Neural Computation, (to appear).

1

Learning coefficient of generalization error in Bayesian estimation and Vander-

monde matrix type singularity

Miki Aoyagi L and Kenji Nagata2

1 Department of Mathematics, College of Science & Technology

Nihon University

1-8-14, Surugadai, Kanda, Chiyoda-ku, 101-8308, Japan,

aoyagi.miki@nihon-u.ac.jp.

2Graduate School of Frontier Science, The University of Tokyo

5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan, nagata@mns.k.u-tokyo.ac.jp.
Keywords: Generalization error, three layered neural networks, normal mixture mod-

els, non-regular learning machine, resolution of singularities, zeta function

Abstract

Recently, the term “algebraic statistics” arises from the study of probabilistic mod-
els and techniques for statistical inference using methods from algebra and geometry
(Sturmfels, 2008). Our study is to consider the generalization error and stochastic com-
plexity in learning theory by using the log canonical threshold in algebraic geometry.
Such thresholds correspond to the main term of the generalization error in Bayesian
estimation, which is called a learning coefficient (Watanabe, 2001a,b). The learning co-
efficient serves to measure the learning efficiencies in hierarchical learning models. In
this paper, we consider learning coefficients for Vandermonde matrix type singularities,
by using a new approach : focusing on the generators of the ideal which defines singu-
larities. We give new tight bound values of learning coefficients for the Vandermonde

matrix type singularities and the explicit values with certain conditions. By applying


aoyagi
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our results, the learning coefficients of three layered neural networks and normal mix-

ture models are shown.

1 Introduction

In this paper, we consider the generalization error and stochastic complexity in learning
theory by using a log canonical threshold in algebraic geometry.

The log canonical thresholkl, (Y, f) is analytically defined by
Mz(Y, f) = sup{c: |f| “islocally L* nearZ},

overC and
Mz (Y, f) = sup{c: |f| “is locally L' nearZ},

overR for a nonzero holomorphic functiofiover C or an analytic functiory overR

on a smooth variety’, whereZ C Y is a closed subscheme (Kai| 1997; Mustata,
2002). It is known that iff is a polynomial or a convergent power serigg(C?, f)

is the largest root of the Bernstein-Sato polynomial) € Cls| of f, whereb(s) f* =
Pfs*! for a linear differential operatoP (Bernstein, 1972; Bjrk, 1979; Kashiwara,
1976). The log canonical threshold, (Y, f) also corresponds to the largest pole of
I nearz |f1%¢(w)dw overC, ([ neary |f1*%(w)dw overR) for a complex variable,
wherey(w) is aC>°— function with a compact support andw) # 0 on Z.

Such thresholds serve to measure the learning efficiencies in hierarchical learning
models, i.e., they correspond to the main terms of generalization errors in learning
systems.

The purpose of the learning system is to estimate an unknown true density function
which distributes data. Real data associated with genetic analysis, data mining, image or
speech recognition, artificial intelligence, the control of a robot, time series prediction,
and so on, are very complicated and usually not generated by a simple normal distribu-
tion. Hierarchical learning models such as the layered neural network, the Boltzmann
machine, the reduced rank regression and the normal mixture model are known to be
effective learning models for analyzing such data. They are, however, non-regular sta-
tistical models, which cannot be analyzed using the classic theories of regular statistical
models (Hartigan, 1985; Sussmann, 1992; Hagiwara et al., 1993; Fukumizu, 1996).
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Figure 1: Simple three layered neural network : One input unit, one output unit and two
hidden units. The outputis expressed by = a; tanh(b,z) + as tanh(byx) + (noise)

wherez is the input.

For example, consider a simple three layered neural network that has one input unit,
one output unit and two hidden units (Fig. 1). The model is expressed by the probability
form of one inputz € R, one outputy € R with a parametew = (ay, as, by, by) € R*:

1
pylz, w) = o

Assume that the true density functiorpig/|x, w;) with w; = 0. Then the true parame-

1
exp(—§(y — ap tanh(by2) — ay tanh(by))?).

ter setis{w = (ay, as, by, by) € R p(y|lz, w;) = p(y|lz,w)} = {w = (a1, as,b1,bs) €
R*|a; tanh(b1x) + as tanh(byx) = 0, for anyz} = {b; = +by,a; = Fas} U {a1by =
asbs = 0}. This set does not consist of only one point, resulting in a non-positive def-
inite Fisher information matrix. Usually, the true parameter set of non-regular models
is an analytic set with complicated singularities. Consequently, it is difficult to solve
theoretical problems, such as clarifying generalization errors in learning theory.

The generalization error measures the difference between the true density function
q(z) and the predictive density functigriz|(z)") obtained using: distributed training
samplegz)" = (z,. .., z,) of z from the true density functiog(z).

In the case of Figure 1, the notatieorresponds t@r, y), and we have(z, y|w) =
p(y|z, w)q(x) with a probability density functiog(x) of an input valuer.

We define it as the average Kullback distance betwgenandp(z|(z)"):

=k, {/ log )) >dz}

whereFE,, is the expectation value ovartraining samples. This function clarifies pre-
cisely howp(z|(z)™) can approximate(z). Thus,G(n) is also called a learning curve

or a learning efficiency. The classic model selection methods of regular statistical mod-
els such as AIC (Akaike, 1974), TIC (Takeuchi, 1976), HQ (Hannan & Quinn, 1979),
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NIC (Murata et al., 1994), BIC (Schwarz, 1978), and MDL (Rissanen, 1984), cannot
apply to the generalization error for non-regular models, since the true parameter set of
regular models should be one point and its Fisher information matrix is positive def-
inite. Therefore, it is important to construct a mathematical foundation for clarifying
generalization errors of non-regular models. It is well known that Bayesian estimation
is more appropriate than the maximum likelihood method when a learning machine is
non-regular (Akaike, 1980; Mackay, 1992). We usually consider the generalization er-
ror in terms of a direct and an inverse problem. The direct problem involves solving
the generalization error with a known true density function. The inverse problem is
finding proper learning models and learning algorithms to minimize the generalization
error under the condition of an unknown true density function. The inverse problem is
important for practical usage, but in order to solve it, we first need to solve the direct
problem. In this paper, we consider the direct problem of Vandermonde matrix type

singularities over the real field (Definition 4).

) (b)

Figure 2: (a) The three layered neural network input units,M output units and?

hidden units. The outpuy, is expressed by, = Zfil i tamh(Zj.V:1 bi;xj) + (noise)

wherez; is an input. (b) The normal mixture model with identity matrix variances:
N (zj—by;)? . .

p(z|w) = (Qﬂ;N/Q S a exp(—M), with 37 a; = 1, a; > 0, which hasH

peaks.

By focusing on the generators of the ideal which defines singularities, we firstly
show that learning coefficients for the three layered neural network and for normal
mixture models with identity matrix variances are obtained by the Vandermonde matrix
type singularities (Theorem 8 and Theorem 9 Fig. 2). Next, we have (1) new tight bound

values of learning coefficients for the Vandermonde matrix type singularities (Theorem



10), and (2) the explicit values under certain conditions (Theorem 11). The explicit
values in Theorem 11 are equal to the bound values in Theorem 10. By applying these
results, we have the learning coefficients for the three layered neural network and for
the normal mixture models (Theorem 12, Theorem 13).

Learning coefficients for mixtures of binomial distributions are also obtained by
Vandermonde matrix type singularities (Yamazaki et al. (2010)). The Vandermonde
matrix type is a generic one in neural computation because almost all singularities in
neural computation are classified into the Vandermonde matrix type.

We have already obtained learning coefficients for the three layered neural network
with one input unit and one output unit (Aoyagi, 2005a, 2006). Learning coefficients in
the case of the normal mixture models with dimension one have been obtained recently
(Aoyagi, 2010a). We have also obtained the exact asymptotic forms of the general-
ization errors for the reduced rank regression (Aoyagi, 2005b) and for the restricted
Boltzmann machine model (Aoyagi, 2010b). Rusakov & Geiger (2005) obtained them
for Naive Bayesian networks.

This paper consists of five sections. In Section 2, we summarize the framework
of Bayesian learning models. Section 3 describes our main results. To confirm our
theoretical results, numerical experiments are shown in Section 4, and we give our

conclusions in Section 5.

2 Generalization error and stochastic complexity in Bayesian

estimation

In this paper, we consider the stochastic complexity and the generalization error in
Bayesian estimation.

Let ¢(z) be a true probability density function anid)" := {z;}!, ben training
independent and identical samples from). Consider a learning model which is writ-
ten by a probability formp(z|w), wherew is a parameter. The purpose of the learning
system is to estimatg z) from (z)" by usingp(z|w).

Let p(w|(2)™) be thea posterioriprobability density function:

1 n

p(wl(2)") = 5 v(w) [ [alu).



wherey(w) is ana priori probability density function on the parameter Bétand

Zn = / P(w) | | pzi|w)dw.
So the average inferengéz|(z)™) of the Bayesian density function is given by

plel(z)") = / plelw)p(uw](z)")dw,

which is the predictive density function.

Set
K(qllp) = / a(2) m%dz

This function always has a nonnegative value and satigfigg|p) = 0 if and only if

q(z) = p(z[(2)").

The generalization errak(n) is its expectation valu#,, overn training samples:

=E, {/ log )dz}

Let

Zl zz|w

The average stochastic complexity or the free energy is defined by

F(n)= —En{log/eXp(—nKn(w))w(w)dw}.

Then we haveZ(n) = F(n+ 1) — F(n) for an arbitrary natural number(Levin et al.,

1990; Amari et al., 1992; Amari & Murata, 1993).(n) is known as the Bayesian cri-
terion in Bayesian model selection (Schwarz, 1978), stochastic complexity in universal
coding (Rissanen, 1986; Yamanishi, 1998), Akaike’s Bayesian criterion in optimization
of hyperparameters (Akaike, 1980) and evidence in neural network learning (Mackay,
1992). In addition}'(n) is an important function for analyzing the generalization error.

It has recently been proved that the largest pole of a zeta function gives the general-
ization error of hierarchical learning models asymptotically (Watanabe, 2001a,b, 2010).
We assume that the true density distributidn) is included in the learning model, i.e.,

q(z) = p(z|wy) for w; € W, wherelV is the parameter space.

Define the zeta functior(¢) of a complex variablé€ for the learning model by

5©) = [ Klw)uiw)de



whereK (w) is the Kullback function:

K(w) = /p(z|wf)log %dz.

Then, for the largest pole A of J(£) and its ordef), we have
F(n) = Xlogn — (6 — 1)loglogn + O(1), (1)

whereO(1) is a bounded function of, and

Gy=2_ 21

n  nlogn

asn — oo. (2)

Therefore, our aim in this paper is to obtairandé.

To assist in achieving this aim, we use the desingularization in algebraic geometry
(Watanabe, 2009; Fulton, 1993). In algebraic geometry, a learning coefficient corre-
sponds to a log-canonical threshold. Many studies on it in algebraic geometry have
usually been done on an algebraically closed field such as the complex field. One of the
recent results is relating to arc spaces by Mustata (2002). Our study is over the real field
and it is therefore, a new problem, even in mathematics, to obtain desingularizations of

such Kullback functions.

3 Main Results

In this section, we show our main results.

3.1 Learning coefficients for Vandermonde matrix type singulari-
ties

In this paper, we denote hy, b*, w* constants, using the suffix Also for simplicity,

we denotew = {aki,bi]‘}lgigH instead ofw = {ak:i,bij}lngM,lgigH,ISjSN, in this

paper.

Define the norm of a matrig’ = (c;;) by [[C|| = />, ; [ci;[*. SetN, o = NU{0}.

Definition 1 Let\,-(f) be the largest pole of,; | f|*¢dw and6,.-(f) its order, where
U is a sufficiently small neighborhood of, f is a real analytic function in a neigh-

borhood ofw* and+ is a C* function with compact support ane{w*) # 0.
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We give below Lemma 2 as they are frequently used in this paper.

Lemma 2 (Aoyagi (2009, 2010a); Lin (2010)Let U be a neighborhood af* € R<.
LetZ be the ideal generated by, .. ., f,, which are analytic functions defined éh
Also lety(w) be aC* function onU with compact support. I§i,..., g, € Z, then
Ao+ (f2 + -+ + f?) is greater than),-(g? + --- + g%,). In particular, if gi,..., g
generate the idedl then

Aot (fT+ -+ f2) =Aer (9T + -+ 92)-

(Proof)
The factg? + --- + g2, < P(fZ +--- + f?) for P >> 1 yields this lemma.
Q.E.D.

Definition 3 Fix @) € N. Define[b}, b5, --- ,by]lo = 7:(0,---,0,07,--- ,b%) if b] =
1 if ) is odd,

-=b_,=0,b#0,andy, =
br| /b if Q is even.

Definition 4 Fix Q € Nandm € N,.

* *
a1q tee alg CLLHJrl Ce GLHJFT
* *
(121 A a2H CL2 H+1 “ e CL2 H+7‘ N
LetA = I =(0y,... ly) € Ny,
a ceeoa ay ay
M1 MH MH+1 - - M,H+r

N N
BI = (Hbigal_[bg;? HbH]7HbH+1j T HbH—i-r] )
Jj=1 j=1
and

B = (BI)ZlJr---JrZN:Qner,nzO = (B(m B(m 1,1, B(OU m)s B(m—l—Q,O,“',O)u to

(t denotes the transpose).
ap; andb;; (1 <k < M,1<i<H,1<j<N)are the variables in a neighbor-

hood ofa;, andb;;

i;» Wherea;; andb;; are fixed constants.

LetZ be the ideal generated by the elements\ &f.

We call singularities of Vandermonde matrix type singularities.



To simplify, we usually assume that

t
(aT,HJrjv aZ,H+j7 T 7“7\4,H+j) # 0, (bjtlﬂ',la b;{+j,27 T b;I+j,N) # 0,

for1 <j <rand

[b;{—&-j,l? bj:{—f—j,% T b;I-&-j,N]Q 7’é [b;I—&—j’,h bj'{—l-j’,Q’ T 7by;{+j’,N]Q7
forj # j'.

The Vandermonde matrix type singularities are degenerate with respect to their
Newton polyhedrons (Fulton, 1993), their singularities are not isolated.
In general, singularities appeared in learning theory have such properties, and there-

fore, obtaining the log canonical thresholds is a still difficult problem.
Remark 1 The idealZ in Definition 4 is also generated by the elementsléf where

/
B' = (Br)e, 14ty =Qnim0<n<Hir—1-

Example 51fm=N=M =r=1,Q = H = 2,thenwe havel = ( ap Gz ajs )
b bl b

B = | by b3 b3
by b b3

TheseA, B’ are for the simple neural network in Figure 1:

1
E(y — apy tanh(by ) — a1 tanh(byy2))?),

B 1
p(ylaz,w) = W eXP(—
and the true distribution

p(ylz, wy) = (2m)12 eXP(_E(Z/ + a3 tanh(b31:c))2).

Example6 If Q =m =M =r=1,H =2, N = 2,thenwe havel = ( ap ajz ajs )
by bz b}, bubia b, B} bubl, bhbia b,

B =1 by bp b3 buby 03, 03 babl  b3ibe b3
bi b b URbE bR DR DRbRT 057HE, b
If aj; = —1, theseA, B’ are for a normal mixture model with identity matrix vari-
ances
an (21— b11)” + (22 — b12)® | | a2 (21— b21)® + (23 — bya)?
plew) = F= exp(- . )+ 5 exp(— . )



S22 Lay = 1,ay; > 0, and the true distribution is

1 (21 — 051 + (22 — b3y)?
¥ — * 31 2 — O3 . _
p(zlwy) = -—(—ajs) exp(— ), —aj; = 1.
2 2
In this paper, we denote
N ¢
ap; a2 o G1g [Tz b7
N L
ag Qg - Gop | AT
]_
Anpm = . ,Buni = ] and
N 0
ayn am2 o GMH [[,= b
Q?m
BE{,N ) = (BH,NJ)&+...+£N:Qn+m,ogn§H—1-
Also we denote
N ¢
* Hj:l bl] !
ann G2 o g 4y g N ¢
) 1= be
a1 Q22 - G2H Qg piq Bu N1 _
(AM,H,a ) = , b = :
[T, ba®
* j=1"Hj
apmi  Gare aMH Ap 1 HN . 4
j=1"YH+1,j
a*
(Qm) B 1,H+1
H,N,I
and [ Y = , wherea* =
b* b*
L1+ HN=Qn+m,0<n<H aﬂ];J,HJrl
andb* = (by, 11, ban)-

Theorem 7 (Aoyagi (2010a))Consider a sufficiently small neighborhobdof
w* = {ay,;, bj; hi<i<n,

and variablesw = {ay;, b;j }1<i<m in the setU.

Set( 01> 002>+ (?N) = (0,...,0).
Let each(biy, b33, - -+, biN), ..., (b5, b5, - -+, by ) be a different real vector in

[:17 ;(27"'7 :N]Q#Oa fori=1,....,H +r.
That is,

{<b>1k>{77 T*N)vv( :;kla"'7 :TN); [brlf”v :N]Q%Ovi:lv"'vH—i_T}'
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Thenr’ is uniquely determined and > r by the assumption in Definition 4, and

Seta)ﬁ‘7 e ,b;";{,) = [b}}-i-i,l’ . 7b*H+i,N]Qa for1 <i<r.
Assume that
r
0, 1<i< H,
(bTT>7bT]<\])7 H0+1§Z§HO+H17

Vi1, binle = (b3y,---,05y), Ho+Hi+1<i<Hy+ Hy+ H,

\ (b:;kly ab:;k]\[% HO+"'+HT’—1+1§i§H0+"'+HT’7
andHy+---+ H, = H.

Then we have

Ao+ ([[ABI?) = Ay ( Bin W IP)
1,0 r
A (a)* Bl(LIa,A)N 2 A A B(LO) 2
+Z wle® ) SR+ D Awer (1A, Bl vl
b(a) a=r+1
GT,H+O¢
wherew©” = {aj;, 0h <oz " = {af o,y 400 Vg hi<isi,, @l = :
ApN Hta
andb(®" = (b .- b)) fora > 1.
Moreover,
My’ m
Mo (IABIP) = = (A B ¥ 1)

a)* 1,1 (11
+2Awga>*<||<AM,HQ_1,a< B NP+ D0 A ([ An 1By v,

a=r+1

wherew'”” = {a;.,0}1<icn,,
aT,H—i—a

w§a = {q;, Hot+Ho— 1+z70}2<z<H anda®)” = : fora > 1.
a}FW,HJra

Theorem 7 is used for the proofs of Theorems 8 and 9.

3.2 Three layered neural network

Consider the three layered neural network wihinput units, H hidden units and//

output units which is trained for estimating the true distribution withidden units.
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Denote an input value by = (z;) € R" with a probability density functior(z).
Then an output valug = () € RM of the three layered neural network is given by

yr = fi(z, w) + (noise) wherew = {ay;, b;; }1<i<y and

H N
fr(x,w) = Z A tanh(z bijz;).
i=1 j=1
Consider a statistical model

ol w) = g exp(—g = S w)|P)

andp(z, y|w) = p(y|x, w)q(x). Assume that the true distribution
* 1 1 *\ |2
Pyl wi) = oy oxp(— ly = S w)I )
is included in the learning model, whetg = {a} ;;, b}, f1<i<r @Nd fi(2, ;) =
22:1(_GZ,H+1‘) tanh(Zj‘Vﬂ b}k“{—i—i,j‘xj)'
Suppose that aa priori probability density function(w) is aC'*— function with
a compact suppoit” wherey(w;) > 0. We have

1

bl ) = G expl 5 ly = f . 0)] Place).

and the notaioriz, y) for the three layered neural network corresponds ito Section
2.

* *
ann a2 - GH Gy gy 0 Ay g4y
a21 a22 LR a2H a* IR a*
2,H+1 2,H+r
Let A = A =(l,...,ly) €
* *
am1 am2 0 GmH Ay gy 0 GprHA4r
N
N+0 I

N N N N N
£ 4 4 * l; * £
BI:(Hbl‘J]ﬁHbQ;)H. 7Hbéj7HbH+17jJ7“. ’HbHJr’l",j ])t7
j=1 Jj=1 J=1 J=1 Jj=1
andB = (Br)g 4 +tx=2n-1,1<n<H4r S€L
U = ||AB||*dadb.

Theorem 8 Consider a sufficiently small neighborhodd of w* = {aj;, b}; }1<i<h,
where||AB|| = 0 atw*. Letw = {ay;, bij }1<i<y be INU.

The learning coefficient for the three layered neural network is the largest pole of
Siaser Us -8 A ([JAB]]?) with Q = 2 andm = 1.
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This is proved by using a Taylor expansieémh(z) = = + c;2° + cp2® + - -
(c1,co, ... € R) together with Lemma 5 in (Watanabe, 2001a).

3.3 Normal mixture model

We consider a normal mixture model with identity matrix variances

! S (2 — by)?

Z a; exp(— ]12 ),

p(z|w) =

wherew = {CLZ‘, bij}lSiSH andzi}il a; =1,a; > 0.

Set the true distribution by

H+r N % \2
% 1 % Z':l(zj - bz )
p(2|wt):W Z (—a;j) exp(——~ 9 ’ )
i=H+1
wherew; = {a},b};} nyi<i<mir andeH;}"Jrl a’ = —1, a; < 0. (In order to simplify

the followings, we use the value$ < 0 nota; > 0.)
Suppose that aa priori probability density function)(w) is aC*>— function with
a compact suppoit” wherey(w;) > 0.

Let A = (a1, ,am, Qgars-- s Qhpay)y L = (b, ..., Un) € N,

N N N N
_ £ £ £ * 0
Br= (][5 [Toz - 1T oas T1 0™ HbH+m ,
j=1 Jj=1 j=1 j=1

andB = (By)+-+ex=n1<n<m+r (t denotes the transpose).

Then the learning coefficient of the normal mixture model is the largest pole of

H H N
/\p - / IAB[* T [ da: [T T] dbss. (3)
[|AB||2<1

i=1 i=1 j=1

with 307 a; = 1,0; > 0andy [ af = —1, a} < 0 (Watanabe et al., 2004).

Note that we have the relatiods’ | a; = 1,a; > 0 andy_ ") | a

imH11 Jf—l,aj<0.

We need to modify the functiofAB||* for obtaining the largest pole gf ¥ by using
Vandermonde matrix type singularities. The following theorem is available for such

purpose.

Theorem 9 Consider a sufficiently small neighborhoaéd of w* = {a], ”}1<,<H,
Where”ABH =0atw*. Letw = {ai, bij}lgigH beinU.

13



Let each(bi], b33, - -+, biN), -0 (D5, 055, -+, b7y ) be a different real vector in
(b, b, -+ ,biy) fori=1,..., H +r, thatis,

{(bﬁv >b>ﬁv)7v( i’*lj ) :’*N) (b;kla 7b:N)vi:17"'vH}'

Thenr’ is uniquely determined and > r by the assumption in Definition 4, and
Setaﬁl*v T ’b:jtf) (b?{+z 1" 7b*H+i,N)v for 1 < <r.

Assume that

;

(B35, bi), 1< < Hy,

i1 """ YiN) — .

| (bt biy), Hyt oo+ Hyy+ 1< 0 < Hy+ oo+ Hy,
andH, +---+ H., = H.

Then we have

r'—1
2
Ao (IABIP) = 30N - (a™)
a=1
r /
1,1
3 Ao (1,105 BENE) 3 Ay (s B, o),
a=1 a=r+1
wherew!®” = Ay gt Ho 1 T F 0y, T 0, LS <,
@ =
a}m A Ha 41 T Oy r+l<a<r -1,
3
w(o‘)* = {az('a) ’ z] }2<1<Ha {a*H1+---+Ha—1+i7O}ZSiSHa'

The proof for this theorem appears in Appendix A.

Theorem 9 is proved by using Theorem 7.

These Theorems 8 and 9 show that both learning coefficients for the three layered
neural network and the normal mixture model are obtained by using Vandermonde ma-

trix type singularities.

3.4 New bound values of learning coefficients

The next theorem gives new bound values of the largest pole for Vandermonde matrix

|
type singularities. Le(l;) ﬁ for natural numbers, [.

Theorem 10 We use the same notations as in Theorem 7. We have the followings.

14



, ifmM <N -1, andi =1,

S

H=-D+N 4 M <N_1 andi=2,
N 2m
—— if N <mM <m(N -1),
Letbound; = [%/7%
Dy if M >N (N—-1)(m-1)>1,
m

2HN + QM (1+k)+ (N -1)2H —k - 1))k
4Qk + 4m ’
if M >N,(N—-1)(m—-1)=0,
fori=1,2, wherek = max{z e Z;2H > (Qi(i — 1) + 2mz)(M N+1)}.
NH + 0 MQUK — i) (Ve )

N-1

Also letbounds =

2m + 2QK -
wherel! = max(i € Z; NH > M S0 (m -+ Qi) (V34" )}.
We have
N[l Ava Bifa"|?) < min{bound,, bounds},

Ao(]] (AM,H_l, a")BiPx"[1?) < min{bound,, bounds}.
The proof appears in Appendix B.

Remark 2 We have

min Ay, 0 (1(Asrr—1, @) BN 112) = X[ (Aari—1, 2") BIZR | P).

A]M H-1

3.5 Exact values of learning coefficients

Theorem 11 Case 1Consider the case dff = 1. We have

1, if mM # N,

m .M
Xo(||Avn B Q )|| ) = min{ — 5 } and its order00(||AMlB || ) = _
2, ifmM = N,

and
ol[la* B(Qm 12) = ., and its order@o(HAMlB ||2) =1

Case 2Consider the case dff = 2.

1. LetA = )\0(||AMQB ||) andd its order.

Then we have
@) IfmM < N —1then\ = M andf = 1.
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(b) Ifm:l,M:N,thenA:%and&:l.
(c) fm=1,N =M — 1then\ = N andf = 2.
d)lfm=1,N < M —1then\ = N andf = 1.

(e) fm=2,N=1M=1,then\ =1 andf = 2.
(f fm=2N<mM, M >1then =L andf = 1.
(@) f m >2, N =mM then\ = & and§ = 3.

(h) If m > 2, N <mM thenx = X and6 = 1.

2. LetA = Ao([|(An1, a*) BSS™)2), andd its order.

Then

(@) If m >2,mM < N — 1then\ = 224N gndg = 1.

(b) fm=1,N>M+Q+1then\ = M andg = 1.

(€) fm=1,N=M+ Qthen\ = X£ andg = 2.

d) fm=1,M+1<N<M+Q—1then) = 2L andg = 1.
(e) Ifm:l,N:Mthen)\:%andQ:l.

® fm=1,N=M—1then\ = N andf = 2.

(@ fm=1,N <M —1then\ = N andéd = 1.

(h) If m=2N=1M=1,then\=1andf =2.

(i) fm=2,N<mM, M >1then) =L andf = 1.

() fm >2, N =mM then\ = X andf = 2.

(K) If m > 2, N <mM then) = & andf = 1.

Its proof appears in Appendix C.

3.6 A learning coefficient for three layered neural network

By using Section 3.4 and 3.5, we have the followings.

16



Theorem 12 Consider the three layered neural network withinput units, 7 hidden
units andM output units which is trained for estimating the true distribution with
hidden units. Then their learning coefficientandd in (1) and (2) are as follows.

Let

bound, — M7y (HN (M4 ko) + (N — D(2Ho — ko — D)ko
2 Ho+-+H.=H 4k0+2
2HO‘N+(M(1+ICOZ)+(N_]-)(QHa_ka—]_))ka}
a=1 4ka+4

- MT+H(N—1)+ -{r_’_H_T‘l'(M—N—{—l)(k’—{—ka)

= 5 5 min{z 2 ’
r—1 N 2(H—r+1)—|—(M_N+1)(ku+ku2)}
2 Ak" + 4 >

whereky = max{i € Z; Hy > i*(M — N + 1)}, k, = max{i € Z;2H, > (i* +
)M —-N+1)}fora>1, K = max{i € Z;H —r > *(M — N + 1)} and

k" =max{i € Z;2(H —r — 1) > (> +i)(M — N + 1)}.

N(H =) + 55 e MK — i) (W)
2+ 4k' ’

wherek/ =max{i € Z;N(H —r) > M Y ., _ 0(1 Y )<N+21 ).

MH + Nr (M + N)r

Also letbounds =

If M < N, then\ < min{ 5 : 5 + bounds}.
If M > N, then\ < min{boundy, bounds}.
Especially,
1. H—r=0:x=r(2H) =1
1, if M # N,
2. H=1,r=0: A=min{¥, §},6 =
2, if M =N.

3. H—-r=1,r>1:

@) If N > M +1then) = (r — 1)(2Y) + 2MEN andg = 1.

(b) If N = M +1then) = (r — 1)(2Y) + 2MEN andg = 2.

() If N = M then\ = (r — 1)(2F) 4 3MEN-L andp = 1.

(d) If N =M —1then\ = (r — 1)(2) + ME2N gndg = 2.

(e) If N < M —1then) = (r — 1)() 4+ 22N gndg = 1.
4. H=2,r=0:

17



@) If N > M + 1then\ = M andf = 1.

(b) If N = M then\ = 3{=L andf = 1.
(c) f N =M — 1then\ = N andéd = 2.
(d) If N < M —1then\= N andfd = 1.

Our results are tighter than Watanabe’s bounds (Watanabe (2001c)).
Its proof appears in Appendix D.

Remark 3 See Lemma 17 in Appendix D about

H—r+(M—N+1)(K+k?) 7“—1+2(H—T+1)+(M—N+1)(k”+l<:”2)
4K + 2 T2 4k + 4

}7

min{g—l—

in detail.

3.7 Alearning coefficient for normal mixture model

By using section 3.4, 3.5 similarly and by the theorem of dimensior(&he- 1) in the

paper (Aoyagi (2010a)), we have the followings.

Theorem 13 Consider normal mixture models witth peaks and the true distribution

with r peaks. Then their learning coefficiettandd in (1) and (2) are as follows.

N(H —r41) + X5 K — i) (N
Letbound; = ( ) 5 E:QZI;,O ( )<N_1>7

wherek’ = max{i & Z; N(H —7r -+ 1) > 22/_:10(1 + Zl)<]]\\[7t21,>}
H—1+Nr (N+1)(r—1
1< N, thenh < min{ 2 — LT AT (N =1)

2 ’ 2
If N =1, then

i+F+ﬂH&1»9{1,”ﬂ+i<ﬂHW1»

+ bound; }.

A=r—1+

4(i+1) 2, ifi?+i=2(H—(r—1)),
wherei = max{j € Z; 7>+ j <2(H — (r — 1))}.
Especially,

1L H-r=0:A=_1Ng=1
2.H—r=1:

@ If N >2,A="H g1,

b)) FN=2)=20=2

©UEN=LA=34+r—-1,0=1.
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4 Numerical Analysis

In order to confirm our theoretical results, we simulated Bayesian estimation of nor-
mal mixture models, and compared the theoretical value of the coeffitiand its

numerical value.

4.1 Numerical Setting

We use the same notations in Section 3.3.

We experimented oV dimensional training data, whef€ = 1,--- ,4. Set by
(r,H) = (1,2),(2,3), wherer is the number of peaks for a true distribution aHd
is the one for a learner distribution. Consequently, we simulated the eight cases of
Bayesian estimation of normal mixture models. Then, the theoretical value of their
largest pole-\ of J(¢) and its orded can be calculated from Theorem 13, which are

shown in Table 1.

Ni|r|H| X |0 Nir|H| X |0
casel/ 1 |1| 2|07 |1|case5 1|23 |1.75]|1
case?2 2 |1| 2 |150| 2| case6 2 |2| 3 |3.00]2
case3 3 |12 (200 |1|case7 3 |2| 3[4.00]|1
case4 4 |1 2 [250|1|case8 4 2| 3 |500]|1

Table 1: The theoretical value of the largest polesof J(£) and its ordei for our

experimental conditions.

The numbem of training data was set 200, 400, 600, 800 and 1000. & pgori
distributiont)(w) was defined by the uniform distribution for the mixing ratia’ and
the N-dimensional normal distribution whose mean and variance are respeo6tively
and10.0 for each mean; of the peaks.

In Bayesian estimation, it is necessary for calculating the expectation over the
posteriori distribution. For this purpose, in our experiments, we used the exchange
Monte Carlo (EMC) method for sampling from tlaeposterioridistribution. The ex-
change Monte Carlo (EMC) method, one of the Markov chain Monte Carlo methods, is

found to be appropriate for sampling from thgosterioridistribution in non-regular
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(a) true distribution (b) predictive distribution

True Density Predictive Distribution (Non_averaged)

Figure 3: Examples of a true distribution and of the corresponding numerical predictive
distribution in the case that =2, =2, H = 3.

statistical models such as neural networks and normal mixture models (Nagata, 2008a).
The detailed setting of EMC method in this study was similarly set as the setting in the
paper (Nagata, 2008c).

In this experiment, we generate tlie = 4000 samples of parametdnu;}(t =
1,---,T) by the EMC method, and calculate the predictive distribution by using these

samples as follows,
T
n 1
p(z|(2)") = > pla|w).
t=1

Examples of a true distribution and of the corresponding numerical predictive distribu-
tion are shown in Figure 3 in the case thét= 2, = 2, H = 3. In order to evaluate

the experimental value of coefficient we calculated the generalization error from the
n’ = 10000 test dat&{ 2} (i = 1,--- ,n’) as follows,

1 < q()
Gn) = E,{— > log——-"—>%.
{n Z p(]|(2)™)
We can evaluate the validity of our results by comparing the asymptotic form of gener-

alization error shown in Eq.(2) and the experimental one.

4.2 Numerical Results

Figure 4 shows the numerical results in the case that 1 and H = 2. In each

figure, the horizontal axis is the numberof training data, and the vertical one the
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Figure 4: Comparison between the theoretical generalization error and the numerical
one in the case that= 1 and H = 2. Dashed lines in these figures indicate the theo-

retical value, and error bars “averagjestandard deviation” of00 numerical values.

value of generalization error. The dashed lines in these figures indicate the theoretical
values of generalization errors, which is calculated from Eq.(2). The error bars indicate
“average+ standard deviation” for all00 sets of training data. In the same way, we
also simulated in the case that 2 and H = 3. Figure 5 shows its numerical results.
According to these results, the experimental value of generalization error converges
to the theoretical one as the numbewf training data increases. Some differences
between the theoretical results and the experimental results may be influenced by the

lower term of the generalization error in Eq.(2).
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Figure 5: Comparison between the theoretical generalization error and the numerical

one in the case that= 2 and H = 3.

5 Conclusion

In this paper, we consider learning coefficients for Vandermonde matrix type singular-
ities. Theorems 8 and 9 show that learning coefficients for three layered neural net-
works and for normal mixture models with identity matrix variances are obtained by
the same type of singularities, i.e., Vandermonde matrix type singularities. Yamazaki
et al. (2010) shows that learning coefficients for mixtures of binomial distributions are
also obtained by Vandermonde matrix type singularities. Vandermonde matrix type is
a generic one in neural computation, so these facts seem to imply that Vandermonde
matrix type singularities are essential for learning theory.

We also show new tight bound values of learning coefficients for Vandermonde ma-

trix type singularities (Theorem 10) and the explicit values in some conditions (Theorem
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11).

By applying our results, we consider the learning coefficients of three layered neu-
ral networks with certain number of hidden units (Theorem 12), and normal mixture
models. with certain number of peaks in Bayesian estimation (Theorem 13).

Numerical results in Section 4 confirm our theoretical results.

Our future research aims to improve our method to obtain the generalization error
for both models, by using the bound values in Theorem 10.

We believe that extending our results would provide a mathematical foundation for
the analysis of various multi-layered models.

This study involves applying techniques of algebraic geometry to learning theory
and it seems that we can contribute to the development of both these fields in the future.

The application of our results is as follows. The results of this paper introduce a
mathematical measure of preciseness for numerical calculations such as the Markov
Chain Monte Carlo. In the paper (Nagata, 2008a), mathematical foundation for ana-
lyzing and developing the precision of the MCMC method is constructed by using the
theoretical values of marginal likelihoods. Moreover, the paper (Nagata, 2008b) studied
the setting of temperatures for the exchange MCMC method and proved the mathemat-
ical relation between the symmetrized Kullback function and the exchange ratio, from
which an optimal setting of temperatures could be devised. Our theoretical results will
be helpful in these numerical experiments.

Furthermore, these values have been compared with those of the generalization error
of a localized Bayes estimation (Takamatsu et al., 2005).

AcknowledgementThis research was supported by the Ministry of Education, Science,
Sports and Culture in Japan, Grant-in-Aid for Scientific Research 22540224 and Grant-

in-aid for Basic Science Research of Nihon University.

Appendix A

The proof for Theorem 9 is as follows.

LetA = (ar,...,am,af; s af,), I = (01, lN) e N,o",

N N N N N t
_ £ £ L * £ s £
Br= 1o 11025 IT0m 110, 1100 )
Jj=1 Jj=1 Jj=1 Jj=1 Jj=1
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andB = (BI>€1+-“+ZN:7171§"§H+T'

Then we have

N 4 N i
Hj:]_ bljj - Hj:]. b ]

Hj
N L N L
Hj:l b2j - Hj:l ij
— * x N N
ABr = (ai,...,0g—1,05, 1,05 ,,) | R AR R

N ¢ Nt
Hj:le+Lj _szlej

N ; N 4
[T5% Vi = 152 by

J=1

by using>"" ;= 1,30, af = —1.

i=H+1 "

N ¢ N ¥4
Hj:l bljj - Hj:l by

Hj

N ¢ N ¢4
Hj:l bQJj - Hj:l blifj

_ N ¢ N ¢ _
Let B} - H b}f{ 1,5 Hj:l b}JIj andB’ = (B})f1+---+5N=n,1§nSH+r-
N £ N 4
H b}}+1] = Hj:l blifj

N 4 N ¢
) Hj:l b;f+r,j = Hj:l bhjij
Since

jzl

N—-1 N—-1 N-1
kuj HbHJ b B e =) b ([T 0w = (T b bian ™,
7=1 7j=1

N— N-1 N-1
H Vo (b —brn) = H bej Yo% (en = ) 2 +bun ( H bej Vo (ben —baw),
j=1 j=1 j=1
and so on, we have a regular matfsuch thatB’R = (B7); where
[T, (b — buy)"
TT7 (boj — buy)"

B = | TI;i(bu-r; — buy)"
ij:1(bftl+1,j - ij)Ej

T, Oy — by
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Set

1 1
(all( ), . 7a;§'1)) =(a1,...,am,),
2 2
(all( )7 tee J(I;STQ)) = (aHl-l-l? e JCLH1+H2)7
(all(r )7 s 7“31(1:,)) = (aH1+---+HT/_1+17 s 7aH1+---+HT/)-
and
1 1
B b)) = (bay = b by — brrj),
B2 pDy = (b b b b
( 15 20 H2j> - ( Hy+1,5 = YHjys -+ - VHi+Ha,j — Hj)’
b/(T/) b/(rl) — (b by b by
( 15 2> HT/*l,j) - ( Hi++H._;+1,j Hjs -y YH1++H.—1j H])-
for1 <j; <N.
N N o *
Let A/@ — (a7, a5, - af ay,), fori<a<ra<r -1
(all(a)’a;(a)a"' ,a}(;z),o), forH+1<a<r —1,
n(r'y 1(r') 1(r") * T
, ay yay A, 0.,.), fr=r,
A0 — (/1/ /2' f{Tlll H+) . and
(al(r )7 GQ(T )7 e 7a[§IT,)717 0)7 if T, >,

/
Bl(a) — (B[ a))g1+g2+..-+ﬁN:n,1§n§Hﬂ’ where

N )l N )i
| bll(j " Hj:l bll(] >
N )l N e
Hj:l b/Q(J " Hj:l b/2(] "
B}(a) = : A <a<y — 1,B;('J) = :
N Uges £ N ! 0
Hj:l bl({a),] ’ Hj:1 bll({r’)_lvj ]
N x% ; N *x i
Hj:l (baj - ij)eJ Hj:l (br’j - ij)EJ

By Theorem 7, we only need to consider the cse_, [|A"® B"(®)||? instead of
|ABJ?.
Since we assume thét’, - -, bi%) # (b5, -+, by y) = (b5, -+ by for 1 <

a <r'—1,we may seb:, — by # 0.
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/() l
by N g1(a)%
(b:’ibm > I1j=2 b1
4y
b N ()b
(bg’;—bm szz b2_]
SinceB}(“)m = : , there exists a regular ma-
al .
/(o g
bI-(Ia)l ' HN (o) b
b7E —bm j=2"Haj
N
szz(b:;’ — buy)"
1
trix R” such thatB'® R" = B"(®) = ( ,B}'(a))gl+...+gN:n,neN, where
1
0
31 él
b N ()b b, N ()b
(b;*l—le Hj=2 b2j o\ b b Hj=2 blj
B’[’(Oé) —
/(o g , f
tn )yt () gy e
byi—bm1 j=2"Haj b7 b j=2Y1;

[1, (b — b)Y — (

/(
bt

N b/(a)fj
by —bm

j=2 %15

)AH

We have, therefore, a regular mat#X’ such that

1
B//(Q)RIII _ Bl//(a) — ( 7B}/ @ )g1+...+ZN:n,n€N7
1
where
0
b b, “ N ) ey,
oo~ o ) L=e(ba” =617
B}//(a) _
b;gz)l b/l(la) f N b/(a) b/(a) £;
b it ) L= =07
b/(a) b N /( )
ok AN\
(1 B bZ*ll—lel) [Tj=2(be5 — by = by;7)"
Seta!® A+ a4 dap, forl<a<ra<ir -1,
eta, ' = !

d\ +af o aly,
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( ey a ey % ey o ey "
(ag )7aé )’,.. >a;13’aH+a) _ (a’2( )’&é( )7... ’allga)a&H+a)7

fori<a<r,a<r -1

Ale) —
o [e% o (e (e (e
(a5 087, afe)) = (a5™, a5, al),
\ forH+1<a<r —1,
A(T’) _ (ag )7 @g )7 e ’agrzﬁaT{Jra) = (all(r )7 a;(r )’ e 7a;§12)71’ azHa)? if r = Tl’
(agr/)jaér')’ . 7agg) — (a'l(r’),a'z(r'), . ,a’éﬁ’_l), if < 1
oy oy b
and :
Bk bigls o by
b/(a> b/<a) Ut /(a o Ut
bz’iz:le - bzllijl b2(2 ) - b1(2) T bQ(N) - bl(N)
b/ p!(e) o (o e’ /(a
b;*llioé,llﬂ - (b**ll—lel blgla)Q - b1(2) T blga)N - bl(N)
b *ok « ok o
1= b;;ll_lbm by — baz — b/1(2) o by —ban — bll(N)
. y y bll(lTl) b/1(27’/) e bll(J:f/)
bgl) 652) T ng)
- 1(r’ 1(r’ (r’
bHTll bHT/2 e bHT/N ok ook sk
b,r,ll _le b?’”2 _bHQ st b?"/N _bHN

Then we have Theorem 9.

Q.E.D.
£
H;'V:1 by
Lemma 14 Let] = (¢1,...,0y) € (NU{0})N, B; = : and
£
[1;%: s
B = (BI)&+~~~+5N=Qn+m,0§n§H—1.-
0
/1 N / fj

21 =2 727
Also let B} = 7=

foréy +---+ 4y #0, Béel,o,...,o) = Be0,..0

01 N 1A
b [1j=2 U
/ !
and B" = (B])e+-+0x=Qntm,0<n<H—1,lr++ly£0-

Setb;m = by; — bklbli/bll for b1y # 0 andk,’i > 2.

Then we have, for a regular matrit, BR = B'.
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(Proof)

2 l
I 45 b T, by o1 T, by
j=1"1j 1 N 45 1 N i
We have ’ : ’ - bgl Hj:2 b2j — bgl Hj=2(b/2j + b2lblﬂ‘)£3
[T b, _— |
= b Ty b by T o (Vg + brrnbay)
1 N 7 1 N £
bfl Hj=2 blj bf.l Hj:Q bfj
N . ij N Zj
Also we have boh [Tj=2(b21by; ) — byt 1= b1 and
1 N . Z]' N éj
bfﬂ[l Hj:2(leblj)é‘7 b%l Hj:2 by}
0 0
’ . 01+ (fj-ﬂ}) / fj—fg-
bgﬁ HjV:Q b/2j£'7 (b21b1j)ej G _ b211 > HjV:Q bIQjEJ vazz by
. . o L5285 —L) ' =
bfql HjV:Q bhjzj (leblj)éj G bin HjV:2 b&{jej vazz blj
Q.E.D.
Appendix B
In this section, we give the proof of Theorem 10
Assume thatd, = H.
Let
v = ||ABI, (4)

¢ = dadb, V be a sufficiently small neighborhood @&nd.J (&) = |, Vg,

Bound values : bound and bound,

By using a blowing up process together with an inductive method in algebraic geometry

(Watanabe, 2009; Fulton, 1993), we show that we have the following functions (5) and
(6) below.

Let

H/

¢ = []vidvdadb, (5)
i=1
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(6)

Y Lo+l
UIFL(QH)( ot N))2

Q1H

QrrH
((brr11)? — 1)

((br1)? = 1)

T, = mM(i—1)+ (H—i+1)N + QUM + (H —i)(N — 1))
+Q(+1)M+(H—-i—1)(N—-1)+--+QHM+ (H—-H)N-1)) -1
= mM@—-1)+(H—-i+1)N
+QMGE+H )+ (N—-1)2H - H —i)(H —i+1)/2—1,
and
/- (UIQHf—i-mU;Q(H/_l)-i-m L UQ:&—m)QHAlHQ
0 —(H'—
+ Z (vflvél Q "UI;' (H I)Q)2||A2f,gl707...70||2
l1=Qn+m,,n>H'
+ Z (Ufl+(QHI+1)(€2+“'+KN)U§1+(Q(Hl—1)+1)(€2+"‘+€N) .
£ 4+ =Qntm,
Lo+--+Lp>0
XHAfoL@Q,"',fNHQ?
ay; Q2 - Q1 a1,H'+1  G1,H'4+2
whereA; = : Ay =
Qa1 Qp2 o ApMHY Ay H'+1 AOM H'42
fé)n+m,0,-~~ ,0
ernﬁ%_H (bgrsrav - v)? = D ((brgaavg - vpr)@ — 1) -
bng("—H’)((me )@ = 1) ((brvs - vg)@ — 1) -+
and
N 4
Hj:l bhjl’+1,j
Jor o, i :

N 2
Hj:l bI‘JI,j

Construct the blow-up of the function (4) along the submanifélg =

H,1<j <N} Lethy =uy, by = vibl, (4,5) # (1, 1).

Setb;’j = b;j — bglb’lj for i > 2 anda}; = a;; + a;b%; + a;zb5; + - -

0,1<:<

+ a;u by, for

1 <i < M. Byusing Lemma 2 in Section 3.1 and setting= a;, b;; = b;’j again, we

need to consider the functions

¢ = vV dvdadb,
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and

U= (o)A (8)
) WA e ol

l1=Qn+mmn>1

> T A f e,

L1+ n=Qn+m,
Lo+---+L >0

aiy a2 G133 -+ Q1
whereA; = : , Ag = ,
ayr Gp2 Aam3 0 GMH
A (O IT2, b5
fontmo.0 = : and f, . 0y = :
by "V (0 — 1) [T by

We construct the blow-up of the above function (8) along the submanffald=
0,ap0 = 0,b; = 0,1 < k< M,2<i< H,2<j<N}Qtimes. Letay, = v¥a},,
by = v, 1<k<M2<i<H?2<j<N.

We have the/(¢)'s poles YHPAEH-DINTD) fqr ) < p < Q and the functions

2(m+p)

Egs. (5) and (6) withf" = 1, by settinga;; = ajy, bi; = b};.

Assume Egs. (5) and (6). Construct the blow-up of function (6) along the submani-
fold {b;; =0,H' +1<i< H 1< j<N}.

Let bpry11 = v @andby; = vgaby; for H' +1 <@ < H,1 < j < N,
(1,7) # (H' + 1,1).

Set

b5 (va - vmrga)? = D((vg - opr0)® = 1) - ((vgrg10)® = 1)
= b — Wy by (birva - - vgg1)? — 1)((binvs - - vgr1)? = 1) -+ (biogr1)? — 1)
fori > H' +2and
a; gryy = i (brrgravz - vgg)? = D((bgrgravs -+ vmgn)? = 1) -+ ((barg)® — 1)

taim2bh o1 (brrazave -+ V1) = 1) ((bprgoavs - - vprg1)? = 1) -+ ((brrgz,1)? — 1)

+ oot aigb ((bgyve - - o) — D((bgavg - vppg)® — 1) - (bg)? — 1)
for 1 < < M. By using Lemma 2 and setting, = a;;, b;; = b}; again, we need to
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consider the functions

o = vl(qI{HH,N 1Hv ‘dvdadb, (9)

=1

where
T, = mM@G—-1)+(H—i+1)N+Q(M(i+ H')
+(N—-1)2H — H' —i))(H' —i+1)/2 -1,

for1 <i< H'and

U = (oI AP (10)
+<U?H/+m'0§(Hlil)+ UE/JFQUE/H) (a} 41t a?\J,H’+1)
D DR (Rt i o [V Y PO [
l1=Qn+m,n>H'+1
+ Z (Ufl+(QH'+1)(f2+~~~+€N)U51+(Q(H'—1)+1)(€2+~~~+€N) .. ~Ug/++£12+'”+51\1)2‘ |A2f41’52, n | |2

L1+ Hny=Qn+m,
Lo+l >0

ap; Q2 - Qi a1,H'+2  Q1H4+3 *°° Q1H
whereA; = Ay = ,
apr1 Qa0 Aprg! ay,H'+2 OMH+3 **° OMH
fé?n+m,0,---,0
bTHntFQQEIhHLl)((bH’H,IW v p1)® = 1) ((bargoavs - vgropia) — 1) - (bargen)? — 1)

Oy QD (barrvg - v)? = 1)((baravs o) = 1)+ (barn)? — 1)

and

HN bfj
j=10m42,

ffl,ég,n-,EN :
N 4
Hj:l blif,j

We construct the blow-up of the above function along the submanffeld,; =
0,aky = 0,1 <k <M, 1< < H'}, mtimes. By lettinga,s = a}; vy 1, we have
the poles™ ™ HNUH-H) for 1 < < m.

Fix 1 < p < H' + 1. We construct the blow-up of the above function along the
submanifold{v, = 0,a}; = 0,b;; = 0,1 < k < M,1 < < H' +1,H +2 <
i < H,2<j<N}Qtimes. Leta, = vaf;, by = v@b;, 1 <k < M1 <4 <

751 = = = =
H+1,H+2<i<H?2<j<N.

31



We have theJ(£)’s poles

mM (p—1)+(H—p+1)N+Q(M (p+H')+(N—1)(2H—H'—p))(H' —p+1) /2+p' (M (H'+1)+(N—1)(H—H'—1)
2Q(H' —p+1)+2m+2p’

for1 <p < H +1,0 <p <@ and the functions Egs. (5) and (6) witl¥ + 1, by

. 7 1/
settinga;r = ag,, bij = bij'

NH+p(M+(H-1)(N—1))

If a1, -+ ,apy are constants, then we have thg)'s poles D)

for0 <p < Q, MAHNHH) for 1 < i <m,1<H < H—1,and

mM (p—1)+(H—p+1)N+Q(M (p+H')+(N—1)(2H—H'—p))(H'—p-+1) /2+p (M (H'+1)+(N—1)(H-H'—1)
2Q(H' —p+1)+2m+2p’

forl<p<H +1,1<H <H-20<p<Q.

Bound values : boung

We next show that we have the following function (11) below.

2(Qn+ 2
o= Y AT el (11)
0<n<H-1 Nt
a“/l,kn,1+1 e all,kn
. . . o n /N4+m+iQ—1
whereA, viming-1) = : : , wherek, = > " (")
a?w,kn_ﬁl T a/M,kzn

Construct the blow-up of the function (4) along the submaniféld = 0,1 <
H,l S‘] S N} Letbll = 1, bU = ’Ulb;j, (Z,]) 7£ (1, 1)
Let f,; = [, b,,% for I = (£y,--- ,£y). Number the elements in the st =

j=1Yij

(01, On) 6+ Ly} from 1 to S/ N THe=T) "and we denoté™, 1), .. ..

We can assume thaf” + ... + ¢ < () oo gD,

IA

Choose;; properly such that all

f11<1) f11<2) f11<k> f11<k+1>

f21<1) f21<2) f21<k) f21<k+1>

Jrero fere oo fereo frroen

fi (1) fi1(2> fz (k) fil<k+1>

are not zero in a small neighborhood{af; }.
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Then by settingz;,ﬁrl = @ o1 Y+16 + Qi g2 Yirok + Qi pr3Yirs e+ -+ ain Yo
for 1 < i < M and by using Lemma 2 in Section 3.1 and Lemma 15 below, we have
Eq. (11).

We have theJ(£)’s poles#) for0 < H' < H, where

2m+2Q(H'+1
N+m-—1 N+m+Q—1
Ty = NH+ MQ(H + 1) )+ MQH'{ @ )
N -1 N -1
N+m+QH —1
e+ MO N1 )
Lemma 15 We have
b1 big  --- bl,i—l bLi b1 bia T b1,¢—1 bl,j
bay bao ce b2,i71 b2,i bay ba2 s b2,z‘71 bz,j
bi—l,l bi—l,Q T bi—l,i—l bi—l,i bi—l,l bi—1,2 T bi—l,z‘—l bi—l,j
bi,l bi,2 ce bi,ifl bz’,i bk,l bk,2 ce bk,zel bk,j
b1 bia T bl,i—l bl,j b1 bio T bl,i—l b1,¢
bay bao s 52,1'71 b2,j bay bao s bQ,z’fl b2,i
bi—l,l bi—1,2 T bi—l,i—l bi—l,j bi—l,l bi—1,2 T bi—l,i—l bi—l,i
bm bi,2 s bi,ifl bz’,j bk,l bk,2 T bk,ifl bk,i
bll b12 e bl,i—l bl,i bl,j
b1 b12 s 51,171 bay baa ce b2,z>1 bQ,i b2,j
. b21 b22 e b2,i—1 . . . : . :
bi—l,l bz’—l,Q e bi—l,i—l bi—l,i bi—l,j
bzel,l bi71,2 s bifl,ifl bi,l bi,2 ce bi,zel bi,i bi,j
bk,l bk,z s bkz,i—l bk,i bk,j
wherei < j, k.
Appendix C

In this section, we obtain the largest poleof fllAB||2<1 |AB||* and its ordem for

H < 2, where||AB||* = 0 defines Vandermonde matrix type singularities.
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11

a
Case 1For A = _21 andB = (b7}, 0%, ..., b7 ), we have
anmi
M N 1, if mM # N,

P e -

by constructing the blow-up along the submanifélg; = 0,1 < j < N}.

ay
Q)
ForA = _ andB = (b11,b12,...,b1n), We have
A
N
A=—0=1.
2m

by constructing the blow-up along the submaniféle;, = 0,1 < j < N}.

ay; 12
N 4
g1 G 120 b3
CaseZetA = _ , Br = ?V ‘[ andB = (B1)e,+.. 40y =0nt+m,0<n<1-
: Hj:l b2j
api  apm2

Construct the blow-up along the submanifd@ld; = 0,1 <i < 2,1 < j < N}.
Letb; = vy andbij = Ulb;j for (Z,j) 7£ (1, 1) Setbgl = b/22 — bo1by; fori > 2 and
ay, = ag1 + ap2bl; for k > 1.

By Lemmas 2 and 14, we need to consider

ayy aiz
2 CL/21 2 2 ag2 N 1l 2
| I T (efomof—v ooy ) P
G'Ml anro

Again setby; = b3,. Construct the blow-up along the submanifdlg, = 0,1 <
j< N}
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(1) Let by = vy andby; = vaby, for j > 2, and we need to consider

ay a1
CL/ 929

| | (R0 1) by o by )R
hp apr2

(1) Let by, = vy andby; = voby; for j # 2, and we need to consider

/
aiq a2

o™l I + vy |

/
Qpry aprr2

We, therefore, have the poles

2N + (k—=1)(M + N —1)
- 2k — 1) +2m

_ME+N
2k

(k=1,...,Q+1), (k=1,...,m),—M,
1. f mM < N —1then\ = M andf = 1.

2. Ifmzl,M:N,thenA:%andﬁzl.
3.1fm=1,N=M — 1then\ = N andd = 2.

4. 1fm=1,N <M —1then\ = N andf = 1.
5.1fm=2N=1,M=1,then\ = andf = 2.

6. If m =2, N <mM, M > 1then\ = X andf = 1.

7. 1f m > 2 N =mM then\ = & andf = 3.

8. If m>2N <mM then\ = L andf = 1.

an - aj
* N £
Q21 Qoo H —1 by
_ _ Jj=1"1j _
LetA = . ’BI - N ol andB = (Bl)€1+...+€N=Qn+m,0§n§1-
: szl by
%
am1  Qppo
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Let all b;; = 0. Construct the blow-up along the submanifdld; = 0,1 < i <
2,1 < ] < N} Letb;; = v andbij = ’Ulb;j for (Z,j) 7é (1, ].) Setbl2/Z = bIQZ — b21b1i

fori > 2 andaj, = ax + ax2by; for k£ > 1. By Lemmas 2 and 14, we need to consider
ay, ayy

a/ Cl*
2m 21 2 2m 22 < Qrm (1.Q N 111 ) 2
v v — . h .
1l : [P0 | : v by (bs — 1) Hj:1 b23 ll+"'+lN:m,12+“'+lN>O||

/ *
Apri Qpra

Again setby; = b3,. Construct the blow-up along the submanifdlg;, = 0,1 <
j < N}.

(1) Let byy = vy andby; = vgbgj for 7 > 2, and we need to consider

a/n ayy
2m a’21 2 2m, 2m G;Q Q/ Q / / 2
v | 17 + vy vy™ || : (U1 (v = 1) by ... byy )” :
v Ay

(1) Let byy = vy @andby; = vaby; for j # 2, and we need to consider

/ *
ary 4P

m|| QY A% ||2

vy I + vy 3™ |

gy Whro
We, therefore, have the poles

ON + (k—1)(M + N —1)
a 2(k — 1) + 2m

(k=1,...,Q+1),
and
1 If m>2,mM < N — 1then\ = "MV andg — 1,
2. fm=1,N>M+Q+1thenx = M andd = 1.
3. 1fm=1N=M+Qthen) = M andf = 2.

4.1fm=1,M+1<N<M+Q—1then) = 22250 andf = 1.
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5. If m =1, N = M then) = 22251 andf = 1.
6. fm=1,N=M —1thenA = N andf = 2.

7.fm=1, N < M — 1then\ = N andf = 1.

8. fm=2N=1,M=1,then\ =} andf = 2.

9. If m=2,N<mM, M > 1then\ = X andf = 1.

10. If m > 2 N = mM then) = ¥ andd = 2.

11. If m > 2 N < mM then\ = ¥ andf = 1.

Appendix D

Set
(k2 + ko) (M —N+1)+H
ko + 2 ’

whereky = max{i € Z | (M — N +1)i* < H}, and

Ao(H) =

ki + k) (M — N +1) +2H
4(ky + 1) ’

wherek; = max{i € Z | (M — N +1)(:* + 1) < 2H}.

/\1(H):(

We have
i+ 2 (M — N +1 H 432 (M — N +1 2H
No(H) = min UX VM =N FH gy (O =N 1) 42
i>0 47 + 2 i>0 4(i+1)

Lemmal16 (1) >0  MN(H.) >S5+ (0 Ho —1).
(2) )\0([‘[0) + /\1(H1) Z min{)\o(HO + H1 - 1) + %,)\1([‘[0 + Hl)}

(Proof)
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(1) Let H', H" > 2. Since for somé; (k; + 1) < 2H'/(M — N + 1), kao(ks + 1) <
2H" /(M — N + 1), we have

MH)+MH")=NH +H"—1) = X\ (1)
ki(M —N+1) H' ko(M — N +1) H"
+ + +
4 2(ky +1) 4 2(ky + 1)
(ky + ko)(M —N+1) H+H'"—-1 1
4 2k ke + 1) 2
H'(ky + Dko + H" (k1 + 1)ky — (k1 + 1) (ko + 1) (k1 + ko)
2(k1 + 1) (ke + 1)(k1 + ko + 1)(M — N + 1)
(k1 + 1) (ko + D)ko + (ko + 1)(ky + D)k — (k1 + 1) (ko + 1) (k1 + k2)
2(k1 + 1) (ko + 1) (k1 + k2 + 1) (M — N + 1)

v

> =0

Therefore, we have
Z)\l(HOé) > (T‘ - 1)/\1(1) + )\1(2 Hoe - 1)
a=1 a=1

(2) LetH’' > 0, H" > 1. We have

(k2 + ko) (M — N +1)+ H' N (k2 4+ k))(M — N +1)+2H"
4ko + 2 2k, + 2
(k2 + ko) (M —N+1)+ (H +1)  (k}+Fk)(M—-N+1)+2(H"—1)
Tk 12 * 2her + 2
1 1

2k, +1)  4ko+2

Therefore,

() if Ao(H') + M\ (H") = (k(2)+ko)(i‘k4011;7+1)+H' n (k%+k1)(];€:f2+l)+2}p/ and2k, + 1>

k1 + 1 then inductively

Ao(H') + M(H") > No(H' +1) + M\ (H" — 1) > A(H' + H" — 1) + M\ (1),

. 2 _ U 2 _ "_
(i) If Ao(H' + 1) + A (H" — 1) = (k0+ko)(1\44k0112+1)+1{ o (k1+k1)(M2]i\1/j:;)+2(H 1)

and2ky + 1 < k; + 1 then inductively
Xo(H' + 1)+ M (H" —1) > Xg(H') + M\ (H") > M\ (H' + H").
From (i) and (ii), we have
Mo(Ho) + M (Hy) > min{\(Ho+ H; — 1)+ % M (Ho+ Hy)}. (12)
Q.E.D.
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Therefore, by some computations, we have

{

HoN + (M1 + ko) +

(N = 1)(2Hy — ko — 1))ko

min
Hoto Hy=H,Hy 1,0+ Hy >1

ko + 2
(N B 1)(2Ho¢ - koa - 1))]{:04

"~ 2H,N + (M(1+ k,) +
2 ik, 1 4

a=1

}

Hy(N —1) | Ho+ k(M — N +1)(1+ ko)

- HO+'“+Hr:IIl‘},1fIanl,“' ,Hrzl{ 2 4ko + 2
"\ Ho (N —1)  2H, + (M — N +1)(kq + k2)
+ A * Ao + 4 )
H(N —1) . -
_ T e i {o(Ho) + Z A (H,)Y
H(N —1) r—1

= BT min{(H — ) + g,)\l(H—rJr 1)+

5

whereky = max{i € Z;Hy > *(M — N + 1)} andk, = max{i € Z;2H, >

(i2+i) (M — N+1)} fora > 1.
Lemma 17 We have the followings.

o If M —N+1=1,then
X(H—1)+3>M(H)for2 < H <9.
Xo(H — 1)+ 1 =\ (H) for H = 10.
M(H = 1)+ 3 < \(H) for H > 10.

o If M — N+ 1=2,then

X(H —1)+ 3 =M\(H)for H =
M(H—=1)+35>MN(H)for3<H<5
Mo(H—=1)+5=MN(H)for6 <H <9
M(H—=1)+35 <M\(H)forH>9
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