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Abstract

In this paper, we prove that if G is a triangle-free graph with minimum
degree at least two and σ4(G) ≥ |V (G)|+2, then for any path P , there exists
a cycle C such that |V (P ) \ V (C)| ≤ 1 or G is isomorphic to an exception.

Using this fact, easily we can show that for any set S of at most δ vertices,
there is a cycle C such that S ⊂ V (C) under same condition.

1 Introduction

The order of a graph is denoted by n throughout this paper and the minimum degree

is written by δ, and let:

σk(G) = min{
k∑

i=1

dG(xi) | x1, x2, . . . , xk are independent},

where dG(xi) is the degree of a vertex xi. If the independence number of G is less

than k, then we define σk(G) = ∞. For simplicity, we denote G − V (H) by G − H

and a cycle C is called dominating if G − C is edgeless.

Bondy [4] proved that if G is a 2-connected graph with σ3 ≥ n+2, then all longest

cycles are dominating. This lower bound is best possible by (Kk ∪ Kk ∪ Kk) ∗ K2.

1This work was done when the author was visiting Nihon University, supported by KAKENHI
(13304005)
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Enomoto et al. [7] generalized this fact as follows: if G is a 2-connected graph with

σ3 ≥ n + 2, then p(G) − c(G) ≤ 1, where p(G) and c(G) are the length of longest

paths and the circumference.

For triangle-free graphs, by the theorem of Broersma, Yoshimoto and Zhang [5],

it holds that a 2-connected triangle-free graph with σ3 ≥ (n + 5)/2 contains a

longest cycle that is dominating. The lower bound is sharp, even for the existence

of dominating cycles. In this theorem, longest cycles are not always dominating.

However, if σ2 ≥ (n + 1)/2, then all longest cycles are dominating [16]. This lower

bound is almost best possible by examples due to Ash and Jackson [1]. The purpose

of this paper is to show the following fact corresponding to the theorem by Enomoto

et al.

Theorem 1. Let G be a triangle-free graph with δ ≥ 2. If σ4 ≥ n + 2, then for any

path P , there exists a cycle C such that |P −C| ≤ 1 or G is isomorphic to the graph

in Figure 1i.

* * * *

(i) (ii)

Figure 1:

The lower bound of σ4 is best possible because the graph H = Kk−1 ∗Kk ∗K1 ∗
Kk ∗ Kk−1 contains a hamilton path and the minimum degree is (n + 1)/4, and so

σ4 = n + 1, however, the circumference is (n + 1)/2. See Figure 1ii. Moreover, high

connectivity is not useful for decreasing the lower bound of σ4 because we can add

edges between the left Kk−1 and the right Kk−1.

As an application of Theorem 1, the following is shown in Section 3:

Theorem 2. Let G be a triangle-free graph with δ ≥ 2. If σ4 ≥ n + 2, then for any

set S of at most δ vertices, there exists a cycle C such that S ⊂ V (C).
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From this fact, it holds that a triangle-fee graph with δ ≥ 2 and σ4 ≥ n + 2 is

2-connected. On the other hand, the graph H has a cut vertex, and so the lower

bound n + 2 of σ4 for the 2-connectivity is best possible. Because of the proof

of Theorem 2, we shall show a triangle-free graph with δ ≥ 2 and σ4 ≥ n + 1 is

connected. This lower bound is also sharp due to Kk,k ∪ Kk,k.

Finally, we give some additional definitions and notations. The set of all the

neighbours of a vertex x ∈ V (G) is denoted by NG(x) or simply N(x), and its

cardinality by dG(x) or d(x). For a subgraph H of G, we denote NG(x) ∩ V (H) by

NH(x) and its cardinality by dH(x). For simplicity, we denote |V (H)| by |H| and

“ui ∈ V (H)” by “ui ∈ H”. The set of neighbours
∪

v∈H NG(v) \ V (H) is written by

NG(H) or N(H), and for a subgraph F ⊂ G, NG(H)∩ V (F ) is denoted by NF (H).

Let C = v1v2 . . . vpv1 be a cycle with a fixed orientation. The segment vivi+1 . . . vj

is written by vi
−→
C vj where the subscripts are to be taken modulo |C|. The converse

segment vjvj−1 . . . vi is written by vj

←−
C vi. For a path P = u1u2 . . . up, also we denote

ui
−→
P uj = uiui+1 . . . uj and uj

←−
P ui = ujuj−1 . . . ui. The successor of ui is denoted by

u+
i and the predecessor by u−

i . For a vertex subset A in C, we write {u+
i | ui ∈ A}

and {u−
i | ui ∈ A} by A+ and A−, respectively.

All notation and terminology not explained here is given in [6].

2 The Proof of Theorem 1

For a vertex subset S, if a path P is longest in all paths containing S, then we call

P a maximal path for S, and the set of all the maximal paths is denoted by P(S).

At first, we show the following lemma.

Lemma 3. If G is a triangle-free graph with δ ≥ 2, then for any path R, there exists

a path in P(V (R)) such that the degree sum of the ends is at least σ4/2 or a cycle

C such that |R − C| ≤ 1 or G is isomorphic to the graph in Figure 1i.

Proof. Let R be any path in G and P = u1u2 . . . up ∈ P(V (R)) such that the

degree sum of the ends is maximal in P(V (R)). Notice that N(u1) = NP (u1) and

N(up) = NP (up). If there exist vertices ui ∈ N(u1) \ u2 and uj ∈ N(up) \ up−1

such that i ≤ j, then {u1, ui−1, uj+1, up} is an independent set; otherwise there is

a triangle or a cycle containing V (R), i.e., the cycle is a desired cycle. Because
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d(u1) + d(ui−1) + d(uj+1) + d(up) ≥ σ4, one of d(u1) + d(up) and d(ui−1) + d(uj+1)

is at least σ4/2. Therefore P or the path ui−1
←−
P u1ui

−→
P ujup

←−
P uj+1 is a desired path.

Assume that:

i > j for any vertices ui ∈ N(u1) \ u2 and uj ∈ N(up) \ up−1. (1)

Suppose there is a vertex us ∈ NP (u1) \ {u2, up−2}, and let ut ∈ N(up) \ up−1.

Then P ′ = ut+1
−→
P usu1

−→
P utup

←−
P us+1 ∈ P(V (R)). The vertex u1 is not adjacent to

ut+1 nor us+1; otherwise there is a triangle or a cycle containing V (R). And the

vertex up is not adjacent to ut+1 nor us+1 by the assumptions (1) and us ̸= up−2.

Thus {u1, ut+1, us+1, up} is an independent set, and hence one of the paths P and

P ′ is a desired path as in the previous case. Therefore N(u1) = {u2, up−2} and, by

symmetry, N(up) = {u3, up−1}. Furthermore, by the maximality of the degree sum

of the ends of P :

the degree of an end of any path in P(V (R)) is two.

Because the path u1u2u3up

←−
P u4 is in P(V (R)), the vertex u1 has to be adjacent

to u++
4 = u6; otherwise, as in the above case, we can obtain a desired cycle or path.

Therefore u6 = up−2, i.e., p = 8, and so any vertex in {u1, u2, u4, u5, u7, u8} is the

end of some path in P(V (R)), and has degree two. As G is triangle-free, the vertices

u1, u5 and u7 are mutually disjoint. If G− P is not empty, then for any x ∈ G− P ,

{x, u1, u5, u7} is an independent set. Hence:

d(x) ≥ σ4 − (d(u1) + d(u5) + d(u7)) ≥ n + 2 − 6 = n − 4.

However, x is adjacent to none of {u1, u2, u4, u5, u7, u8} because these degrees are

two. Thus d(x) ≤ n − 7, a contradiction. Therefore G − P = ∅ and n = 8. As u3 is

adjacent to none of u1, u5 nor u7, the vertex u3 has to be adjacent to u6; otherwise

d(u1) + d(u3) + d(u5) + d(u7) = 9 < n + 2. Hence G is isomorphic to the graph in

Figure 1i.

Assume that G is not isomorphic to the graph in Figure 1i. By the previous

lemma, we can suppose the independence number of G is at least four; otherwise we

are done. Let R be any path in G and P = u1u2 . . . up ∈ P(V (R)) such that:

the degree sum of the ends is maximal in P(V (R)). (2)
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Then from Lemma 3, d(u1) + d(up) ≥ σ4/2. Notice that we may assume that there

is no path in P(V (R)) whose ends are adjacent; otherwise obviously there exists a

cycle containing V (R).

If there is ul ∈ NP (u1) ∩ NP (up)
+, then the cycle u1

−→
P u−

l up
←−
P ulu1 is a desired

cycle. Thus we can suppose NP (u1) ∩ NP (up)
+ = ∅. Similarly, we get NP (u1) ∩

NP (up)
++ = ∅ and NP (u1)

− ∩ NP (up)
+ = ∅. If NP (u1)

− ∩ NP (up)
++ is also empty,

then NP (u1), NP (u1)
−, NP (up)

+ and (NP (up) \ up)
++ are mutually disjoint. Hence:

n ≥ |P | ≥ |NP (u1)| + |NP (u1)
−| + |NP (up)

+| + |(NP (up) \ up)
++|

≥ 2d(u1) + 2d(up) − 1 ≥ σ4 − 1 > n.

This is a contradiction. Therefore NP (u1)
− ∩ NP (up)

++ ̸= ∅.
Let ui ∈ NP (u1)

− ∩ NP (up)
++.

Claim 1. If d(ui) + d(ui−1) > n/2, then there is a desired cycle.

Proof. Let e0 = x1x2 = ui−1ui and:

C = u1
−→
P ui−2up

←−
P ui+1u1 = v1v2 . . . vp−2v1

which occur on C in the order of their indices. Notice that N(e0) = N(x1)∪N(x2)\
{x1, x2} ⊂ V (C) because P is a maximal path for V (R).

If N(e0) and N(e0)
+ are not disjoint, then there exists a triangle or a desired

cycle. Hence N(e0) ∩ N(e0)
+ = ∅. In the set of segments C − N(e0), there are two

segments v+
s

−→
C v−

s′ and v+
t

−→
C v−

t′ such that {vs, vt′} ⊂ N(x1) and {vs′ , vt} ⊂ N(x2).

Then vs+2, vt+2 /∈ NC(e0) ∪ NC(e0)
+; otherwise there is a desired cycle. Therefore:

n − 2 ≥ |C| ≥ |N(e0)| + |N(e0)
+| + |{vs+2, vt+2}|

= |NC(x1)| + |NC(x1)
+| + |NC(x2)| + |NC(x2)

+| + |{vs+2, vt+2}|

= 2(d(x1) − 1) + 2(d(x2) − 1) + 2 = 2(d(x1) + d(x2)) − 2 > n − 2.

This is a contradiction.

If δ ≥ (n + 2)/4, then our proof is completed now by this claim. We divide our

argument into two cases.

Case 1. |NP (u1)
− ∩ NP (up)

++| = 1
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Let {ui} = NP (u1)
− ∩NP (up)

++. We show that d(ui)+ d(ui−1) > n/2. Because:

n ≥ |P | ≥ |NP (u1)| + |NP (u1)
−| + |NP (up)

+| + |(NP (up) \ up−1)
++|

−|NP (u1)
− ∩ NP (up)

++|

= 2d(u1) + 2d(up) − 1 − 1 ≥ σ4 − 2 ≥ n,

it holds that:

V (G) = V (P ) = NP (u1) ∪ NP (u1)
− ∪ NP (up)

+ ∪ (NP (up) \ up−1)
++ (3)

and:

d(u1) + d(up) =
n

2
+ 1. (4)

Hence the order n is even.

Because:

ui−3

←−
P u1ui+1uiui−1ui−2up

←−
P ui+2 ∈ P(V (R)),

we have ui−3ui+2 /∈ E(G). If ui−3u1 ∈ E(G), then:

ui−2 /∈ NP (u1) ∪ NP (u1)
− ∪ NP (up)

+ ∪ (NP (up) \ up−1)
++.

See Figure 2i. This contradicts (3). Thus ui−3u1 /∈ E(G). Especially, ui−3 is not u2.

ui ui+2u1

(ii)

uiui-3u1 up

(i)
ui-2 up

Figure 2:

Similarly, if ui+2up ∈ E(G), then

ui+2 /∈ NP (u1) ∪ NP (u1)
− ∪ NP (up)

+ ∪ (NP (up) \ up−1)
++.

See Figure 2ii. This also contradicts (3). Hence, ui+2up /∈ E(G) and especially

ui+2 ̸= up−1. As u1up /∈ E(G), {u1, ui−3, ui+2, up} is an independent set.

Let x1x2 = ui−1ui and w1 = ui−3 and w2 = ui+2. Because d(u1)+d(up)+d(w1)+

d(w2) ≥ σ4 ≥ n + 2, we have:

d(w1) + d(w2) =
n

2
+ 1
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by (2) and (4). Notice that none of u1, up, w1, w2 are adjacent to x1 nor x2; otherwise

easily we can find a triangle or a desired cycle. Hence for each i, j,

d(u1) + d(up) + d(xi) + d(wj) ≥ n + 2.

Assume that n/2 is even, say 2l. Then d(u1) + d(up) = d(w1) + d(w2) = 2l + 1. By

symmetry, we can suppose that d(w1) ≤ l. Because:

d(u1) + d(up) + d(xi) + d(w1) ≥ 4l + 2,

we have d(xi) ≥ l + 1 for i = 1, 2. Hence d(x1) + d(x2) ≥ 2l + 2 > n/2.

Suppose n/2 is odd, say 2l + 1. Then d(u1) + d(up) = d(w1) + d(w2) = 2l + 2.

By symmetry, we may assume that d(w1) ≤ l + 1. Because:

d(u1) + d(u2) + d(w1) + d(xi) ≥ 4l + 4,

we have d(xi) ≥ l + 1 for i = 1, 2. Thus d(x1) + d(x2) ≥ 2l + 2 > n/2.

Therefore, in either cases, d(ui) + d(ui−1) > n/2, and hence we are done by

Claim 1.

Case 2. |NP (u1)
− ∩ NP (up)

++| ≥ 2.

Let ui, uj ∈ NP (u1)
− ∩ NP (up)

++ (i > j). If ui−1 is adjacent to uj−1, then the

cycle u1
−→
P uj−1ui−1uiu

+
i

−→
P upui−2

←−
P u+

j u1 is a desired cycle. See Figure 3i. Therefore

u1

up

u1

up (ii)(i)
ui ui-1

uj
uj-1

ui ui-1

uj
uj-1

Figure 3:

ui−1uj−1 /∈ E(G). Similarly we can obtain uiuj /∈ E(G). See Figure 3ii. Hence:

(d(u1) + d(up) + d(ui−1) + d(uj−1)) + (d(u1) + d(up) + d(ui) + d(uj))

≥ σ4 + σ4 ≥ 2n + 4.
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By symmetry, without loosing generality, we may assume:

d(u1) + d(up) + d(ui−1) + d(ui) ≥ n + 2. (5)

Let e0 = x1x2 = ui−1ui and C be the cycle u1
−→
P ui−2up

←−
P ui+1u1 = v1v2 . . . vp−2v1

which occur on C in the order of their indices. Notice that a vertex in NC(e0)
+ ∪

{x1, x2} has no neighbours in G− P ; otherwise P is not maximal. Let vs ∈ NC(x2)

and vt ∈ NC(x1) and Is = v+
s

−→
C vt and It = v+

t

−→
C vs. If there is a vertex vl ∈

NIs(v
+
s )− ∩ NIs(v

+
t ), then the cycle: v+

s

−→
C vlv

+
t

−→
C vsx2x1vt

←−
C v+

l v+
s is a desired cycle.

See Figure 4i. Hence NIs(v
+
s )− ∩ NIs(v

+
t ) = ∅. Similarly, we have that:

(i)

x1x2

vs

vs
+

vt
(ii) (iii)

x1

x2

vs

vs
+

vt
+

x1

x2

vs

vt
+

vl

vl
+

Figure 4:

NIs(e0)
+ ∩ NIs(v

+
t ) = ∅ and NIs(v

+
s )− ∩ NIs(x1)

+ = ∅.

See Figure 4ii-iii. Hence:

|Is| ≥ |NIs(v
+
s )−| + |NIs(v

+
t )| + |(NIs(e0) \ vt)

+| − |NIs(v
+
s )− ∩ NIs(x2)

+|.

Let L = NIs(v
+
s )− ∩ NIs(x2)

+. If L is not empty, then for any vertex vl ∈
L, v+

l /∈ NIs(v
+
s )− because G is triangle-free. If v+

l v+
t ∈ E(G), then the cycle

v−
l x2x1vt

←−
C v+

l v+
t

−→
C v−

l is a desired cycle. Since v+
l /∈ NC(e0)

+,

v+
l /∈ NIs(v

+
s )− ∪ NIs(v

+
t ) ∪ NIs(e0)

+,

and so:

L+ ∩ (NIs(v
+
s )− ∪ NIs(v

+
t ) ∪ NIs(e0)

+) = ∅.
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Similarly, the vertex v++
s is not contained in NIs(v

+
s )− ∪NIs(v

+
t )∪NIs(e0)

+. There-

fore:

|Is| ≥ |NIs(v
+
s )−| + |NIs(v

+
t )| + |(NIs(e0) \ vt)

+| − |L| + |L+| + |{v++
s }|

≥ |NIs(v
+
s )| + |NIs(v

+
t )| + |NIs(e0) \ vt| + 1

= dIs(v
+
s ) + dIs(v

+
t ) + dIs(x1) + dIs(x2).

By symmetry, we get |It| ≥ dIt(v
+
s ) + dIt(v

+
t ) + dIt(x1) + dIt(x2). By (5),

n − 2 ≥ |C| = |Is| + |It| ≥ dIs(v
+
s ) + dIs(v

+
t ) + dIs(x1) + dIs(x2)

+dIt(v
+
s ) + dIt(v

+
t ) + dIt(x1) + dIt(x2)

= d(v+
s ) + d(v+

t ) + (d(x1) − 1) + (d(x2) − 1) ≥ n

This is a contradiction. The proof is completed now.

3 The Proof of Theorem 2

By Theorem 1 and the following lemma, it is enough to show that G is connected.

Notice that if a graph is isomorphic to the exception of Theorem 1, then obviously

for any two vertices, there is a cycle containing the specified vertices.

Lemma 4 ([17]). Let G be a connected graph such that for any path P , there exists

a cycle C such that |P − C| ≤ 1. Then for any set S with at most δ vertices, there

exists a cycle C such that S ⊂ V (C).

Lemma 5. Let G be a triangle-free graph and H a connected component of G. If

|H| ≥ 3, then there are non-adjacent vertices x, y in H such that |H| ≥ max{2d(x), 2d(y)}.

Proof. Let P = u1u2 . . . up be a longest path of H. If u1up /∈ E(G), then |P | ≥
|N(u1)| + |N(u1)

−| + |{up}| = 2d(u1) + 1. Hence by symmetry, we have |H| ≥
max{2d(u1) + 1, 2d(up) + 1}, and so {u1, up} is a desired pair. If u1up ∈ E(G), then

u1up−1 /∈ E(G), and V (H) = V (P ) as P is longest. Then, we have

|P − up| ≥ |N(up−1) \ up| + |(N(up−1) \ up)
+| + |u1| = 2d(up−1) − 1.

Therefore |H| ≥ 2d(up−1). As in the above case, we can have |H| ≥ 2d(u1), and so

{u1, up−1} is a desired pair.
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Lemma 6. Let G be a triangle-free graph with δ ≥ 2. If σ4 ≥ n + 1, then G is

connected.

Proof. Suppose G contains two connected components H1 and H2. Then the as-

sumption that G is triangle-free and δ ≥ 2 implies Hi ≥ 3 for i = 1, 2. Therefore

there are non-adjacent vertices xi, yi in Hi such that |Hi| ≥ max{2d(xi), 2d(yi)} for

i = 1, 2 by the previous lemma. Hence d(x1) + d(y1) + d(x2) + d(y2) ≥ σ4 ≥ n + 1.

By symmetry, we may assume d(x1) + d(x2) ≥ (n + 1)/2. Thus n ≥ |H1| + |H2| ≥
2(d(x1) + d(x2)) ≥ n + 1. A contradiction.
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A The Proof of Lemma 4

Proof. Let S ⊂ V (G) and C a longest swaying cycle of S. Suppose S − C ̸= ∅.
For any vertex x ∈ S − C, there is a path Q joining x and C. Let P be a longest

path containing V (C ∪ Q). Then there exists a cycle D such that |P − D| ≤ 1.

If x has neighbours in G − C, then |P | ≥ |C| + 2 and so |D| ≥ |C| + 1. Because

|D∩S| ≥ |C ∩S|, this contradicts the assumption that C is a longest swaying cycle.

Hence NG−C(x) = ∅.
Because |C ∩S| < δ and dC(x) = d(x) ≥ δ, there exist two vertices vi, vj ∈ N(x)

such that vi+1 = vj or v+
i

−→
C v−

j ⊂ C − S. Hence the cycle vixvj
−→
C vi contains at

least |C ∩ S|+ 1 vertices of S. This contradicts the assumption that C is a swaying

cycle.
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