This article was downloaded by: [Aoyagi, Miki]

On: 29 July 2010

Access details: Access Details: [subscription number 924855568]

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Theory and Methods
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597238

A Bayesian Learning Coefficient of Generalization Error and

Vandermonde Matrix-Type Singularities
Miki Aoyagi®
* Advanced Research Institute for the Sciences and Humanities, Nihon University, Tokyo, Japan

Online publication date: 28 July 2010

communications in statistics

To cite this Article Aoyagi, Miki(2010) 'A Bayesian Learning Coefficient of Generalization Error and Vandermonde
Matrix-Type Singularities', Communications in Statistics - Theory and Methods, 39: 15, 2667 — 2687

To link to this Article: DOI: 10.1080/03610920903094899
URL: http://dx.doi.org/10.1080/03610920903094899

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://ww.informworld. confterns-and-conditions-of-access. pdf

This article nay be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, |oan or sub-licensing, systematic supply or
distribution in any formto anyone is expressly forbidden.

The publisher does not give any warranty express or inplied or make any representation that the contents
wi |l be conplete or accurate or up to date. The accuracy of any instructions, fornulae and drug doses
shoul d be independently verified with primary sources. The publisher shall not be liable for any |oss,
actions, clainms, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.



http://www.informaworld.com/smpp/title~content=t713597238
http://dx.doi.org/10.1080/03610920903094899
http://www.informaworld.com/terms-and-conditions-of-access.pdf

09: 02 29 July 2010

MKki] At:

[ Aoyagi,

Downl oaded By:

Communications in Statistics—Theory and Methods, 39: 2667-2687, 2010 Tavlor & Francis
Copyright © Taylor & Francis Group, LLC e Taylo)r/&Francis(]roup

ISSN: 0361-0926 print/1532-415X online
DOI: 10.1080/03610920903094899

A Bayesian Learning Coefficient of Generalization
Error and Vandermonde Matrix-Type Singularities
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The coefficient of the main term of the generalization error in Bayesian estimation
is called a Bayesian learning coefficient. In this article, we first introduce
Vandermonde matrix type singularities and show certain orthogonality conditions of
them. Recently, it has been recognized that Vandermonde matrix type singularities
are related to Bayesian learning coefficients for several hierarchical learning
models. By applying the orthogonality conditions of them, we show that their log
canonical threshold also corresponds to the Bayesian learning coefficient for normal
mixture models, and we obtain the explicit computational results in dimension one.

Keywords Generalization error; Hierarchical learning models; Normal mixture
models; Resolution of singularities; Zeta function.

Mathematics Subject Classification 62D05; 62M20; 32S10; 14Q15.

1. Introduction

The theoretical study of hierarchical learning models has been rapidly developed
in recent years. The data analyzed by such learning models are associated with
image or speech recognition, artificial intelligence, the control of a robot, genetic
analysis, data mining, time series prediction, and so on. They are very complicated
and not usually generated by a simple normal distribution, as they are influenced
by many factors. Hierarchical learning models such as the normal mixture model,
the Boltzmann machine, layered neural network, and reduced rank regression may
be known as effective learning models. They, however, likewise have complicated,
i.e., non regular statistical structures, which cannot be analyzed using the classic
theories of regular statistical models (Fukumizu, 1996; Hartigan, 1985; Hagiwara
et al., 1993; Sussmann, 1992). The theoretical study has therefore been started to
construct a mathematical foundation for non regular statistical models.

Watanabe (2001a,b) proved that the largest pole of a zeta function for a
non regular statistical model gives the main term of the generalization error of

Received December 11, 2008; Accepted June 1, 2009

Address correspondence to Miki Aoyagi, Department of Mathematics, College
of Science and Technology, Nihon University, Tokyo, Japan; E-mail: aoyagi.miki@
nihon-u.ac.jp

2667



09: 02 29 July 2010

MKki] At:

Downl oaded By: [Aoyagi,

2668 Aoyagi

hierarchical learning models in Bayesian estimation. The generalization error of
a learning model is a difference between a true density function and a predictive
density function obtained using distributed training samples. It is one of the most
important topic in learning theory. The largest pole of a zeta function for a
learning model, which is called a Bayesian learning coefficient, corresponds to the
log canonical threshold in algebraic geometry. The log canonical threshold 4,(Y, f)
over the real field is analytically defined by

2, (Y, f) = sup{c : | f|~¢ is locally L' near Z},

for a non zero regular f on a smooth variety Y, where Z C Y is a closed subscheme.

In spite of these mathematical foundations, obtaining their largest pole,
i.e., their log canonical threshold is still difficult for several reasons such that
degeneration with respect to their Newton polyhedrons and non-isolation of their
singularities (Fulton, 1993). Moreover, in algebraic geometry and algebraic analysis,
these studies are usually done over an algebraically closed field (Kolldr, 1997;
Mustata, 2002). We have many differences between the real field and the complex
field, for example, log canonical thresholds over the complex field are less than 1,
while those over the real field are not necessarily less than 1. We cannot therefore
apply results over an algebraically closed field to our cases, directly.

In this article, we first introduce Vandermonde matrix type singularities
(Definition 3.3) and next show certain orthogonality conditions of their log
canonical threshold (Theorem 3.1). We then show that the theorem enables us to
connect Bayesian learning coefficients of normal mixture models with Vandermonde
matrix-type singularities. By applying such results, we obtain explicitly the
coefficients of normal mixture models with unit matrix variances in dimension one.
Yamazaki and Watanabe obtained only upper bounds of these values (Yamazaki
and Watanabe, 2003).

In the past few years, we have also obtained Bayesian learning coefficients
for the three layered neural network (Aoyagi and Watanabe, 2005a; Aoyagi, 2006)
and for the reduced rank regression (Aoyagi and Watanabe, 2005b). Rusakov and
Geiger (2005) obtained them for Naive Bayesian networks.

This article consists of four sections. In Sec. 2, we summarize the framework
of Bayesian learning theory. In Sec. 3, we state our main results. Our conclusion is
given in Sec. 4.

2. Bayesian Learning Theory

In this article, we overview Bayesian learning theory, especially the stochastic
complexity and the generalization error.

It is well known that Bayesian estimation is more appropriate than the
maximum likelihood method when a learning machine is non-regular (Akaike, 1980;
Mackay, 1992).

Let g(x) be a true probability density function and (x)" := {x;}!_, be n training
independent and identical samples from g(x). Consider a learning model which is
written by a probability form p(x|w), where w is a parameter. The purpose of the
learning system is to estimate g(x) from (x)"” by using p(x | w).



09: 02 29 July 2010

MKki] At:

Downl oaded By: [Aoyagi,

Bayesian Learning and Vandermonde Matrix Singularity 2669

Let p(w| (x)") be the a posteriori probability density function:
n 1 .
p(w] (x)) = -9 (w) [T pl | w).
n i=1
where (w) is an a priori probability density function on the parameter set W and
z,= [ W) [1p(s | w)dw,
i=1
So the average inference p(x | (x)") of the Bayesian density function is given by

Pl (") = [ plxw)p(w ] (x))dw,

which is the predictive density function.

Set
K(qllp)zfq(X)long) x.
p(x[(x)")
This is always a positive value and satisfies K(g||p) =0 if and only if g(x) =
p(x [ (x)").

The generalization error G(n) is its expectation value E, over n training
samples:

G(n) = E{ / 4() log — 1% }

PGl
Let

- q(x;)
K,(w) = - glog oo lw)

The average stochastic complexity or the free energy is defined by
F(n) = —En{ log / exp(—nKn(w))lp(w)dw}.

Then we have G(n) = F(n + 1) — F(n) for an arbitrary natural number n (Amari
et al, 1992; Amari and Murata, 1993; Levin et al, 1990). F(n) is known as
the Bayesian criterion in Bayesian model selection (Schwarz, 1978), stochastic
complexity in universal coding (Rissanen, 1986; Yamanishi, 1998), Akaike’s
Bayesian criterion in optimization of hyperparameters (Akaike, 1980), and evidence
in neural network learning (Mackay, 1992). In addition, F(n) is an important
function for analyzing the generalization error.

It has recently been proved that the largest pole of a zeta function gives
the generalization error of hierarchical learning models asymptotically (Watanabe,
2001a,b). We assume that the true density distribution g(x) is included in the
learning model, i.e., g(x) = p(x | w) for w® € W, where W is the parameter space.
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Define the zeta function J(z) of a complex variable z for the learning model by

J) = [ K@)y (wdw,
where K(w) is the Kullback function:

plrlwg)
P([w)

Then, for the largest pole —Z of J(z) and its order 0, we have

K(w) = [ plx|w;)log B2

F(n) = Zlogn — (0 — 1)loglogn + O(1), 1)
where O(1) is a bounded function of n, and if G(n) has an asymptotic expansion,

0—1
nlogn

A
G(n) = —— as n — oo. 2
n
Therefore, our aim is to obtain A and 6.
Note that for Z = {w: K(w) =0}, A= 1,(W, K(w)) = sup{c: |K| ¢ is locally
L' near Z}, which is the log canonical threshold of K(w).
To assist in achieving this aim, we introduce Hironaka’s Theorem.

Theorem 2.1 (Desingularization, Hironaka, 1964). Let f be a real analytic function
in a neighborhood of w = (w,, ..., w,) € R? with f(w) = 0. There exist an open set
V 5 w, a real analytic manifold U, and a proper analytic map u from U to V such that:

(1) p:U—%— V— f~Y0) is an isomorphism, where € = u~'(f~'(0));
(2) For each u € U, there is a local analytic coordinate system (u,, ..., u,) such that
fu(u)) = £ul'u ... u), where s, ..., s, are non negative integers.

Applying Hironaka’s theorem to the Kullback function K(w), for each
w € K~1(0) N W, we have a proper analytic map y,, from an analytic manifold U, to
a neighborhood V,, of w satisfying Hironaka’s Theorems (1) and (2). Then the local
integration on V,, of the zeta function J(z) of the learning model is

1@ = [ K@)y )dw

w

= [ T G )l (0]

Uy u

Therefore, the poles of J,(z) can be obtained. For each w e W\ K~!(0), there
exists a neighborhood V, such that K(w')#0, for all w' eV,. So J,(z) =
fv K(w)*y(w)dw has no poles It is known that u of an arbitrary polynom1al in
Hironaka’s Theorem can be obtained by using a blowing up process.

3. Main Result

In this article, we denote by a*, b* constants and denote by a* if the variable « is in
a sufficiently small neighborhood of a*.
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Define the norm of a matrix C = (¢;;) by ||C|| = /3, ; |¢;;|*. Denote by (C) the
ideal generated by {c;;}. Set N, = N U {0}.

Definition 3.1. Let f be a real analytic function defined near w*.
Set 4,.(f) = sup{c: |f|~¢ is locally L' near w*}.

3.1. Vandermonde Matrix Type Singularities
Definition 3.2. Fix Q € N. Define [bf, b5, ..., byl =7:(0,...,0,5},...,by) if
if Qis odd

bi=---=b",=0,b"#0,and y, = if O i
; 1 P 7 Y |b¥|/b; if Q is even.

Definition 3.3. Fix Q € N and m € N .
Let MH + HN variables

apy - g by -+ by
ay - oy by -+ by
w= ,
ay1 - Amu byy -+ buy
and rM + rN constants
* * * *
Aypyr 0 Ay by - b
* * * *
. WBHr1 T Y2Her biia1 = Do
w = ,
* * 5 %
Aya+l " AMH+r Dyivr 0 bhiew
Let
* *
ay - Ay Adpgng a1 Hyr
* *
Ay o+ Qo 4y i A Hir
, , N
A= N IZ(ZI,...,ZN)E]N+O,
a -eea a’ at
M1 MH M,H+1 M,H+r

(nbl,, I8, .

j=1 j=1

l_[bH/,l—Ime

j=1

t
HbH+V] )

j=1

and B = (B;)y,;..tey=0n+mo<n<nir—1 (¢ denotes the transpose) , where A is an
M x (H + r) dimensional matrix and B is an (H +r) x Y74~ L QntmeN-D)@rem)!

dimensional matrix.

1!

We call singularities of |AB||?> = 0 Vandermonde matrix type singularities.
To simplify, we usually assume that

* *
(al,H+j’ Ay Hyjr v

forl <j<rand

* *
[bH+j 1° bH+/ 200

for j # j.

az/I,H+j)t7£0’ (bH+]1’ H+j,2""’b>1k1+j,N)¢0
b;ﬂ N] # [bzﬂ’ Iy b71+1 20 - bZﬂ’ N]Q
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Let w, w}, A, and B be as in Definition 3.3.
neighborhood of

* * *
ap - a4 by,
* * *
. a1t Gy b3,
w — . 9
* * *
Ay "~ Aym by,

Set (b5t by ... biy) = (0, ..., 0).

Let each (bj7, b5, ..., b)), ..., (b5, b, ..., b

(b}, by s biylg #0, fori=1,....,H+r:

XA s DI, (B D)3 B s

Then ' > r and set (b}, ..., bjy) = [bfryiys >
It is natural to assume that

(6115 - -5 binlo

(15 - bZON]

X
[bHO-H,l’ R bHO-H,N]Q

* *
[bHo+H1 1> bH0+H1 N]Q

* *
[bH0+H]+1,1’ B bH0+H]+1,N]Q

* *
[bHO+H|+HZ,1’ cee bH(]+H]+H2,N]Q

b*

Ho+-+H,_ ,+1,N]Q

b

Hy+-+Hy_j+1,15 * **

[} . by ]
Ho++H,_ +Hy,1° * Hy+-+H,_+H,,N1Q

and Hy+---+H, = H.

Theorem 3.1. We have

2o (IAB|?) = 32 2y (| A®

a=0

* *
where w®" = {a?", b} =

Let w be in a sufficiently small

) be a different real vector in

biylg #0,i=1,....,H+r}.

by inlg, for 1 <i<r.

= (bn’ B bm)»

_ sk
(b21’ "’b2N 4

= (b, ... b5).

) B@) ||2),

{Cl* b**}
k,Ho++H,_+i*> “oj J1<k<M,1<i<H,,1<j<N’
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I= (..., 0y) € NN,

@ @ &) N
ayy @y - 01[;1“ [Tj=1 by;
(@ (@ () N @b
a a ceea \ - ,
AP = | 7 T |, BY = i1 b2 , fora=0, r+1<a<r,
@ @ ® T
Ayl Ayp - aMHq l‘[;\’zl bg)] J
N (@Y
Y by
(o) (€3) () " HJ:I 1j
ay A o A, A Hyy N @b
I RN C R [Tj=1 by
A0 — | % 92 o, Dam | B;x) _ ) Cforl<oa<r
: N (@b
@) @ @) Y, »?.
Ay Ay - Ayp, Qg J=1 7ty

N skl
l_[j:l boc] !

0 (0) ‘ ()
BY = (B, )Zl(+<)-<+lN=Qn+m,0§n§H(,—1’ B = (B, )l1+<~+lN=n,0§n§Hx—l for r+l<a=<r
and B® = (B’ Ve ot ty=noznzn, Jor 1 <o <.

B© B(a)(] <o <r) and B(“)(r +1<a<rv) are Hy x ZHOEI —(Q’H'H(]X;_ll))!'(QHm)!
) = = = = n=l\ —_1) y
(H,+ 1) x Y0k WD g H, Z:’;g] WEN-DY - dimensional — matrices,

(N=1)! (N=1)!
respectively.
Proof. Set

(0) (0)
(@i s aig) = (@, -5 aig),
(C)] (1
(@' oos @) = (@ goirs -+ s Qopgan,)s
for1 <i <M, and

() ()Y _
(ap’s..., aiH,/) = (ai,H0+---+H,_]+1 s ai,H0+---+H,/)?

(b)), b)) = (byjs .. by ),

1 1
(bij)’ s bl(ql)j) = (bH0+1,js SRR an+Hl,j)’
forl <j<N.

() (')
(bli; s ey b[-;,/]) = (bH0+m+Hrr,1+1,J.’ T bH0+“‘+H"’j)’

For y,-(bf,“), e, bf‘;)) = [bf“), e bf,f,)]Q, we again set a,(j) by a,g)/(yi)’” and bff) by
by, 1<j<Nand1<k<M.

Main parts of the proof is appeared in Appendix 1. By applying Lemma A.4 in
Appendix 1, we have this theorem.

Theorem 3.1 shows a kind of an orthogonal relation of the log canonical
threshold of Vandermonde matrix type singularities. Usually, r corresponds to the
number of elements of a true distribution. It means that the Bayesian learning
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coefficient related with such singularities is the sum of each for the small model with
respect to each element of a true distribution (cf. Sec. 3.2).

Theorem 3.2. We use the same notations as in Theorem 3.1. If N = 1, we have:

MQky(ky+ 1) +2H, Mr . Mk,(k,+ 1)+ 2H,

Jue (|AB|?) =
o (14BI7) 4(m + ko Q) 2 2 41 +k,)
" Mk, (k, + 1) +2(H, — 1)
+“§+1 A4k :

where

ko =max{i € Z; 2H, > M(i(i — 1)Q + 2mi)},

k, = max{i € Z; 2H, > M(i* + i)},

k, =max{i € Z; 2(H, — 1) > M(i* + i)}.
For the proof of Theorem 3.2, we use a similar method in the articles (Aoyagi,
2006; Aoyagi and Watanabe, 2005a), where we used recursive blowing ups and toric

resolution.
The key point is that 4(||AB||*) = 4, (| AB||*) for N = 1, where

0 by(bs —bP) 0 0
B=|0 0 by (bS = b7) (B = bF) - 0
0 0 0 e b (b = bY) - (b — b))

and |by| < [by_y| < -+ < |by| < |by].
Recently, we have the explicit values 1,.(|AB|?) for general natural numbers N
and M but for H < 2 (Aoyagi and Nagata, 2008).

3.2. Normal Mixture Model

We consider a normal mixture model with unit matrix variances

1 1 P (x; — bij)2
plx|w) = W ;al—exp(—%)

where w={a;, b5 1 <i<H},1<j<Nand 3/ a,=1,a,>0.
Set the true distribution by

. -1 H+r . ZN: (x. _ b;|<)2
p(x|wy) = G2 > q eXp(-%)

i=H+1

where wi ={a},bj; H+1<i<H+r,1<j<N} and >[5/ a'=—1, a; <0.

(In order to simplify the followings, we use the values af < 0 not a; > 0.) Suppose
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that an a priori probability density function (w) is a C®-function with a compact
support W where y(w) > 0.
Let A= (ay,....ay, Gy @y, )s I =Ly, .., Ly) € NLY,

N N t
[!
(Hbu,nbz,,...,nb T B - nb,ﬂ,, )
=1 j j=1

j=l1

and B = (B;)¢,+....ey=n1<n<n+r (f denotes the transpose).
Then the Bayesian learning coefficient of the normal mixture model is the
largest pole of

nda e ()

i=1 j=1

[~

with Y7 a; =1, 4, > 0 and Y777, aﬁ —1, a; < 0 (Watanabe et al., 2004)

Note that we have the relations 3", a; = 1 a; > 0 and Zf”H’H a; =—1,a;<0.
We need to modify the function ||AB||2 for obtalnmg the largest pole of [ \If by
using Vandermonde matrix type singularities. The following theorem is available for
such purpose in dimension 1.

Theorem 3.3. Let w be in a sufficiently small neighborhood of w* = {a}, b}},_;<y-
Let each b*, ..., by be a different real number in {b; :i=1,...,H+r}:

(b, by ={bi=1,...,H+r).

Then r' > r and set b}* = b}}ﬂ pforl <i<r.
Assume that

 _ Ok R _ — — p** *
bl_..._le_ s HI+1_..._bH]+H2—b2,.. bH]+ AHy_+1

=-=by. iy, m =b and H + - +H, =

Then we have

r—1
b (IABI) = 3 4o (@) 4 5 Fur (1A B,
a=1

a=1

* * *
()* Ay pesty g1 T gy, Ty, <0<,

* * /
Ay goyr, 1t T Ay yms r+l=oa=<r -1,

where w),

w?* = {az@*, b‘(“)*}2§i§Ha = {a*H1+«~+H“,1+i’ O}Zfigﬁzs

(@) (o) H
b - b
H
b(“) .. b(“) o
A(X) (agy)7 Cl(;), . ag)’ aH+ot) B(“) = : 2 for 1 S o S r,

-
b b
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(@) (o) a1
b} <o b
O A L
A® — (ag“), ag“), el gj)) B® —= by by forr+1<a<r.
(@) () Ha—l
bH,—l e bH,(—l

The proof is shown in Appendix 2.

Theorem 3.4. The average stochastic complexity F(n) in Eq. (1) and the generalization
error G(n) in Eq. (2) are given by using the following largest pole —J. of J(z) and its
order 0.

If the true distribution has r peaks,

)L:r_l+

n+n®42(H — =1 ,_ L, ifn’+n<2(H—(r—1)),
4(n+1) e, =2l - (- 1)),

where n=max{i € Z ; i*+i<2(H— (r —1))}.

Proof. By Theorems 3.2, 3.3 and the result in the article (Aoyagi, 2006; Aoyagi and
Watanabe, 2005a), we have, for w* with |AB||,- = 0 as in Theorem 3.3,

r—1 " n,+n>+2H
)\' L = o o o
=l T

a=1

"o, 4nd+2(H,—1)
T T amen

oa=r+1

its order 0,. =#0 + 1,

where H,+---+H,=H, n,=max{i€ Z;i’+i<2H,} for 1<a<r, n,=

max{i € Z;i*+i <2(H,— 1)} for r+1 <a < v, and © = {n,; n> + n, = 2H,}.
Some computations show that

n+n*+2(H— (r—1))

in{l,. : |AB )
min{2,.: | flsa

s =0=r—1+

where n = max{i € Z; i +i < 2(H — (r — 1))}, and so we have the theorem.
Example 3.1. Let N =1 and H = 5, that is,

ot = e Fms 052

where ZL a; =1, a; = 0. Also, let the true distribution has two peaks (r = 2):

)2 e
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where b} # bi. Then, we have n = max{i € Z; i* +i <2(5—(2—1))} =2, and

242 425-2-1) 13
i=2-1 =2 e=1
+ 32+1) 6

Similarly, the concrete values of 4 and 0 for H, r < 5 are given in the followings.

r r
J 1 2 3 4 5 0 1 2 3 4 5
H=1 12 H=1 2
H=2 3/4 32 H=2 1 2
H=3 1 7/4 52 H=3 2 1 2
H=4 17/6 2 114 72 H=4 1 2 1 2
H=5 4/3 13/6 3 15/4 92 H=5 1 1 2 1 2

4. Conclusion

In this article, we consider the log canonical threshold of Vandermonde matrix-
type singularities. Such singularities have recently been recognized that they are
connected with Bayesian learning coefficients for several hierarchical learning
models. For example, we showed that Bayesian learning coefficients of the three
layered neural network (Aoyagi, 2006; Aoyagi and Watanabe, 2005a) and the
mixtures of binomial distribution (Yamazaki et al., 2008) are obtained by the
singularities. These facts seem to imply that the singularities are essential for
learning theory.

By applying the orthogonal relation of them, we show that a Bayesian learning
coefficient for normal mixture models is related to the singularities in Theorem 3.3,
and then, by using the theorem and by applying techniques of algebraic geometry
to learning theory, we obtained Bayesian learning coefficients for normal mixture
models with unit matrix variances in dimension one (Theorem 3.4). Moreover, in
the recent article (Aoyagi and Nagata, 2008) if the difference between the number of
peaks of learning models and that of true distributions are less than one in general
dimension, we are obtaining Bayesian learning coefficients. Our future research aims
to improve our methods, and to apply them to general cases.

It is well known that the classic model selection methods of regular statistical
models such as AIC (Akaike, 1974), TIC (Takeuchi, 1976), HQ (Hannan and
Quinn, 1979), NIC (Murata et al., 1994), BIC (Schwarz, 1978), and MDL (Rissanen,
1984), cannot apply to the generalization error for non regular models, since the
true parameter set of regular models should be one point and its Fisher matrix
function is positive definite. Our theoretical values will be available for constructing
a mathematical foundation for model selection methods of non regular models.

Several Bayesian learning coefficients in the article (Aoyagi, 2006; Aoyagi and
Watanabe, 2005a) were used by analyzing and developing the precision of the
Markov Chain Monte Carlo (Nagata and Watanabe, 2008a). Moreover, (Nagata
and Watanabe, 2008b) studied the setting of temperatures for the exchange MCMC
method by using such Bayesian learning coefficients. Our theoretical results in this
article will also be helpful in these numerical experiments.



09: 02 29 July 2010

MKki] At:

Downl oaded By: [Aoyagi,

2678 Aoyagi

Appendix 1

Lemma A.1. Let U be a neighborhood of w* € R%. Let .7 be the ideal generated by
fis s f, which are analytic functions defined on U. If g, ..., g, € I, then 1, (f{ +
oo+ f2) is greater than 1.,.(g} + -+ g2). In particular, if g, ..., g, generate the
ideal ¥ then

de (FL A+ 4 [2) = Ao (g1 4+ + 80)-

Proof. The fact gi +---+ g% < P(f} +--- + f?) for P >> 1 yields this lemma.

b B2 bIQ(H—1)+n1 le(j—l)+r71
Lemma A.2. Let B = : : and b/j =
o O O Dtm ' QU tm
H "H H
Consider a sufficiently small neighborhood of {b}}, ;<.
Let b = 3B,
Set
v H (be/ v — bi/ i), if by #0,
[6% =16} ], 1<k<j—1 . .
b/, = o for1 <j<i and
Tl e =0,
bf=0,1<k=<j-1
0
/! 0 .
bj= v | for1 <j<H.
JJ
by
Then there exists a regular matrix R such that BR = (b{, b5, ..., b},).

Proof. We only need to prove that the vector space generated by by, b5, ..., bY, is
equal to that generated by b}, b5, ..., b},.
Some computation shows that the vector space generated by

br b’"(bQO— b?) 8
L | e ef - 69)F — b9)
o0 =00) e 00 -1y
0
X .
0

pr(bE — b2y (bg_, — bY)

is equal to that generated by b}, b5, ..., b},.
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Therefore, we may set

pm 0 0
b/ — .1 b/ — b;ﬂ (le B b2Q) / —
1= . s Uy = . s Vg —
: : 0
bm *
" b (bY — b)) b (b —bg)--- (bg_, — bY)

We use an induction.

From now on, denote by (¢, c,, ..., cy) the vector space generated by vectors
€, Chyenny Cpye

It is easy to check that (bj, b, ..., b}) = (b}, b, ..., b,_,, b}).

Let g;,;(x), g;41,;(x), ..., 8y ;(x) be polynomials of x, b, ;,...,b; such that
gy (xy;) =gy ;(xyp) if b5 = |b}| # 0 and g; ;(x) — g ;(x') can be devided by

x@ — X2 if b, = b5, =0
0

0 .
Assume that | ;@b | is an element of (b7, ..., by) and that
g, (b )b}

(b, by = (b, .. BB D).

J

Since
0 0
b, = 0 - 0
=t b;nfl(le - ij—l) e (bjgz - ij—l) N gj—l,j—l(bj—l)b}/—l,jfl ’
b (bY — by) -+ (b2, — by) 8r,j-1 (br)b
where

gj—l,j—l(bj—l) #0,..., gH,j—l(bH) #0,

81 (vpx) = gy jo1 (vrx) if |b}5| = |b}k| #0andg; ;_,(x) =g ;1(x') can be divided
by ¢ = x2 if by, = b, =0, we have:

0
b . =b" (b )+ 0
e (8-1(8;) — &1 j1(Bi_))b] ;4

(gH,j—l(bH) — 8j-1,j-1 (bj—l))b;/!,j—l
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/! O
= bj_lgj—l,j—l(bj—l) + g /,(b/,)b;/j ’

8u,j (bH)b/I/f,j

gk,j(bk) = gk,j—l(bk) - gj—l,j—l(bj—l)’ if |b1f| * |b;~l] l,
where 8, (i) = (8 j-1(Dy) — 85-1,-1(D;_)) /(1 /71 — by /7)), if |bf|= |b}11 | #0,
gk,j(bk) = (gk,j—l(bk) - gj—l,j—l(bj?)l))/(ij—l - ka) if by = b;—l =0.

. . . 0 .
By the inductive assumption, | ;)b | is an element of the vector space

gH,j(bH)b;;_f

generated by b_;/, ..., by
Therefore, (bf,....by) = (bj,....b; |, bl,...bY) = (bl.....b; ,. b7, b}, by).
by blgm bIQ(H—l)+m b]Q(j—l)er

Lemma A.3. Let B' = : : and b, =
W bg’w bg(Hinw bgo—'mm
Consider a sufficiently small neighborhood of {b}},-;y.
Let bf = 7,Ib].
Let each |bt*|, ..., |b*| be a different real number in {|b}|; |bf| # 0}:

(D], s 1B 15 1B # 1b37] i # j} = {1675 1B} ] # 0}

Also, set bj* = 0.

Assume  that bi=---=by = by", |by (|==[by oy |=[67 ] Oh i, 1 =
e Ll
Set

(B, ..., b)) = (by, ... by),

1 1
(B, b)) = (byyers - bgan,)s

r r)
(b( ), R bl('-l) = (bH0+~»+H,,1+1’ SRR bH0+-~+H,)'

Let b =37 |p™".
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BO o 0o -
o BMo ..
Then there exists a regular matrix R such that B R = . , where

f=l=)

0 00 BO

o+ O(Ho—1)+
bgo)m bgo) m o bgo) o m
BY = and
(o)™ (O)Q+m (0)Q(H071)+m
bHO bHO e bHo
@™ (@)™ (@) (@) ()T (@), (@) (@)™ 7 (@) 4, ()\H,—
Vlz V11 bloC /Vlz Vlz (bll //11 )2 T "/10C (b1& /7’10C ) :
B® — : : :
@™ (@)@, @) (@)™ (@), (@) ()™ 7 (@), (D\H,—
v, Vm, bu /v, w, bu/ve) o v, (b /ve)™ !
forl <o <r.
0
o :
0 o
0 /(0 m 4] %) .
Proof. Set b\ = . | and b’; D= | B e (60 -50%) | for j > 2.
bﬁf’m :
(1] m Q Q
by Theksjn (”LO) ~bigy )
0
0
Also, set b" = | 5" Mo (o000 10) | for l <o <r,2<j<i.

oL )0 )
TH, H]gkg[—l (b]f //k bH /Tu ) .
Then, by Lemma A.2, there exists a regular matrix R such that

b”go) b//(zo) . b//gg 0
B/R b//il) b//(ll) . b//gl) b”il) b//gl) e b//;{ll) O
(r) () (r) /(1) (r) (r) () (r)
b//1 b//] . b//l b 1 b//l . b//l . b//] . b//H,

Therefore, we have

17(0 7(0 (0
b b 0
0 0 . 0 b//(ll) b”;l) . b//gl) 0 B
B'RR = . . ’
0 o -+ 0 0 0O -.- 0 b//(lr) b,/gz

for some regular matrix R’'.
By applying Lemma A.2 to B®, we have the proof.
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b
N by
J= J
Lemma A4. Let B, = and B = (B}), 4.+, =0(n—1)+m neN-
Nl
. . J=I ij .
Consider a sufficiently small neighborhood of {bj}, i<y 1<j<n-
Let each (b}, b5, ..., b%%), ..., (B, b5, ..., b%) be a different real vector in

[bfl’b;k2’~--vb?N]Q7é0,i=1,...,H+r:

(B3 bR (B B = B Bl # 02 = 1. H).

Set (b3, b, ... bis) = (0, ..., 0).
Assume that
[Diys s biylo = = [Byyrs - -+ Dyl = (Bg1 - -5 D)
[bH0+] IR bZO+I,N]Q == [bZO+H1,l’ B bH0+H1,N]Q = (i}, .- -, )
[bHOJr +H,_+1,1° b;10+ +H,_1+1, N]Q [b;10+ +H,,1° " b:I(ﬁL +H,,N]Q

= (b7, s biy)-

Set
(0) (0)
(blj , .. bHOJ) = (blj, ey bH[,j)’
(1) pH
(blj EER H]j) = (bHO+1 JAEERE bH0+H1,j)’
(r (r
(b1; LR bl—lr,j) = (bHo+»-»+H,,1+1,j’ s bHo+~-+H,,j)7
for1 <j<N.
V(l“)m_“‘ H;V_ b(a() j
o Il v, bw 'j
Let  I=(L,..., L) € N, B = = and  BO =
aym=II| o
(z ' j= lb;iaz/[/

(0) (o)
(B17) oy 4etty=mt Q(n—1).neN> B® = (B )y +otty=nneN,, Jor 1 < o < r, where

W) = 6]

o
Then there exists a regular matrix R such that

BO 0 0 ... 0

0o BD o ... 0
BR =

0O 0 0 ... BO
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Proof. The key point of the proof is to use

A N ¢,
N ¢ b ]l_[-:b-7 0 0 0=
l_[jzl bl} j 11 j=2“1j b” 174
' ¢ N ¢;
N ¢ 0 by [Ty by - 0 04—
l_[j:l sz J _ 21 Jj=2"2j b21 174
- b
: 0
HN b Z,- )
j=19H;j ¢ N ¢; by T
0 0 by T by, H1
and Lemma A.3.
Appendix 2
— * H — r —
Let A=(ay,....ay, a5 \,....a5,,.), Yisya; =1, _,  a;=—1, and
by - b{”f
by - bf“
H+r
B=| by --- by
* * H+r
bH+1 bH+1
* * H+r
bH+r T bH+r
Then we have:
n n
b} by — by
n n n
b2 bz - bH
% % n _ * * n n
(ay,....ag, ay 5. .., ay,,) by |= (@, ....ay 1, aypys -y ay)| by — b
* n * n n
bHH bH+1 _bH
b* " bt " pn
H+1 H+r H

by using Y7L 4 = 1, ¥y, a7 = —1.

Let
bl _ bH . b{‘l+r _ biII-H
b2 _ bH .. b£'1+r _ bg+r
B = by —by - bgﬂ - bZ“
* s H+r r
H+l bH T bH+1 - bZJr

* * H+r H+r
H+r bH T bH+r - bH
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Since (b" — b)) — (b1 — by Yby — (b, — by)by ' = (b7 — bl ) (b,
have a regular matirx R such that

by — by 0

by — by (by = by)(by — by) 0---

by—by  (bs—by)(bs — b)) (bs = by)(by = b)) (b3 — by)
B'R=|by_ —by (by_y —by)(by_y —b1) (by_y —bp)(by_y — b)(by_ —b;)

b;Hl - bH (b;Hl - bH)(b2+l 1) (bHJrl bH)(bH+l 1)(bH+1

(bH+r

and we have for some regular matirx R,

by — by (by —by)* - (by— byt
by — by (by —by)* -+ (by—by)H!
B'R =
b;1+r bH (bH+r - bH)2 o (bH+r hr)HM_1
Set
@V, .. ag)) = (ay, ... ay),
/(2 (2
(al( )’ a[-(lz)) = (aH]+1’ cees Ayi),
(a/l(r) a,zy, ) = (aH, et Hy 410 s aH|+~»+H,/)'
and

A brm) = (by = by, ..., by, —by),

(b,l(Z)’ ,(2)) = (bH1+1 by, ..., leJer —by),

OB ) = (buy o= B by, — by).

Let
A® — (a’(oz), /(a) a;(,a)’ an) forl<a<roa<r—1
(ar(a), o) ,..,af,‘@,O), forH+1<oa<r —1,
"'y 1) o) )
A/(r/) _ a ,a, , aH/ I aH_H)’ if ' =7,
a/l(r,)’ a;(r/)’ : ;-(Ir/) 15 0), if ¥ >r,

b;l+r —by (b;I+r bH)(bHJrr - hl) (b2+r bH)(bHJrr 1)(bH+r ) e (b;-lJrr -

by)- -

b

— b)), we

*+r l)
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/(o) 7(er) Ha
1 b, b,
Hﬁ
1 b;(d) . b/z(af)
B® = forl<a<rvr —1,
H,
1oy by
L by —=by - (b —by)™
and
) ()2 () Hy
b, b, b
@) ()2 () Hr
by" by" by"
B —
() i) 2 () Ay
by, by, H,y -1

B = by (B —by) -

(b3 = ba)'™

By Theorem 3.1, we only need to consider the case Y|, |A®B®|?

of || ABJ|.

Since bf* # by, = b fora=1,...,r— 1, we have:

b;(x)
b %
bfz(x)
I s
B® —

/(o)
1
by by

1 1

H,

/(%)
bl 3 o
b by

H,

/(o)
b, *
b by

H,

/()
b, *
by*—by

1

0 b —by - 0

(b3 — by)™

We have, therefore, a regular matrix R” such that

1
1
BYR' =
1
1
Set

(o)

a/l(m)+a2 +

HX

H,

0 0
/() 1(a) /(20) /()
by _ by by _ by
by*—by by*—by by*—by by —by
() /() :
by, b by, b *
by*—by by*—by by*—by by —by
/() () \ H.
1— b 11—\
b —by b —by
+ /() * f 1 < < < 4 1
aHm+ai, orl <a<ra<r —1,

/()
+ qu 5

forH+1<oa<r —1,

2685

instead
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( (“)’ g«) ag), QHH) forl<a<ra<r -1
— /(o) /(a) /()
A® — _ (a o . aSa o aHzx , aH-M)

(ag‘),aga),...,a:) (a'm, @ ..,a;(,“)), forH+1<oa<r¢ —1,

(r) r) (") /(r') /(/ "(r) .
A(r’) _ (a ) a3 ) aH/ s aH+o() = (Cl s S aH 20 a[-[+1) lf = r/’
(a(r) (r),.”’ah;'/):(a/l(r’)’a;(r)’.”’ /(rl1 i
and
b B
@ by —by  b*—by b,l(r,)
% J
b N
— r(x) () 5 =
b, by ' /(r')
bg‘) b —by,  by—by bgr,) by,
x y b — by,
L=

Then we have Theorem 3.3.
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