(v_{t}^{+}\right)=\emptyset$. Similarly, we have that:

Figure 4:

$$
N_{I_{s}}\left(e_{0}\right)^{+} \cap N_{I_{s}}\left(v_{t}^{+}\right)=\emptyset \text { and } N_{I_{s}}\left(v_{s}^{+}\right)^{-} \cap N_{I_{s}}\left(x_{1}\right)^{+}=\emptyset .
$$

See Figure 4ii-iii. Hence:

$$
\left|I_{s}\right| \geq\left|N_{I_{s}}\left(v_{s}^{+}\right)^{-}\right|+\left|N_{I_{s}}\left(v_{t}^{+}\right)\right|+\left|\left(N_{I_{s}}\left(e_{0}\right) \backslash v_{t}\right)^{+}\right|-\left|N_{I_{s}}\left(v_{s}^{+}\right)^{-} \cap N_{I_{s}}\left(x_{2}\right)^{+}\right| .
$$

Let $L=N_{I_{s}}\left(v_{s}^{+}\right)^{-} \cap N_{I_{s}}\left(x_{2}\right)^{+}$. If L is not empty, then for any vertex $v_{l} \in$ $L, v_{l}^{+} \notin N_{I_{s}}\left(v_{s}^{+}\right)^{-}$because G is triangle-free. If $v_{l}^{+} v_{t}^{+} \in E(G)$, then the cycle $v_{l}^{-} x_{2} x_{1} v_{t} \overleftarrow{C} v_{l}^{+} v_{t}^{+} \vec{C} v_{l}^{-}$is a desired cycle. Since $v_{l}^{+} \notin N_{C}\left(e_{0}\right)^{+}$,

$$
v_{l}^{+} \notin N_{I_{s}}\left(v_{s}^{+}\right)^{-} \cup N_{I_{s}}\left(v_{t}^{+}\right) \cup N_{I_{s}}\left(e_{0}\right)^{+},
$$

and so:

$$
L^{+} \cap\left(N_{I_{s}}\left(v_{s}^{+}\right)^{-} \cup N_{I_{s}}\left(v_{t}^{+}\right) \cup N_{I_{s}}\left(e_{0}\right)^{+}\right)=\emptyset .
$$

Similarly, the vertex v_{s}^{++}is not contained in $N_{I_{s}}\left(v_{s}^{+}\right)^{-} \cup N_{I_{s}}\left(v_{t}^{+}\right) \cup N_{I_{s}}\left(e_{0}\right)^{+}$. Therefore:

$$
\begin{aligned}
\left|I_{s}\right| & \geq\left|N_{I_{s}}\left(v_{s}^{+}\right)^{-}\right|+\left|N_{I_{s}}\left(v_{t}^{+}\right)\right|+\left|\left(N_{I_{s}}\left(e_{0}\right) \backslash v_{t}\right)^{+}\right|-|L|+\left|L^{+}\right|+\left|\left\{v_{s}^{++}\right\}\right| \\
& \geq\left|N_{I_{s}}\left(v_{s}^{+}\right)\right|+\left|N_{I_{s}}\left(v_{t}^{+}\right)\right|+\left|N_{I_{s}}\left(e_{0}\right) \backslash v_{t}\right|+1 \\
& =d_{I_{s}}\left(v_{s}^{+}\right)+d_{I_{s}}\left(v_{t}^{+}\right)+d_{I_{s}}\left(x_{1}\right)+d_{I_{s}}\left(x_{2}\right) .
\end{aligned}
$$

By symmetry, we get $\left|I_{t}\right| \geq d_{I_{t}}\left(v_{s}^{+}\right)+d_{I_{t}}\left(v_{t}^{+}\right)+d_{I_{t}}\left(x_{1}\right)+d_{I_{t}}\left(x_{2}\right)$. By (5),

$$
\begin{aligned}
n-2 \geq|C|=\left|I_{s}\right|+\left|I_{t}\right| \geq & d_{I_{s}}\left(v_{s}^{+}\right)+d_{I_{s}}\left(v_{t}^{+}\right)+d_{I_{s}}\left(x_{1}\right)+d_{I_{s}}\left(x_{2}\right) \\
& +d_{I_{t}}\left(v_{s}^{+}\right)+d_{I_{t}}\left(v_{t}^{+}\right)+d_{I_{t}}\left(x_{1}\right)+d_{I_{t}}\left(x_{2}\right) \\
= & d\left(v_{s}^{+}\right)+d\left(v_{t}^{+}\right)+\left(d\left(x_{1}\right)-1\right)+\left(d\left(x_{2}\right)-1\right) \geq n
\end{aligned}
$$

This is a contradiction. The proof is completed now.

3 The Proof of Theorem 2

By Theorem 1 and the following lemma, it is enough to show that G is connected. Notice that if a graph is isomorphic to the exception of Theorem 1, then obviously for any two vertices, there is a cycle containing the specified vertices.

Lemma 4 ([17]). Let G be a connected graph such that for any path P, there exists a cycle C such that $|P-C| \leq 1$. Then for any set S with at most δ vertices, there exists a cycle C such that $S \subset V(C)$.

Lemma 5. Let G be a triangle-free graph and H a connected component of G. If $|H| \geq 3$, then there are non-adjacent vertices x, y in H such that $|H| \geq \max \{2 d(x), 2 d(y)\}$.

Proof. Let $P=u_{1} u_{2} \ldots u_{p}$ be a longest path of H. If $u_{1} u_{p} \notin E(G)$, then $|P| \geq$ $\left|N\left(u_{1}\right)\right|+\left|N\left(u_{1}\right)^{-}\right|+\left|\left\{u_{p}\right\}\right|=2 d\left(u_{1}\right)+1$. Hence by symmetry, we have $|H| \geq$ $\max \left\{2 d\left(u_{1}\right)+1,2 d\left(u_{p}\right)+1\right\}$, and so $\left\{u_{1}, u_{p}\right\}$ is a desired pair. If $u_{1} u_{p} \in E(G)$, then $u_{1} u_{p-1} \notin E(G)$, and $V(H)=V(P)$ as P is longest. Then, we have

$$
\left|P-u_{p}\right| \geq\left|N\left(u_{p-1}\right) \backslash u_{p}\right|+\left|\left(N\left(u_{p-1}\right) \backslash u_{p}\right)^{+}\right|+\left|u_{1}\right|=2 d\left(u_{p-1}\right)-1 .
$$

Therefore $|H| \geq 2 d\left(u_{p-1}\right)$. As in the above case, we can have $|H| \geq 2 d\left(u_{1}\right)$, and so $\left\{u_{1}, u_{p-1}\right\}$ is a desired pair.

Lemma 6. Let G be a triangle-free graph with $\delta \geq 2$. If $\sigma_{4} \geq n+1$, then G is connected.

Proof. Suppose G contains two connected components H_{1} and H_{2}. Then the assumption that G is triangle-free and $\delta \geq 2$ implies $H_{i} \geq 3$ for $i=1,2$. Therefore there are non-adjacent vertices x_{i}, y_{i} in H_{i} such that $\left|H_{i}\right| \geq \max \left\{2 d\left(x_{i}\right), 2 d\left(y_{i}\right)\right\}$ for $i=1,2$ by the previous lemma. Hence $d\left(x_{1}\right)+d\left(y_{1}\right)+d\left(x_{2}\right)+d\left(y_{2}\right) \geq \sigma_{4} \geq n+1$. By symmetry, we may assume $d\left(x_{1}\right)+d\left(x_{2}\right) \geq(n+1) / 2$. Thus $n \geq\left|H_{1}\right|+\left|H_{2}\right| \geq$ $2\left(d\left(x_{1}\right)+d\left(x_{2}\right)\right) \geq n+1$. A contradiction.

Acknowledgment

The authors wish to thank Professor Akira Saito for his comment.

References

[1] P. Ash and B. Jackson, Dominating cycles in bipartite graphs, Progress in graph theory (1984), 81-87
[2] M. Aung, Longest cycles in triangle-free graphs, J. Combin. Theory Ser. B 47 (1989) 171-186
[3] D. Bauer, J. van den Heuvel and E. Schmeichel, 2-factors in triangle-free graphs, J. Graph Theory 21 (1996) 405-412
[4] J. A. Bondy, Longest Paths and Cycles in Graphs of High Degree, Research Report CORR 80-16 (1980)
[5] H. J. Broersma, K. Yoshimoto and S. Zhang, Degree conditions and a dominating longest cycle. I, submitted
[6] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000)
[7] H. Enomoto, J. van den Heuvel, A. Kaneko and A. Saito, Relative length of long paths and cycles in graphs with large degree sums, J. Graph Theory 20 (1995) 213-225
[8] A. Kaneko and K. Yoshimoto, On longest cycles in a balanced bipartite graph with Ore type condition I, submitted
[9] A. Kaneko and K. Yoshimoto, On longest cycles in a balanced bipartite graph with Ore type condition II, submitted
[10] X. Li, B. Wei, Z. Yu and Y. Zhu, Hamilton cycles in 1-tough triangle-free graphs, Discrete Math. 254 (2002) 275-287
[11] J. Moon and L. Moser, On hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163-165.
[12] C. St. J. A. Nash-Williams, Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency, Studies in Pure Mathematics (Presented to Richard Rado) (1971) 157-183
[13] O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
[14] D. Paulusma and K. Yoshimoto, Cycles through specified vertices in a trianglefree graph, preprint
[15] H. J. Veldman, Existence of dominating cycles and paths in graphs, Discrete Math. 44 (1983) 309-316
[16] K. Yoshimoto, Degree conditions and a dominating longest cycle. II, submitted
[17] K. Yoshimoto, Cycles through specified vertices in a graph with Ore-type condition, preprint

A The Proof of Lemma 4

Proof. Let $S \subset V(G)$ and C a longest swaying cycle of S. Suppose $S-C \neq \emptyset$. For any vertex $x \in S-C$, there is a path Q joining x and C. Let P be a longest path containing $V(C \cup Q)$. Then there exists a cycle D such that $|P-D| \leq 1$. If x has neighbours in $G-C$, then $|P| \geq|C|+2$ and so $|D| \geq|C|+1$. Because $|D \cap S| \geq|C \cap S|$, this contradicts the assumption that C is a longest swaying cycle. Hence $N_{G-C}(x)=\emptyset$.

Because $|C \cap S|<\delta$ and $d_{C}(x)=d(x) \geq \delta$, there exist two vertices $v_{i}, v_{j} \in N(x)$ such that $v_{i+1}=v_{j}$ or $v_{i}^{+} \vec{C} v_{j}^{-} \subset C-S$. Hence the cycle $v_{i} x v_{j} \vec{C} v_{i}$ contains at least $|C \cap S|+1$ vertices of S. This contradicts the assumption that C is a swaying cycle.

[^0]: ${ }^{1}$ This work was done when the author was visiting Nihon University, supported by KAKENHI (13304005)
 ${ }^{2}$ Supported by KAKENHI (14740087)

