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Abstract
Statistical learning machines that have singularities in the parameter space, such as

hidden Markov models, Bayesian networks, and neural networks, are widely used in the
field of information engineering. Singularities in the parameter space determine the accu-
racy of estimation in the Bayesian scenario. The Newton diagram in algebraic geometry
is recognized as an effective method by which to investigate a singularity. The present
paper proposes a new technique to plug the diagram in the Bayesian analysis. The pro-
posed technique allows the generalization error to be clarified and provides a foundation
for efficient model selection. We apply the proposed technique to mixtures of binomial
distributions.
Keywords: Bayes generalization error, Statistical singular models, Newton diagram

1 Introduction

One of the tasks in the statistical machine learning is to investigate the generalization perfor-

mance. In particular, in parametric models, there have been a number of theoretical studies

on generalization under various conditions. Identifiability is an important condition in order to

guarantee that the model is statistically regular in the asymptotic situation. However, almost

all practical machines, e.g., mixture models, hidden Markov models, and Bayesian networks,

are unidentifiable (we present a formal definition in Section 2.1).
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The importance of the study of unidentifiable models has been reported (Hartigan, 1985;

Amari & Ozeki, 2001). In some models, such as mixture models, the maximum likelihood

estimator often diverges. Dacunha-Castelle and Gassiat (Dacunha-Castelle & Gassiat, 1997)

proposed that the asymptotic behavior of the log likelihood ratio of the maximum likelihood

method can be analyzed based on the theory of empirical processes by choosing a locally conic

parameterization. Hagiwara (Hagiwara, 2002) has shown that the maximum likelihood method

makes training errors very small but conjectured that this method also makes generalization

errors very large. These results imply that the Bayes estimation also requires a novel method

to analyze the unidentifiable models.

Therefore, the algebraic geometrical analysis was developed for the Bayesian scenario

(Watanabe, 2001). This analysis allows the asymptotic form of the generalization error to

be derived in many unidentifiable models (Aoyagi & Watanabe, 2005; Rusakov & Geiger, 2005;

Yamazaki & Watanabe, 2003a; Yamazaki & Watanabe, 2003b; Yamazaki & Watanabe, 2005b;

Yamazaki & Watanabe, 2005a). Using these theoretical forms of the error, a number of approxi-

mation methods, such as the variational and empirical Bayes methods, are evaluated (Watanabe

& Watanabe, 2006; Nakajima & Watanabe, 2007). Moreover, the coefficient of the leading term

in the form includes the information of the distribution generating data and can be used for

model selection (Yamazaki et al., 2006). Therefore, it is necessary to reveal the generalization

error of unidentifiable models for both theoretical and practical interests.

The algebraic geometrical approach reveals that the properties of singularities in the pa-

rameter space are essential in order to determine the accuracy of Bayes estimation. In algebraic

geometry, singularities have been investigated for a long time, and it has been proven that the

properties can be clarified by iterative blow-up (Hironaka, 1964). The former study (Aoyagi

& Watanabe, 2004) follows this method in order to reveal the asymptotic error of neural net-

works. However, the transform could be very complicated, and the iterative method is not

straightforward when the parameter space is high dimensional. The Newton diagram is an-

other tool that can be used to find the transform (Fulton, 1993; Ewald, 1996). It is known that

the blowing-up method is always available for the singularities, to which the Newton diagram

method is applicable. These two methods are actually equivalent in the sense of the final result

of transform. However, the processes to find it are totally different from each other. Compared

with the iterative method, the Newton diagram is geometrically intuitive and has a smaller

computational cost. Therefore, in the present paper, we propose a new approach to utilize the

diagram as a sophisticated analysis for unidentifiable models and demonstrate the efficiency

of this method by applying it to mixtures of binomial distributions. Actually, the mixture

of binomial distributions is a practical model used for the gene analysis and the mutational

spectrum analysis (Glazko et al., 1998). However, it is not straightforward to confirm whether
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our asymptotic result is still valid in some real-world situation. Then, this paper focuses on

the comparison between the iterative and proposed methods.

The remainder of the present paper is organized as follows. Section 2 summarizes the Bayes

estimation and briefly introduces the algebraic geometrical method. Section 3 describes the

Newton diagram through an example. The formal definitions are presented in the Appendices.

In Section 4, we consider the application of the proposed method to mixture models. Finally,

the discussion and conclusions are presented in Section 5.

2 Bayes Estimation and Singularities

In this section, we show that the Bayes generalization error given by the average Kullback

divergence is determined by a zeta function. This is the relationship between the statistical

learning theory and algebraic geometry.

2.1 Bayesian Learning on Unidentifiable Models

Let Xn = (X1, X2, · · · , Xn), such that Xi ∈ RM is a set of training samples that are indepen-

dently and identically distributed. The number of training samples is n. The training samples

and testing samples are taken from the true probability distribution q(x). Let p(x|w) and ϕ(w)

be a learning machine and a prior, respectively. Then, the a posteriori probability distribution

is defined by

p(w|Xn) =
1

Z0(Xn)
ϕ(w)

n∏
i=1

p(Xi|w), (1)

where Z0(X
n) is a normalizing constant. The Bayesian predictive distribution p(x|Xn) is given

by

p(x|Xn) =

∫
p(x|w)p(w|Xn)dw. (2)

The generalization error G(n) is the average Kullback information from the true distribution

to the Bayesian predictive distribution,

G(n) = EXn

[∫
q(x) log

q(x)

p(x|Xn)
dx

]
, (3)

where EXn [·] is the expectation over all samples. The error is a decreasing function with respect

to the sample size n. The asymptotic form is given by

G(n) =
λ

n
− m − 1

n log n
+ o

( 1

n log n

)
, (4)
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when the learning machine p(x|w) can attain the true model q(x), i.e., when there exist the true

parameters, which are defined by {w∗|p(x|w∗) = q(x)}. The existence of w∗ causes the error to

go to zero as the sample size increases. Eq. (4) shows that the posterior is constructed around

the true parameters and that distributed points from the posterior make the error converge

to zero. The terms in the asymptotic form show the speed of convergence. In identifiable

models, λ = d/2 and m = 1, where d is the number of parameters. The coefficient λ is

strongly connected to the score of the model selection (Levin et al., 1989; Yamanishi, 1998).

For example, λ = d/2 in identifiable models appears in the penalty term of BIC (Schwarz,

1978) or MDL (Rissanen, 1986).

Here, let us formally define the identifiability.

Definition 1 (identifiability) If p(x|w1) 6= p(x|w2) for w1 6= w2, the model p(x|w) is identi-

fiable. Otherwise, it is unidentifiable.

Our model p(x|w) now includes unidentifiable cases. The true parameters construct a set of

parameters. If the set consists of only a point, the model is identifiable and the posterior

asymptotically converges to a Gaussian distribution, the mean of which is the point. It is not

a special case that the true model q(x) is expressed as a set of parameters {w∗}. For example,

let q(x) = N(x; 0, 1) and p(x|w) = aN(x; b, 1) + (1 − a)N(x; c, 1), where x ∈ R1, N(x; µ, σ2)

is a Gaussian distribution with the mean µ and the variance σ2, and w = {a, b, c}, such that

0 ≤ a ≤ 1. The true parameters are expressed as the set {a = 1, b = 0} ∪ {a = 0, c = 0} ∪ {b =

c = 0}. This means that the model is unidentifiable if the size of the learning model is larger

than that of the true model. Such a situation often occurs in practice.

2.2 Singularities and the Generalization Error

We next explain how to calculate the coefficients λ and m in Eq.(4). We define the Kullback

divergence from the true distribution q(x) to the learning model p(x|w) by

H(w) =

∫
q(x) log

q(x)

p(x|w)
dx, (5)

and assume that it is an analytic function. Watanabe (Watanabe, 2001) proved that λ and m

are defined by the largest pole of a zeta function

J(z) =

∫
H(w)zϕ(w)dw, (6)

where z is a complex variable. This zeta function is known to have poles on only real negative

rational points. Let the largest pole and its order be −λ and m, respectively. Then, these

factors determine the Bayes generalization error.
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Example 1 Let the Kullback divergence be defined by

H(w) = w2
1w

2
2w

4
3w

6
4, (7)

where w = {w1, w2, w3, w4} are the parameters of some learning model. For simplicity, a prior

is the uniform distribution [−1, 1], for each wi. The zeta function is then given by

J(z) ∝
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

(w2
1w

2
2w

4
3w

6
4)

zdw1dw2dw3dw4. (8)

It is easy to integrate the function and find the poles,

J(z) ∝ 1

(2z + 1)2

1

4z + 1

1

6z + 1
f(z), (9)

where f(z) is a holomorphic function. Note that the holomorphic function does not affect

the poles. Thus, the largest pole z = −λ = −1/6 and its order m = 1 are derived. The

generalization error is asymptotically calculated as

G(n) =
1

6n
+ o

( 1

n log n

)
. (10)

As you may notice, the integration can be computed if H(w) takes the form

H(w) = fc(w)
d∏

i=1

w2αi
i , (11)

where αi ∈ Z and fc(w) is positive in the neighborhood of w = 0. In the present paper,

this form is referred to as the product form. If Eq.(5) has a polynomial form such as H(w) =

(w1w2+w3w4)
2, there is a mapping w = g(u), where H(g(u)) has the product form with respect

to u (Hironaka, 1964). It is proved that the mapping will be found by the iteration of blow-ups,

which is a special coordinate transform. The final mapping g(u) is referred to as the resolution

of singularities.

In the statistical learning, H(w) is not in product form and finding the resolution of singu-

larities is still complicated (Aoyagi & Watanabe, 2005). Under certain conditions, the Newton

diagram allows g(u) to be found in a very systematic and geometric manner, as will be described

in the following section.

3 Newton Diagram and Resolution of Singularities

In this section, we introduce the Newton diagram and its relation to the resolution of singular-

ities. According to this method, we can rewrite the polynomial form of H(w) in product form
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Figure 1: (a) Newton diagram, (b) fan, and (c) subdivided fan

H(g(u)) and find the largest pole of the zeta function. This method will be explained with a

simple intuitive example. Refer to the appendix for the formal notations.

Assume that H(w) is defined as

H(w) = w5
1 + w3

1w
3
2 + w2

1w
2
2 + w5

2, (12)

where w = (w1, w2). Let us consider the space of the exponent part, where (x, y) corresponds

to (wx
1 , w

y
2). In this space, Eq. (12) has four points v = (5, 0), (3, 3), (2, 2), (0, 5). The Newton

diagram is the shaded area in Fig.1 (a) constructed by these points. (See the formal definition

in the appendix.) The face is the border of the diagram. Note that, when the diagram is d

dimensional, there are d − 1, d − 2, . . . , 1, 0 dimensional faces as the border. In this example,

there are four faces, f1=[(0, 5), (2, 2)], f2=[(2, 2), (5, 0)], [(0, 5), (0,∞)], and [(5, 0), (∞, 0)]. (The

zero-dimensional faces are abbreviated.)

Let us define the following functions:

fγ1(w) = w5
2 + w2

1w
2
2, (13)

fγ2(w) = w5
1 + w2

1w
2
2, (14)

which consist of the compact faces f1 and f2, respectively. The function H(w) is non-

degenerative iff ∀i{
(w1, w2)|

∂fγi(w)

∂w1

=
∂fγi(w)

∂w2

= 0

}
⊂ {(w1, w2)|w1w2 = 0}. (15)

This is the condition for applying the Newton diagram. We can easily confirm that the function

(12) is non-degenerate. According to the definition,{
∂fγ1(w)

∂w1
= 2w1w

2
2 = 0

∂fγ1(w)

∂w2
= 5w4

2 + 2w2
1w2 = 0.

(16)
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The solution space is w2 = 0, which is included in {w1w2 = 0}. Evaluating ∂fγ2(w)/∂w1 =

∂fγ2(w)/∂w2 = 0, we can derive the solution space w1 = 0 ⊂ {w1w2 = 0}.
The fan is defined by orthogonal vectors of the face. Consider a parallelogram that consists

of two arbitrary vectors of the fan. If the parallelogram includes a point of the lattice, add the

vector from the origin to the point. The subdivided fan is defined by adding the vectors until

there is no point in the parallelograms. The fan and the subdivided fan of the Newton diagram

are shown by (b) and (c), respectively, in Fig. 1. For example, considering the parallelogram

spanned by (1, 0) and (3, 2), we can find the inner point (2, 1) of the lattice. In the similar way,

we can find (1, 2) and (1, 1), too. Note that the subdivided fan is regarded as base vectors in the

lattice space, which allows the fan to include neither (2, 2) nor (3, 1). For higher dimensional

cases, see (Fulton, 1993).

Choose two vectors, such as (3, 2) and (1, 1), from the subdivided fan and define the matrix

A =

(
3 1
2 1

)
with combining them.

If det A = ±1, the mapping according to the matrix such that{
w1 = u3

1u
1
2

w2 = u2
1u

1
2

(17)

provides the product form (11),

H(g(u)) = u10
1 u4

2(u
5
1u2 + u5

1u
2
2 + 1 + u2). (18)

We can find a resolution of singularities at the origin considering all sets of vectors such that

det A = ±1. Each A provides local coordinates.

In order to find the largest pole of the zeta function determined by Eq. (6), it is necessary to

find an efficient vector of the subdivided fan in the Newton diagram. The largest pole depends

on the ratio between the Jacobian |g′(u)| and the power of the common factor in H(g(u)). If

a vector of the subdivided fan is (a1, . . . , aj, . . . , ad) and H(g(u)) has the common factor uβ
j , a

pole is z = −α/β, where α =
∑

i aj. For example, α = 3 + 2 = 5 for u1 in the above mapping.

It is easy to find β = 10 in (18). Then a pole is calculated by z = −5/10 = −1/2. Finding the

largest pole requires to check all possible variables uj with all possible matrices A.

Here, we summarize the above-mentioned procedure as an algorithm.

Algorithm 1 (Resolution of singularities with the Newton diagram)

1. Draw the Newton diagram of H(w).
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2. Find the faces.

3. Verify that H(w) is non-degenerative.

4. Find and subdivide the fan.

5. Select d vectors and define the mapping A such that det A = ±1.

6. Find the largest pole based on all possible As.

Note that d is the dimension of the parameter space. Because of the subdivision of the fan, we

can always find the matrix A in 5. Moreover, an algorithm and software can be used to find

the faces, fans, and A automatically (Aranson, 2001).

If a learning machine has degenerative H(w), we cannot apply this method directly. There-

fore, we propose a method by which to change the function into a non-degenerative function.

This method is described in the next section.

4 Application to the Mixture Model

In this section, let us apply the proposed method to a mixture of binomial distributions and

analyze the generalization error. Mixture models are commonly used in a number of engineer-

ing fields and are representative singular models. The binomial mixture model has a simple

structure of the parameter space because each component consists of a parameter. Therefore,

as the first step for developing the proposed method, we focus on the model in order to apply

the proposed method. It is a challenging future study to extend the result to other mixture

models.

First, we formulate the model and derive the Kullback divergence. Since the divergence

is degenerative, the Newton diagram is not directly applicable. Therefore, we next propose a

method by which to change the coordinates of the parameter space, which makes the diagram

usable.

4.1 Mixture of Binomial Distributions

A mixture of binomial distributions is formulated by

p(x = k|w) =

(
N

k

) {
K∑

i=1

aip
k
i (1 − pi)

N−k

}
, (19)

where N,K are integers such that 2K ≥ N , k = 0, 1, · · · , N , (N k)T is the number of combi-

nations of N elements taken k at a time, and

w = ({ai}K−1
i=1 , {pi}K

i=1) (20)
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is a parameter such that 0 < pi ≤ 1/2, ai ≥ 0, and

aK = 1 −
K−1∑
i=1

ai. (21)

A binomial distribution is defined by (
N

k

)
p̄k(1 − p̄)N−k, (22)

where 1 < p̄ ≤ 1/2. Thus, the mixture (19) has K components.

4.2 Kullback Divergence of the Binomial Mixture Model

We use the following notation:

H(w) ≷ K(w), (23)

where there are positive constants C1, C2 such that

C1K(w) ≤ H(w) ≤ C2K(w) (24)

in the neighborhood of H(w) = 0. Assume that the true distribution, which generates data,

consists of K0 components,

q(x = k) =

(
N

k

) {
K0∑
i=1

a∗
i p

∗k
i (1 − p∗i )

N−k

}
, (25)

where 0 < p∗i ≤ 1/2 are constants, p∗1 < p∗2 < · · · < p∗K0
, a∗

i > 0 and a∗
K0

= 1 −
∑K0−1

i=1 a∗
i . The

algebraic geometrical method requires the Kullback divergence, which is integral with respect

to x (Eq.(5) and Example 1). When x is discrete, the Kullback divergence has a convenient

property:

Lemma 1 For a discrete domain X, it holds that

H(w) =
∑
x∈X

q(x) log
q(x)

p(x|w)
(26)

≷
∑
x∈X

{
p(x|w) − q(x)

}2
. (27)

Proof: Let us define a function of y ∈ R1 as

S(y) = log y + y − 1 (28)

10



for y > 0. It is easy to confirm that there are constants Cy1 and Cy2 such that

Cy1(y − 1)2 ≤ S(y) ≤ Cy2(y − 1)2 (29)

in the neighborhood of y = 1. Therefore,

H(w) =
∑
x∈X

q(x)S(p(x|w)/q(x)) (30)

≷
∑
x∈X

q(x)
{p(x|w)

q(x)
− 1

}2
(31)

≷
∑
x∈X

{
p(x|w) − q(x)

}2
. (32)

(End of Proof)

As for the Kullback divergence of the binomial mixture, we can prove the following theorem:

Theorem 1 If the learning machine is given by (19) and the true distribution is given by (25),

the Kullback information (5) satisfies

H(w) ≷
N∑

k=1

{
K∑

j=1

ajp
k
j −

K0∑
j=1

a∗
jp

∗k
j

}2

. (33)

Recall that a constant factor in the Kullback divergence does not affect the largest pole of the

zeta function. Therefore, the generalization error is determined by the zeta function of the

expression in the right-hand side, which no longer contains the term x.

Proof: Using Lemma 1, we can express the Kullback divergence of Eq. (5) as

H(w) ≷
N∑

k=0

[p(x = k|w) − q(x = k)]2 . (34)

According to a property of ≷, it holds that

H(w) = f(w)2 + {f(w) + cg(w)}2 (35)

≷ f(w)2 + g(w)2, (36)
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where c is a constant. Starting with the case k = N , we can recursively apply this relation;

H(w) ≷
N∑

k=0

{
K∑

j=1

aj(1 − pj)
N−kpk

j −
K0∑
j=1

a∗
j(1 − p∗j)

N−kp∗kj

}2

(37)

=
N−1∑
k=0

{
K∑

j=1

aj(1 − pj)
N−kpk

j −
K0∑
j=1

a∗
j(1 − p∗j)

N−kp∗kj

}2

+

{
K∑

j=1

ajp
N
j −

K0∑
j=1

a∗
jp

∗N
j

}2

(38)

≷
N−2∑
k=0

{
K∑

j=1

aj(1 − pj)
N−kpk

j −
K0∑
j=1

a∗
j(1 − p∗j)

N−kp∗kj

}2

+

{
K∑

j=1

ajp
N−1
j −

K0∑
j=1

a∗
jp

∗N−1
j

}2

+

{
K∑

j=1

ajp
N
j −

K0∑
j=1

a∗
jp

∗N
j

}2

(39)

≷
N∑

k=1

{
K∑

j=1

ajp
k
j −

K0∑
j=1

a∗
jp

∗k
j

}2

. (40)

(End of Proof)

4.3 Analysis of Generalization Error

We now apply the method with the Newton diagram to the mixture model. The following is

the main theorem of the present paper.

Theorem 2 Assume that the learning machine (19) and the true model (25) are K +1 and K

component binomial mixtures, respectively. For a sufficiently large sample size n, the general-

ization error satisfies the following equation:

G(n) =

(
K − 1

4

)
1

n
+ o

(
1

n log n

)
. (41)

Proof: Here, we present an outline of the proof. The full proof is given in the appendix.

After changing the coordinates of the parameter space, we find that the faces consist of

(a1 + a2)
2, (42)

{a2
j} (j = 3, · · · , K), (43)

{p2
j} (j = 2, · · · , K + 1). (44)

This means that there exists a face described by

fγ(w) = (a1 + a2)
2. (45)

12



It is easy to find that

{a1 = −a2} ⊂
{

∂fγ(w)

∂a1

=
∂fγ(w)

∂a2

= 0

}
6⊂ {a1a2 = 0}. (46)

The term (a1 + a2)
2 makes the Kullback divergence degenerate, which implies that the Newton

diagram is not applicable to the current condition. Therefore, we consider a transform to

change the coordinates because the definition of the non-degenerate function depends on the

coordinates.

We next propose a method by which to find the non-degenerate coordinates. Since the

factor of the difficulty is the term (a1 + a2)
2, define a mapping

a′
1 = a1 + a2. (47)

Based on this mapping, the terms of faces will also change. Then, check whether the function

is still degenerate in the new coordinates. The faces in the new coordinates consist of

(a1p1 + a∗
1p2)

2, (48)

{a2
j} (j = 3, · · · , K), (49)

{p2
j} (j = 3, · · · , K + 1). (50)

Now, the term (a1p1 + a∗
1p2)

2 makes the Kullback divergence degenerative. As before, define

the mapping by

p′2 = a1p1 + (a2 − a1 + a∗
1)p2. (51)

Finally, we obtain the faces constructed by

a2
1p

4
1, (52)

{a2
j} (j = 2, · · · , K), (53)

{p2
j} (j = 2, · · · , K + 1). (54)

It is easy to confirm that the function is non-degenerate with the coordinates. After subdividing

the fan and finding the mapping A, we obtain the result.

(End of Proof)

When the Kullback divergence is non-degenerate, the terms in the faces are of the lowest

order, i.e., the divergence is expressed as

H(w) ≷ a2
1p

4
1 +

K∑
j=2

a2
j +

K+1∑
j=2

p2
j + higher order terms. (55)
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The method with the Newton diagram systematically prunes the unnecessary higher order

terms for the resolution of singularities as we ignored the term w3
1w

3
2 of Eq. (12) in Section 3.

The following algorithm summarizes the method by which to find degenerate coordinates.

Algorithm 2 (Finding non-degenerate coordinates)

1. If the function H(w) includes the term

(w1 + g1(w\w1) + g2(w\w1))
m (56)

and the face, which makes the function degenerate, consists of

fγ(w) = (w1 + g1(w\w1))
m, (57)

where m > 1 is a natural number and g1, g2 are polynomials with respect to w\w1, then

define a mapping

w′
1 = w1 + g1(w\w1) + g2(w\w1), (58)

and repeat 1 with the new coordinates {w′
1, w\w1}.

2. Otherwise, end the algorithm.

Note that Eq.(57) implies that g2 includes only terms of order higher than g1. If the condition

in 1 is not satisfied, then the function could be still degenerate. In this case, we need another

solution. Even though this constraint may seem strong, the binomial mixture model does not

violate this constraint.

5 Discussion and Conclusions

First, let us point out the following two advantages of the Newton diagram to show the utility:

(a) higher order terms in the diagram do not affect the generalization error and (b) the method

by which to find the resolution of singularities is systematic. The former advantage means that

the Newton diagram selects the essential terms, as mentioned in the previous section. The

latter one requires a more detailed explanation. In the conventional (iterative) method, we

repeatedly use a unit mapping formed by w1 = w′
1w2. For example, this unit mapping changes

Eq. (12) into

H(w) = w5
2(w

′5
1 w2 + w

′3
1 w2

2 + w
′2
1 + w2). (59)

This procedure is referred to as blowing-up and can be interpreted as eliminating the common

factor. Continuing this blowing-up, we obtained Eq. (18). As seen in this example, the
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Figure 2: (a) (w1 + w2)
2 + w4

2, (b) w
′2
1 + w4

2

possibility of selecting the pair of parameters is not limited, and we need to search w2 = w1w
′
2

in to complete the coordinates. Furthermore, there is no method to evaluate the maximum

time of iteration, although there is a guarantee that this algorithm stops (Hironaka, 1964).

This means that the iterative method has an unknown computational cost in the sense of both

the width and depth of the search tree. Compared to this difficulty, the proposed method

has the limited cost of searching because each A determines local coordinates. Note that we

can evaluate that the worst cost is at most kd, where k and d are the number of vectors in

subdivided fan and the dimension of parameters, respectively.

Second, we need to clarify the condition for which the proposed method can be applied.

The only condition that need be considered is whether the function H(w) is degenerate. A

typical case to violate the condition is that the function includes the following term:

fγ(w) ≡ (w1 + w2)
2 (60)

as one of the faces. As in the proof of Theorem 2, the zero points of the partial differential

with respect to w1 or w2 are not in the area w1w2 = 0. More formally, we have

{∂fγ

∂wi

= 0} 6⊂ {w1w2 = 0} (61)

for i = 1, 2. This face is depicted in Fig.2(a). Intuitively, the function is non-degenerate

when there is another point, which is not a vertex, on a face. According to Algorithm 2, new

coordinates can be found by the affine mapping w′1 = w1 + w2 shown in Fig. 2 (b). Note that

the point (0, 4) constructs a face in new coordinates, though it was in the diagram before. The

unnecessary terms are decided after the coordinates are fixed. Algorithm 2 cannot be applied

to the case in which there is no affine mapping, i.e., the lowest order of the face is greater than

15



one. For example, if the face contains

fγ(w) ≡ (w1w2 + w3w4)
2, (62)

we cannot define any affine mapping to change into monomial. This type of term exists when

the model has more redundant components K > K0 + 1. Then, we can combine the proposed

method with the iterative method. More precisely, blowing-up can be applied locally to such

a term, and then Algorithm 2 will be available. In this case, we still ignore unnecessary

higher order terms. It is an important and challenging future task to elucidate the types of

unidentifiable models to which the proposed method can be applied.

A Formal Definitions of the Newton Diagram

Let the Taylor expansion of an analytic function H(w) be

H(w) =
∑

v

cvw
v, (63)

where w = (w1, · · · , wd) ∈ Rd, v = (v1, · · · , vd) ∈ Q ⊂ Zd and cv is a constant. We use the

notation that

wv ≡ wv1
1 wv2

2 · · ·wvd
d . (64)

Definition 2 (Newton diagram) The convex hull of the subset

{v + v′; cv 6= 0, v′ ∈ Rd
+} (65)

is referred to as the Newton diagram Γ+(H).

For a given constant vector a ∈ Zd, we define l(a) by

l(a) ≡ min{〈v, a〉; v ∈ Γ+(H)}, (66)

where 〈, 〉 is the inner product, 〈v, a〉 =
∑d

i=1 aivi.

Definition 3 (Face) A face of Γ+(H) is defined by

γ(a) ≡ {v ∈ Γ+(H); 〈v, a〉 = l(a)}. (67)

Intuitively, the face is the border of the Newton diagram. Depending on a face γ, a polynomial

fγ is defined by

fγ(w) ≡
∑
v∈γ

cvw
v. (68)
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Definition 4 (Non-degenerate function) The function H(w) is said to be non-degenerate

if and only if {
w ∈ Rd;

∂fγ

∂w1

(w) = · · · =
∂fγ

∂wd

(w) = 0

}
⊂ {w1 · · ·wd = 0} (69)

for an arbitrary compact face γ of Γ+(H). Otherwise, H(w) is said to be degenerate.

Consider the dual space P ⊂ Zd of Q. The fan and the subdivided fan are defined on P .

Definition 5 (Fan) A fan of Newton diagram ∆ is a collection of convex polyhedral cones.

More precisely, for a face γ, a cone is defined by

σγ = {u ∈ P |Γ(u) ⊃ γ}, (70)

where

Γ(u) = {v ∈ Γ+(H)|〈v, u〉 = min
v′∈Γ+(H)

〈v′, u〉}. (71)

Then,

∆ = {σγ|γ is a face of Γ+(H)} (72)

is a fan.

The subdivided fan can be defined in a similar manner. However, for simplicity, we omit the

formal description. Intuitively, the construction is the same as the two-dimensional example

(Section 3). Higher dimensional cases with formal definitions are written in (Fulton, 1993).

For a matrix

A =

 a1
1 · · · ad

1
...

. . .
...

a1
d · · · ad

d

 , (73)

and w, u ∈ Rd, we define

w = uA ⇔


w1 = u

a1
1

1 · · · uad
1

d
...

wd = u
a1

d
1 · · ·uad

d
d

, (74)

where a set, a1 = (a1
1, · · · , a1

d), · · · , ad = (ad
1, · · · , ad

d) is a part of the subdivided fan. Using the

above definitions, the theorem that relates the Newton diagram to a resolution of singularities

is known (Ewald, 1996), (Fulton, 1993).

Theorem 3 (Toric modification) The map π(u) : w = uA, where det A = ±1, is called a

real toric modification. The map π−1(U0) → W for the neighborhood U0 ⊂ Rd of the origin is

a resolution of singularities if the function H(w) is non-degenerate.
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B Proof of Theorem 2

According to Theorem 1, the Kullback information satisfies

H(w) ≷
N∑

k=1

{
K+1∑
j=1

ajp
k
j −

K∑
j=1

a∗
jp

∗k
j

}2

. (75)

We define the map Θ1 : w → w1, such that

a′
j ≡ aj − a∗

j−1 (j = 2, · · · , K + 1), (76)

p′j ≡ pj − p∗j−1 (j = 2, · · · , K + 1), (77)

a′
1 ≡ a1, (78)

p′1 ≡ p1 − p∗1, (79)

in order to shift the singularities to the origin. We write the variables a′
j and p′j as aj and pj,

respectively, in order to avoid the complicated notation. Then,

H(Θ−1
1 (w1)) ≷ H(w1) ≡

N∑
k=1

{
c2(k)(a1 + a2) +

K∑
j=3

cj(k)aj

+ c1(k)(a1p1 + (a2 + a∗
1)p2)

+ d1(k)(a1p
2
1 + (a2 + a∗

1)p
2
2)

+
K+1∑
j=2

dj(k)pj + fr(k, w1)

}2

, (80)

where

c2(k) = p∗k1 − p∗kK , (81)

cj(k) = p∗kj−1 − p∗kK (j = 3, · · · , K), (82)

c1(k) = kp∗k−1
1 , (83)

d1(k) =

(
k

2

)
p∗k−2

1 (d1(1) = 0), (84)

dj(k) = a∗
j−1kp∗k−1

j−1 (j = 2, · · · , K), (85)

dK+1(k) = k

(
1 −

K−1∑
j=1

a∗
j

)
p∗k−1

K (86)

and fr(k, w) is the sum of the remaining terms in H(w1).

Here, we show the vectors

v1(k) = (c1(k), c2(k), . . . , cK(k), d1(k), d3(k), . . . , dK+1(k)) (87)
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for k = 1, . . . , 2K are linearly independent. Because of the condition N ≥ 2K, the vectors are

definable. It is sufficient to prove that the matrix

V1 =


v1(1)
v1(2)
. . .

v1(2K)

 (88)

satisfies that det V1 6= 0. It is easy to confirm that

det V1 ∝
K∏

j=2

(p∗1 − p∗j)
6

∏
1<i<j

(p∗i − p∗j)
4, (89)

which proves det V1 6= 0 since p∗1 < p∗2 < · · · < p∗K . Now, we define the vectors

v2(k) = (c2(k), . . . , cK(k), d1(k), . . . , dK+1(k)) (90)

for k = 1, . . . , 2K. Similarly, we can define V2 and show

det V2 ∝
K∏

j=2

(p∗1 − p∗j)
6

∏
1<i<j

(p∗i − p∗j)
4. (91)

So, these vectors are also linearly independent.

In order to find the faces, we rewrite the function as

H(w1) =
N∑

k=1

{h1(w1, k)2} + 2
N∑

k=1

{h1(w1, k)h2(w1, k)} +
N∑

k=1

{h2(w1, k)2}, (92)

where

h1(w1, k) =c2(k)(a1 + a2) +
K∑

j=3

cj(k)aj +
K+1∑
j=2

dj(k)pj, (93)

h2(w1, k) =c1(k)(a1p1 + (a2 + a∗
1)p2) + d1(k)(a1p

2
1 + (a2 + a∗

1)p
2
2) + fr(k, w). (94)

The terms in h2(w1, k) are of higher order than those of h1(w1, k) in the sense of w1. Since the

vectors

{(c2(k), · · · , cK(k), d2(k), · · · , dK+1(k))}N
k=1 (95)

are linearly independent with respect to k, the following holds:

N∑
k=1

{h1(w1, k)2} ≷
N∑

k=1

c2(k)2(a1 + a2)
2 +

N∑
k=1

K∑
j=3

cj(k)2a2
j +

N∑
k=1

K+1∑
j=2

dj(k)2p2
j . (96)
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Then, the faces in the Newton diagram of H(w1) consist of the following terms:

(a1 + a2)
2, (97)

{a2
j} (j = 3, · · · , K), (98)

{p2
j} (j = 2, · · · , K + 1). (99)

Because of the term (a1 +a2)
2, the function H(w1) is degenerate. We define the map Θ2 : w1 →

w2,

a′
2 ≡a1 + a2, (100)

a′
j ≡aj (j = 1, 3, 4, · · · , K), (101)

p′j ≡pj (j = 1, 2, · · · , K + 1). (102)

For simplicity, we write the variables a′
j and p′j as aj and pj, respectively. Then, H(w1) is

rewritten as

H(Θ−1
2 (w2)) =

N∑
k=1

{h′

1(w2, k)2} + 2
N∑

k=1

{h′
1(w2, k)h′

2(w2, k)} +
N∑

k=1

{h′

2(w2, k)2}, (103)

where

h′
1(w2, k) =c2(k)a2 +

K∑
j=3

cj(k)aj +
K+1∑
j=3

dj(k)pj + c1(k)(a1p1 + (a2 − a1 + a∗
1)p2), (104)

h′
2(w2, k) =d1(k)(a1p

2
1 + (a2 − a1 + a∗

1)p
2
2) + f ′

r(k, w2), (105)

and f ′
r(k, w2) is the sum of the remaining terms in H(Θ−1

2 (w2)). The terms in h′
2(w2, k) are of

higher order than those of h′
1(w2, k) in the sense of w2. According to the linear independency

of the vectors

{(c1(k), · · · , cK(k), d3(k), · · · , dK+1(k))}N
k=1, (106)

the following holds:

N∑
k=1

{h′

1(w2, k)2} ≷
N∑

k=1

c2(k)2a2
2 +

N∑
k=1

K∑
j=3

cj(k)2a2
j +

N∑
k=1

K+1∑
j=3

dj(k)2p2
j

+
N∑

k=1

c1(k)2(a1p1 + (a2 − a1 + a∗
1)p2)

2. (107)

Then, the faces in the Newton diagram of H(Θ−1
2 (w2)) consist of the following terms:

(a1p1 + a∗
1p2)

2, (108)

{a2
j} (j = 2, · · · , K), (109)

{p2
j} (j = 3, · · · , K + 1). (110)
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Because of the term (a1p1+a∗
1p2)

2, the function H(Θ−1
2 (w2)) is still degenerate. Thus, we define

the map Θ3 : w2 → w3,

a′
j ≡ aj (j = 1, · · · , K), (111)

p′2 ≡ a1p1 + (a2 − a1 + a∗
1)p2, (112)

p′j ≡ pj (j = 1, 3, 4, · · · , K + 1). (113)

Again, we write the variables a′
j and p′j as aj and pj, respectively. Then, H(Θ−1

2 (w2)) is rewritten

as

H(Θ−1
2 Θ−1

3 (w3)) =
N∑

k=1

{h′′

1(w3)
2} + 2

N∑
k=1

{h′′
1(w3)h

′′
2(w3)} +

N∑
k=1

{h′′

2(w3)
2}, (114)

where

h′′
1(w3, k) =c2(k)a2 +

K∑
j=3

cj(k)aj +
K+1∑
j=3

dj(k)pj + c1(k)p2

+ d1(k)

(
a1p

2
1 +

(p2 − a1p1)
2

a2 − a1 + a∗
1

)
, (115)

h′′
2(w3, k) =f ′′

r (k, w3), (116)

and f ′′
r (k, w3) is the sum of the remaining terms in H(Θ−1

2 Θ−1
3 (w3)). The terms in h′′

2(w3, k) are

of higher order than those of h′′
1(w3, k) in the sense of w3. According to the linear independency

of the vectors

{(c1(k), · · · , cK(k), d1(k), d3(k), · · · , dK+1(k))}N
k=1, (117)

the following holds:

N∑
k=1

{h′′

1(w3, k)2} ≷
N∑

k=1

c2(k)2a2
2 +

N∑
k=1

K∑
j=3

cj(k)2a2
j +

N∑
k=1

K+1∑
j=3

dj(k)2p2
j

+
N∑

k=1

c1(k)2p2
2 +

N∑
k=1

d1(k)2

(
a1p

2
1 +

(p2 − a1p1)
2

a2 − a1 + a∗
1

)2

. (118)

Then, the faces in the Newton diagram of H(Θ−1
2 Θ−1

3 (w3)) consist of the following terms:

a2
1p

4
1, (119)

{a2
j} (j = 2, · · · , K), (120)

{p2
j} (j = 2, · · · , K + 1). (121)
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Finally, the function H(Θ−1
2 Θ−1

3 (w3)) is non-degenerate. Based on the subdivided fan, we can

find the mapping A defined by

A =



1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 2 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 2 0 · · · 0
0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 2 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 2 0 · · · 1


. (122)

This matrix has a column vector (0, 2, · · · , 2, 1, 2, · · · , 2)T corresponding to the exponent part

of (a1, a2, · · · , aK , p1, p2, · · · , pK+1) in the unit matrix. Thus, a resolution of singularities g(u),

where

u = (u1, u2, · · · , uK , v1, v2, · · · , vK+1) (123)

is derived as

a1 ≡ u1, (124)

aj ≡ ujv
2
1 (j = 2, · · · , K), (125)

p1 ≡ v1, (126)

pj ≡ vjv
2
1 (j = 2, · · · , K + 1). (127)

The Jacobian of g(u) is

|g(u)| = v4K−2
1 , (128)

and the common factor of H(Θ−1
2 Θ−1

3 (w3)) is v4
1. Therefore, the largest pole λ′ of∫

H(Θ−1
2 Θ−1

3 (g(u)))z|g(u)|du (129)

is

λ′ = K − 1

4
. (130)

Since the Jacobians of maps Θ1, Θ2, Θ3 are not equal to zero, the largest pole of (6) is the same

as λ′, which is the coefficient of the generalization error.
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