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Error and VandermondeMatrix-Type Singularities

MIKI AOYAGI
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The coefficient of the main term of the generalization error in Bayesian estimation
is called a Bayesian learning coefficient. In this article, we first introduce
Vandermonde matrix type singularities and show certain orthogonality conditions of
them. Recently, it has been recognized that Vandermonde matrix type singularities
are related to Bayesian learning coefficients for several hierarchical learning
models. By applying the orthogonality conditions of them, we show that their log
canonical threshold also corresponds to the Bayesian learning coefficient for normal
mixture models, and we obtain the explicit computational results in dimension one.

Keywords Generalization error; Hierarchical learning models; Normal mixture
models; Resolution of singularities; Zeta function.

Mathematics Subject Classification 62D05; 62M20; 32S10; 14Q15.

1. Introduction

The theoretical study of hierarchical learning models has been rapidly developed
in recent years. The data analyzed by such learning models are associated with
image or speech recognition, artificial intelligence, the control of a robot, genetic
analysis, data mining, time series prediction, and so on. They are very complicated
and not usually generated by a simple normal distribution, as they are influenced
by many factors. Hierarchical learning models such as the normal mixture model,
the Boltzmann machine, layered neural network, and reduced rank regression may
be known as effective learning models. They, however, likewise have complicated,
i.e., non regular statistical structures, which cannot be analyzed using the classic
theories of regular statistical models (Fukumizu, 1996; Hartigan, 1985; Hagiwara
et al., 1993; Sussmann, 1992). The theoretical study has therefore been started to
construct a mathematical foundation for non regular statistical models.

Watanabe (2001a,b) proved that the largest pole of a zeta function for a
non regular statistical model gives the main term of the generalization error of
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2668 Aoyagi

hierarchical learning models in Bayesian estimation. The generalization error of
a learning model is a difference between a true density function and a predictive
density function obtained using distributed training samples. It is one of the most
important topic in learning theory. The largest pole of a zeta function for a
learning model, which is called a Bayesian learning coefficient, corresponds to the
log canonical threshold in algebraic geometry. The log canonical threshold �Z�Y� f�

over the real field is analytically defined by

�Z�Y� f� = sup�c � �f �−c is locally L1 near Z��

for a non zero regular f on a smooth variety Y , where Z ⊂ Y is a closed subscheme.
In spite of these mathematical foundations, obtaining their largest pole,

i.e., their log canonical threshold is still difficult for several reasons such that
degeneration with respect to their Newton polyhedrons and non-isolation of their
singularities (Fulton, 1993). Moreover, in algebraic geometry and algebraic analysis,
these studies are usually done over an algebraically closed field (Kollár, 1997;
Mustata, 2002). We have many differences between the real field and the complex
field, for example, log canonical thresholds over the complex field are less than 1,
while those over the real field are not necessarily less than 1. We cannot therefore
apply results over an algebraically closed field to our cases, directly.

In this article, we first introduce Vandermonde matrix type singularities
(Definition 3.3) and next show certain orthogonality conditions of their log
canonical threshold (Theorem 3.1). We then show that the theorem enables us to
connect Bayesian learning coefficients of normal mixture models with Vandermonde
matrix-type singularities. By applying such results, we obtain explicitly the
coefficients of normal mixture models with unit matrix variances in dimension one.
Yamazaki and Watanabe obtained only upper bounds of these values (Yamazaki
and Watanabe, 2003).

In the past few years, we have also obtained Bayesian learning coefficients
for the three layered neural network (Aoyagi and Watanabe, 2005a; Aoyagi, 2006)
and for the reduced rank regression (Aoyagi and Watanabe, 2005b). Rusakov and
Geiger (2005) obtained them for Naive Bayesian networks.

This article consists of four sections. In Sec. 2, we summarize the framework
of Bayesian learning theory. In Sec. 3, we state our main results. Our conclusion is
given in Sec. 4.

2. Bayesian Learning Theory

In this article, we overview Bayesian learning theory, especially the stochastic
complexity and the generalization error.

It is well known that Bayesian estimation is more appropriate than the
maximum likelihood method when a learning machine is non-regular (Akaike, 1980;
Mackay, 1992).

Let q�x� be a true probability density function and �x�n �= �xi�
n
i=1 be n training

independent and identical samples from q�x�. Consider a learning model which is
written by a probability form p�x �w�, where w is a parameter. The purpose of the
learning system is to estimate q�x� from �x�n by using p�x �w�.
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Bayesian Learning and Vandermonde Matrix Singularity 2669

Let p�w � �x�n� be the a posteriori probability density function:

p�w � �x�n� = 1
Zn

��w�
n∏

i=1

p�xi �w��

where ��w� is an a priori probability density function on the parameter set W and

Zn =
∫
W
��w�

n∏
i=1

p�xi �w�dw	

So the average inference p�x � �x�n� of the Bayesian density function is given by

p�x � �x�n� =
∫

p�x �w�p�w � �x�n�dw�

which is the predictive density function.
Set

K�q ��p� =
∫

q�x� log
q�x�

p�x � �x�n�dx	

This is always a positive value and satisfies K�q ��p� = 0 if and only if q�x� =
p�x � �x�n�.

The generalization error G�n� is its expectation value En over n training
samples:

G�n� = En

{ ∫
q�x� log

q�x�

p�x � �x�n�dx
}
	

Let

Kn�w� =
1
n

n∑
i=1

log
q�xi�

p�xi �w�
	

The average stochastic complexity or the free energy is defined by

F�n� = −En

{
log

∫
exp�−nKn�w����w�dw

}
	

Then we have G�n� = F�n+ 1�− F�n� for an arbitrary natural number n (Amari
et al., 1992; Amari and Murata, 1993; Levin et al., 1990). F�n� is known as
the Bayesian criterion in Bayesian model selection (Schwarz, 1978), stochastic
complexity in universal coding (Rissanen, 1986; Yamanishi, 1998), Akaike’s
Bayesian criterion in optimization of hyperparameters (Akaike, 1980), and evidence
in neural network learning (Mackay, 1992). In addition, F�n� is an important
function for analyzing the generalization error.

It has recently been proved that the largest pole of a zeta function gives
the generalization error of hierarchical learning models asymptotically (Watanabe,
2001a,b). We assume that the true density distribution q�x� is included in the
learning model, i.e., q�x� = p�x �w∗

t � for w
∗
t ∈ W , where W is the parameter space.
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2670 Aoyagi

Define the zeta function J�z� of a complex variable z for the learning model by

J�z� =
∫

K�w�z��w�dw�

where K�w� is the Kullback function:

K�w� =
∫

p�x �w∗
t � log

p�x �w∗
t �

p�x �w� dx	

Then, for the largest pole −� of J�z� and its order 
, we have

F�n� = � log n− �
− 1� log log n+ O�1�� (1)

where O�1� is a bounded function of n, and if G�n� has an asymptotic expansion,

G�n� � �

n
− 
− 1

n log n
as n → �	 (2)

Therefore, our aim is to obtain � and 
.
Note that for Z = �w � K�w� = 0�, � = �Z�W�K�w�� = sup�c � �K�−c is locally

L1 near Z�� which is the log canonical threshold of K�w�.
To assist in achieving this aim, we introduce Hironaka’s Theorem.

Theorem 2.1 (Desingularization, Hironaka, 1964). Let f be a real analytic function
in a neighborhood of w = �w1� 	 	 	 � wd� ∈ �d with f�w� = 0. There exist an open set
V � w, a real analytic manifold U , and a proper analytic map � from U to V such that:

(1) � � U − � → V − f−1�0� is an isomorphism, where � = �−1�f−1�0��;
(2) For each u ∈ U , there is a local analytic coordinate system �u1� 	 	 	 � ud� such that

f���u�� = ±u
s1
1 u

s2
2 	 	 	 u

sd
d , where s1� 	 	 	 � sd are non negative integers.

Applying Hironaka’s theorem to the Kullback function K�w�, for each
w∈K−1�0� ∩W , we have a proper analytic map �w from an analytic manifold Uw to
a neighborhood Vw of w satisfying Hironaka’s Theorems (1) and (2). Then the local
integration on Vw of the zeta function J�z� of the learning model is

Jw�z� =
∫
Vw

K�w�z��w�dw

=
∫
Uw

∑
u

�u
2s1
1 u

2s2
2 	 	 	 u

2sd
d �z���w�u����′

w�u��du	

Therefore, the poles of Jw�z� can be obtained. For each w ∈ W \ K−1�0�, there
exists a neighborhood Vw such that K�w′� �= 0, for all w′ ∈ Vw. So Jw�z� =∫
Vw

K�w�z��w�dw has no poles. It is known that � of an arbitrary polynomial in
Hironaka’s Theorem can be obtained by using a blowing up process.

3. Main Result

In this article, we denote by a∗, b∗ constants and denote by a∗ if the variable a is in
a sufficiently small neighborhood of a∗.
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Bayesian Learning and Vandermonde Matrix Singularity 2671

Define the norm of a matrix C = �cij� by �C� =
√∑

i�j �cij�2. Denote by C� the
ideal generated by �cij�. Set �+0 = � ∪ �0�.

Definition 3.1. Let f be a real analytic function defined near w∗.
Set �w∗�f� = sup�c � �f �−c is locally L1 near w∗�.

3.1. Vandermonde Matrix Type Singularities

Definition 3.2. Fix Q ∈ �. Define �b∗1� b
∗
2� 	 	 	 � b

∗
N Q = �i�0� 	 	 	 � 0� b

∗
i � 	 	 	 � b

∗
N � if

b∗1 = · · · = b∗i−1 = 0, b∗i �= 0, and �i =
{
1 if Q is odd

�b∗i �/b∗i if Q is even	

Definition 3.3. Fix Q ∈ � and m ∈ �+0.
Let MH +HN variables

w =






a11 · · · a1H

a21 · · · a2H
			

aM1 · · · aMH


�



b11 · · · b1N
b21 · · · b2N

			
bH1 · · · bHN






and rM + rN constants

w∗
t =






a∗
1�H+1 · · · a∗

1�H+r

a∗
2�H+1 · · · a∗

2�H+r

			
a∗
M�H+1 · · · a∗

M�H+r


�



b∗H+1�1 · · · b∗H+1�N

b∗H+2�1 · · · b∗H+2�N
			

b∗H+r�1 · · · b∗H+r�N





	

Let

A =



a11 · · · a1H a∗

1�H+1 	 	 	 a∗
1�H+r

a21 · · · a2H a∗
2�H+1 	 	 	 a∗

2�H+r

			
			

aM1 · · · aMH a∗
M�H+1 	 	 	 a∗

M�H+r


 � I = ��1� 	 	 	 � �N � ∈ �+0

N �

BI =
( N∏

j=1

b
�j
1j�

N∏
j=1

b
�j
2j� 	 	 	 �

N∏
j=1

b
�j
Hj�

N∏
j=1

b∗H+1�j
�j � 	 	 	 �

N∏
j=1

b∗H+r�j
�j

)t

and B = �BI��1+···+�N=Qn+m�0≤n≤H+r−1 (t denotes the transpose) , where A is an
M × �H + r� dimensional matrix and B is an �H + r�×∑H+r−1

n=0
�Qn+m+N−1�!�Qn+m�!

�N−1�!
dimensional matrix.

We call singularities of �AB�2 = 0 Vandermonde matrix type singularities.
To simplify, we usually assume that

�a∗
1�H+j� a

∗
2�H+j� 	 	 	 � a

∗
M�H+j�

t �= 0� �b∗H+j�1� b
∗
H+j�2� 	 	 	 � b

∗
H+j�N � �= 0

for 1 ≤ j ≤ r and

�b∗H+j�1� b
∗
H+j�2� 	 	 	 � b

∗
H+j�N Q �= �b∗H+j′�1� b

∗
H+j′�2� 	 	 	 � b

∗
H+j′�N Q

for j �= j′.
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2672 Aoyagi

Let w, w∗
t , A, and B be as in Definition 3.3. Let w be in a sufficiently small

neighborhood of

w∗ =






a∗
11 · · · a∗

1H
a∗
21 · · · a∗

2H
			

a∗
M1 · · · a∗

MH


�



b∗11 · · · b∗1N
b∗21 · · · b∗2N

			
b∗H1 · · · b∗HN





	

Set �b∗∗01� b
∗∗
02� 	 	 	 � b

∗∗
0N � = �0� 	 	 	 � 0�.

Let each �b∗∗11� b
∗∗
12� 	 	 	 � b

∗∗
1N �, 	 	 	 , �b

∗∗
r ′1� b

∗∗
r ′2� 	 	 	 � b

∗∗
r ′N � be a different real vector in

�b∗i1� b
∗
i2� 	 	 	 � b

∗
iN Q �= 0� for i = 1� 	 	 	 � H + r �

× ��b∗∗11� 	 	 	 � b
∗∗
1N �� 	 	 	 � �b

∗∗
r ′1� 	 	 	 � b

∗∗
r ′N �� �b

∗
i1� 	 	 	 � b

∗
iN Q �= 0� i = 1� 	 	 	 � H + r�	

Then r ′ ≥ r and set �b∗∗i1 � 	 	 	 � b
∗∗
iN � = �b∗H+i�1� 	 	 	 � b

∗
H+i�N Q� for 1 ≤ i ≤ r.

It is natural to assume that

�b∗11� 	 	 	 � b
∗
1N Q

			
�b∗H01

� 	 	 	 � b∗H0N
Q


 = 0�

�b∗H0+1�1� 	 	 	 � b
∗
H0+1�N Q

			
�b∗H0+H1�1

� 	 	 	 � b∗H0+H1�N
Q


 = �b∗∗11� 	 	 	 � b

∗∗
1N ��

�b∗H0+H1+1�1� 	 	 	 � b
∗
H0+H1+1�N Q

			
�b∗H0+H1+H2�1

� 	 	 	 � b∗H0+H1+H2�N
Q


 = �b∗∗21� 	 	 	 � b

∗∗
2N ��

			

�b∗H0+···+Hr′−1+1�1� 	 	 	 � b
∗
H0+···+Hr′−1+1�N Q

			
�b∗H0+···+Hr′−1+Hr′ �1� 	 	 	 � b

∗
H0+···+Hr′−1+Hr′ �N Q


 = �b∗∗r ′1� 	 	 	 � b

∗∗
r ′N �	

and H0 + · · · +Hr ′ = H .

Theorem 3.1. We have

�w∗��AB�2� =
r ′∑

�=0

�w���∗��A���B����2��

where w���∗ = {
a
���
ki

∗
� b

���
ij

∗} = {
a∗
k�H0+···+H�−1+i� b

∗∗
�j

}
1≤k≤M�1≤i≤H��1≤j≤N

�
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Bayesian Learning and Vandermonde Matrix Singularity 2673

I = ��1� 	 	 	 � �N � ∈ �+0
N ,

A��� =



a
���
11 a

���
12 · · · a

���
1H�

a
���
21 a

���
22 · · · a

���
2H�

			

a
���
M1 a

���
M2 · · · a

���
MH�


 � B

���
I =




∏N
j=1 b

���
1j

�j

∏N
j=1 b

���
2j

�j

			∏N
j=1 b

���
H�j

�j



� for � = 0� r + 1 ≤ � ≤ r ′�

A��� =



a
���
11 a

���
12 · · · a

���
1H�

a∗
1�H+�

a
���
21 a

���
22 · · · a

���
2H�

a∗
2�H+�

			

a
���
M1 a

���
M2 · · · a

���
MH�

a∗
M�H+�


 � B

���
I =




∏N
j=1 b

���
1j

�j

∏N
j=1 b

���
2j

�j

			∏N
j=1 b

���
H�j

�j

∏N
j=1 b

∗∗
�j

�j



� for 1 ≤ � ≤ r�

B�0� = �B
�0�
I ��1+···+�N=Qn+m�0≤n≤H0−1, B��� = �B

���
I ��1+···+�N=n�0≤n≤H�−1 for r + 1 ≤ � ≤ r ′

and B��� = �B
���
I ��1+···+�N=n�0≤n≤H�

for 1 ≤ � ≤ r.
B�0�, B����1 ≤ � ≤ r� and B����r + 1 ≤ � ≤ r ′� are H0 ×

∑H0−1
n=0

�Qn+m+N−1�!�Qn+m�!
�N−1�! ,

�H� + 1�×∑H�

n=0
�n+N−1�!n!

�N−1�! and H� ×
∑H�−1

n=0
�n+N−1�!n!

�N−1�! dimensional matrices,
respectively.

Proof. Set




�a
�0�
i1 � 	 	 	 � a

�0�
iH0

� = �ai1� 	 	 	 � aiH0
��

�a
�1�
i1 � 	 	 	 � a

�1�
iH1

� = �ai�H0+1� 	 	 	 � ai�H0+H1
��

			

�a
�r ′�
i1 � 	 	 	 � a

�r ′�
iHr′ � = �ai�H0+···+Hr′−1+1� 	 	 	 � ai�H0+···+Hr′ ��

for 1 ≤ i ≤ M� and




�b
�0�
1j � 	 	 	 � b

�0�
H0j

� = �b1j� 	 	 	 � bH0j
��

�b
�1�
1j � 	 	 	 � b

�1�
H1j

� = �bH0+1�j� 	 	 	 � bH0+H1�j
��

			

�b
�r ′�
1j � 	 	 	 � b

�r ′�
Hr′ j� = �bH0+···+Hr′−1+1�j� 	 	 	 � bH0+···+Hr′ �j��

for 1 ≤ j ≤ N	

For �i�b
���
i1 � 	 	 	 � b

���
iN � = �b

���
i1 � 	 	 	 � b

���
iN Q, we again set a���

ki by a
���
ki /��i�

m and b
���
ij by

b
���
ij �i, 1 ≤ j ≤ N and 1 ≤ k ≤ M .

Main parts of the proof is appeared in Appendix 1. By applying Lemma A.4 in
Appendix 1, we have this theorem.

Theorem 3.1 shows a kind of an orthogonal relation of the log canonical
threshold of Vandermonde matrix type singularities. Usually, r corresponds to the
number of elements of a true distribution. It means that the Bayesian learning
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2674 Aoyagi

coefficient related with such singularities is the sum of each for the small model with
respect to each element of a true distribution (cf. Sec. 3.2).

Theorem 3.2. We use the same notations as in Theorem 3.1. If N = 1, we have:

�w∗��AB�2� = MQk0�k0 + 1�+ 2H0

4�m+ k0Q�
+ Mr ′

2
+

r∑
�=1

Mk��k� + 1�+ 2H�

4�1+ k��

+
r ′∑

�=r+1

Mk��k� + 1�+ 2�H� − 1�
4�1+ k��

�

where

k0 = max�i ∈ �� 2H0 ≥ M�i�i− 1�Q+ 2mi���

k� = max�i ∈ �� 2H� ≥ M�i2 + i���

k� = max�i ∈ �� 2�H� − 1� ≥ M�i2 + i��	

For the proof of Theorem 3.2, we use a similar method in the articles (Aoyagi,
2006; Aoyagi and Watanabe, 2005a), where we used recursive blowing ups and toric
resolution.

The key point is that �0��AB�2� = �0��AB′�2� for N = 1, where

B′ =




bm1 0 0 · · · 0

0 bm2 �b
Q
2 − bQ1 � 0 · · · 0

0 0 bm3 �b
Q
3 − bQ1 ��b

Q
3 − bQ2 � · · · 0

	 	 	

0 0 0 · · · bmH�b
Q
H − bQ1 � · · · �bQH − bQH−1�



�

and �bH � < �bH−1� < · · · < �b2� < �b1�.
Recently, we have the explicit values �w∗��AB�2� for general natural numbers N

and M but for H ≤ 2 (Aoyagi and Nagata, 2008).

3.2. Normal Mixture Model

We consider a normal mixture model with unit matrix variances

p�x �w� = 1
�2��N/2

H∑
i=1

ai exp
(
−
∑N

j=1�xj − bij�
2

2

)
�

where w = �ai� bij� 1 ≤ i ≤ H�� 1 ≤ j ≤ N� and
∑H

i=1 ai = 1, ai ≥ 0.
Set the true distribution by

p�x �w∗
t � =

−1
�2��N/2

H+r∑
i=H+1

a∗
i exp

(
−
∑N

j=1�xj − b∗ij�
2

2

)
�

where w∗
t = �a∗

i � b
∗
ij� H + 1 ≤ i ≤ H + r� 1 ≤ j ≤ N� and

∑H+r
i=H+1 a

∗
i = −1, a∗

i < 0.
(In order to simplify the followings, we use the values a∗

i < 0 not a∗
i > 0.) Suppose
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that an a priori probability density function ��w� is a C�-function with a compact
support W where ��w∗

t � > 0.
Let A = �a1� 	 	 	 � aH� a

∗
H+1� 	 	 	 � a

∗
H+r �, I = ��1� 	 	 	 � �N � ∈ �+0

N ,

BI =
( N∏

j=1

b
�j
1j�

N∏
j=1

b
�j
2j� 	 	 	 �

N∏
j=1

b
�j
Hj�

N∏
j=1

b∗H+1�j
�j � 	 	 	 �

N∏
j=1

b∗H+r�j
�j

)t

and B = �BI��1+···+�N=n�1≤n≤H+r (t denotes the transpose).
Then the Bayesian learning coefficient of the normal mixture model is the

largest pole of

∫
� =

∫
�AB�2<1

�AB�2z
H∏
i=1

dai

H∏
i=1

N∏
j=1

dbij� (3)

with
∑H

j=1 aj = 1, ai ≥ 0 and
∑H+r

j=H+1 a
∗
j = −1, a∗

j < 0 (Watanabe et al., 2004).
Note that we have the relations

∑H
j=1 aj = 1, ai ≥ 0 and

∑H+r
j=H+1 a

∗
j = −1, a∗

j < 0.
We need to modify the function �AB�2 for obtaining the largest pole of

∫
� by

using Vandermonde matrix type singularities. The following theorem is available for
such purpose in dimension 1.

Theorem 3.3. Let w be in a sufficiently small neighborhood of w∗ = �a∗
i � b

∗
i �1≤i≤H .

Let each b∗∗1 � 	 	 	 � b∗∗r ′ be a different real number in �b∗i � i = 1� 	 	 	 � H + r�:

�b∗∗1 � 	 	 	 � b∗∗r ′ � = �b∗i � i = 1� 	 	 	 � H + r�	

Then r ′ ≥ r and set b∗∗i = b∗H+i�1, for 1 ≤ i ≤ r.
Assume that

b∗1 = · · · = b∗H1
= b∗∗1 � b∗H1+1 = · · · = b∗H1+H2

= b∗∗2 � 	 	 	 � b∗H1+···+Hr′−1+1

= · · · = b∗H1+···+Hr′−1+Hr′ = b∗∗r ′ and H1 + · · · +Hr ′ = H	

Then we have

�w∗��AB�2� =
r ′−1∑
�=1

�
w
���
1

∗
(
a
���
1

2)+ r ′∑
�=1

�w���∗��A���B����2��

where w
���
1

∗ =
{
a∗
H1+···+H�−1+1 + · · · + a∗

H1+···+H�
+ a∗

H+�� 1 ≤ � ≤ r�

a∗
H1+···+H�−1+1 + · · · + a∗

H1+···+H�
� r + 1 ≤ � ≤ r ′ − 1�

w���∗ = �a
���∗
i � b

���∗
i �2≤i≤H�

= �a∗
H1+···+H�−1+i� 0�2≤i≤H�

�

A��� = (
a
���
2 � a

���
3 � 	 	 	 � a

���
H�
� a∗

H+�

)
� B��� =




b
���
1 · · · b

���
1

H�

b
���
2 · · · b

���
2

H�

			

b
���
H�

· · · b
���
H�

H�


 for 1 ≤ � ≤ r�
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A��� = (
a
���
2 � a

���
3 � 	 	 	 � a

���
H�

)
� B��� =




b
���
1 · · · b

���
1

H�−1

b
���
2 · · · b

���
2

H�−1

			

b
���
H�−1 · · · b

���
H�−1

H�−1


 for r + 1 ≤ � ≤ r ′	

The proof is shown in Appendix 2.

Theorem 3.4. The average stochastic complexity F�n� in Eq. (1) and the generalization
error G�n� in Eq. (2) are given by using the following largest pole −� of J�z� and its
order 
.

If the true distribution has r peaks,

� = r − 1+ n+ n2 + 2�H − �r − 1��
4�n+ 1�

� 
 =
{
1� if n2 + n < 2�H − �r − 1���

2� if n2 + n = 2�H − �r − 1���

where n = max�i ∈ � � i2 + i ≤ 2�H − �r − 1���.

Proof. By Theorems 3.2, 3.3 and the result in the article (Aoyagi, 2006; Aoyagi and
Watanabe, 2005a), we have, for w∗ with �AB�w∗ = 0 as in Theorem 3.3,

�w∗ = r ′ − 1
2

+
r∑

�=1

n� + n2
� + 2H�

4�n� + 1�

+
r ′∑

�=r+1

n� + n2
� + 2�H� − 1�
4�n� + 1�

� its order 
w∗ = #� + 1�

where H1 + · · · +Hr ′ = H , n� = max�i ∈ �� i2 + i ≤ 2H�� for 1 ≤ � ≤ r, n� =
max�i ∈ �� i2 + i ≤ 2�H� − 1�� for r + 1 ≤ � ≤ r ′, and � = �n�� n

2
� + n� = 2H��.

Some computations show that

min��w∗ � �AB�w∗ = 0� = r − 1+ n+ n2 + 2�H − �r − 1��
4�n+ 1�

�

where n = max�i ∈ �� i2 + i ≤ 2�H − �r − 1���, and so we have the theorem.

Example 3.1. Let N = 1 and H = 5, that is,

p�x �w� = 1√
2�

5∑
i=1

ai exp
(
− �x − bi�

2

2

)
�

where
∑5

i=1 ai = 1, ai ≥ 0. Also, let the true distribution has two peaks (r = 2):

p�x �w∗
t � = − 1√

2�
a∗ exp

(
− �x − b∗6�

2

2

)
− 1√

2�
�1− a∗� exp

(
− �x − b∗7�

2

2

)
�
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where b∗6 �= b∗7. Then, we have n = max�i ∈ �� i2 + i ≤ 2�5− �2− 1��� = 2, and

� = 2− 1+ 2+ 22 + 2�5− �2− 1��
4�2+ 1�

= 13
6
� 
 = 1	

Similarly, the concrete values of � and 
 for H� r ≤ 5 are given in the followings.

r r

� 1 2 3 4 5 
 1 2 3 4 5

H = 1 1/2 H = 1 2
H = 2 3/4 3/2 H = 2 1 2
H = 3 1 7/4 5/2 H = 3 2 1 2
H = 4 7/6 2 11/4 7/2 H = 4 1 2 1 2
H = 5 4/3 13/6 3 15/4 9/2 H = 5 1 1 2 1 2

4. Conclusion

In this article, we consider the log canonical threshold of Vandermonde matrix-
type singularities. Such singularities have recently been recognized that they are
connected with Bayesian learning coefficients for several hierarchical learning
models. For example, we showed that Bayesian learning coefficients of the three
layered neural network (Aoyagi, 2006; Aoyagi and Watanabe, 2005a) and the
mixtures of binomial distribution (Yamazaki et al., 2008) are obtained by the
singularities. These facts seem to imply that the singularities are essential for
learning theory.

By applying the orthogonal relation of them, we show that a Bayesian learning
coefficient for normal mixture models is related to the singularities in Theorem 3.3,
and then, by using the theorem and by applying techniques of algebraic geometry
to learning theory, we obtained Bayesian learning coefficients for normal mixture
models with unit matrix variances in dimension one (Theorem 3.4). Moreover, in
the recent article (Aoyagi and Nagata, 2008) if the difference between the number of
peaks of learning models and that of true distributions are less than one in general
dimension, we are obtaining Bayesian learning coefficients. Our future research aims
to improve our methods, and to apply them to general cases.

It is well known that the classic model selection methods of regular statistical
models such as AIC (Akaike, 1974), TIC (Takeuchi, 1976), HQ (Hannan and
Quinn, 1979), NIC (Murata et al., 1994), BIC (Schwarz, 1978), and MDL (Rissanen,
1984), cannot apply to the generalization error for non regular models, since the
true parameter set of regular models should be one point and its Fisher matrix
function is positive definite. Our theoretical values will be available for constructing
a mathematical foundation for model selection methods of non regular models.

Several Bayesian learning coefficients in the article (Aoyagi, 2006; Aoyagi and
Watanabe, 2005a) were used by analyzing and developing the precision of the
Markov Chain Monte Carlo (Nagata and Watanabe, 2008a). Moreover, (Nagata
and Watanabe, 2008b) studied the setting of temperatures for the exchange MCMC
method by using such Bayesian learning coefficients. Our theoretical results in this
article will also be helpful in these numerical experiments.
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Appendix 1

Lemma A.1. Let U be a neighborhood of w∗ ∈ �d. Let � be the ideal generated by
f1� 	 	 	 � fn which are analytic functions defined on U . If g1� 	 	 	 � gm ∈ I , then �w∗�f 2

1 +
· · · + f 2

n � is greater than �w∗�g21 + · · · + g2m�. In particular, if g1� 	 	 	 � gm generate the
ideal � then

�w∗�f 2
1 + · · · + f 2

n � = �w∗�g21 + · · · + g2m�	

Proof. The fact g21 + · · · + g2m ≤ P�f 2
1 + · · · + f 2

n � for P >> 1 yields this lemma.

Lemma A.2. Let B′ =

 bm1 b

Q+m
1 ··· b

Q�H−1�+m
1

			
			

bmH b
Q+m
H ··· b

Q�H−1�+m
H


 and b′j =


 b

Q�j−1�+m
1

			
b
Q�j−1�+m
H


.

Consider a sufficiently small neighborhood of �b∗i �1≤i≤H .
Let b∗i = �i�b∗i �.
Set

b′′ij =



�mi

∏
�b∗k �=�b∗i ��1≤k≤j−1

�bk/�k − bi/�i�� if b∗i �= 0�

bmi
∏

b∗k=0�1≤k≤j−1

�bQk − bQi �� if b∗i = 0�
for 1 ≤ j ≤ i and

b′′j =




0
			

0
b′′jj
			

b′′Hj



� for 1 ≤ j ≤ H	

Then there exists a regular matrix R such that B′R = �b′′1 � b
′′
2 � 	 	 	 � b

′′
H�.

Proof. We only need to prove that the vector space generated by b′′1 � b
′′
2 � 	 	 	 � b

′′
H is

equal to that generated by b′1� b
′
2� 	 	 	 � b

′
H .

Some computation shows that the vector space generated by



bm1
			
bmH


 �




0
bm2 �b

Q
1 − bQ2 �
			

bmH�b
Q
1 − bQH�


 �




0
0

bm3 �b
Q
1 − bQ3 ��b

Q
2 − bQ3 �

			

bmH�b
Q
1 − bQH��b

Q
2 − bQH�


 � 	 	 	 �

×




0
			
0

bm1 �b
Q
1 − bQH� · · · �bQH−1 − bQH�




is equal to that generated by b′1� b
′
2� 	 	 	 � b

′
H .
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Therefore, we may set

b′1 =


bm1
			
bmH


 � b′2 =




0
bm2 �b

Q
1 − bQ2 �
			

bmH�b
Q
1 − bQH�


 � 	 	 	 � b′H =




0
			
0

bmH�b
Q
1 − bQH� · · · �bQH−1 − bQH�


 	

We use an induction.
From now on, denote by c1� c2� 	 	 	 � cH� the vector space generated by vectors

c1� c2� 	 	 	 � cH .
It is easy to check that b′1� b′2� 	 	 	 � b′H� = b′1� b′2� 	 	 	 � b′H−1� b

′′
H�.

Let gj�j�x�� gj+1�j�x�� 	 	 	 � gH�j�x� be polynomials of x, bj−1� 	 	 	 � b1 such that
gj′�j�x�j′� = gj′′�j�x�j′′� if �b∗j′ � = �b∗j′′ � �= 0 and gj′�j�x�− gj′′�j�x

′� can be devided by
xQ − x′Q if b∗j′ = b∗j′′ = 0.

Assume that




0
			
0

gj�j �bj �b
′′
jj

			
gH�j �bH �b

′′
Hj


 is an element of b′′j � 	 	 	 � b′′H� and that

b′1� 	 	 	 � b′H� = b′1� 	 	 	 � b′j−1� b
′′
j � 	 	 	 � b

′′
H�	

Since

b′j−1 =




0
			
0

bmj−1�b
Q
1 − bQj−1� · · · �bQj−2 − bQj−1�

			

bmH�b
Q
1 − bQH� · · · �bQj−2 − bQH�




=




0
			
0

gj−1�j−1�bj−1�b
′′
j−1�j−1

			
gH�j−1�bH�b

′′
H�j−1



�

where

gj−1�j−1�bj−1� �= 0� 	 	 	 � gH�j−1�bH� �= 0�

gj′�j−1��j′x� = gj′′�j−1��j′′x� if �b∗j′ � = �b∗j′′ � �= 0 and gj′�j−1�x�− gj′′�j−1�x
′� can be divided

by x′Q − xQ if b∗j′ = b∗j′′ = 0, we have:

b′j−1 = b′′j−1gj−1�j−1�bj−1�+




0
			
0

�gj�j−1�bj�− gj−1�j−1�bj−1��b
′′
j�j−1

			
�gH�j−1�bH�− gj−1�j−1�bj−1��b

′′
H�j−1
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= b′′j−1gj−1�j−1�bj−1�+




0
			
0

gj�j�bj�b
′′
j�j

			
gH�j�bH�b

′′
H�j



�

where



gk�j�bk� = gk�j−1�bk�− gj−1�j−1�bj−1�� if �b∗k� �= �b∗j−1��
gk�j�bk�= �gk�j−1�bk�− gj−1�j−1�bj−1��/�bj−1/�j−1 − bk/�k�� if �b∗k� = �b∗j−1� �= 0�

gk�j�bk� = �gk�j−1�bk�− gj−1�j−1�bj−1��/�b
Q
j−1 − bQk � if b∗k = b∗j−1 = 0	

By the inductive assumption,




0
			
0

gj�j �bj �b
′′
j�j

			
gH�j �bH �b

′′
H�j


 is an element of the vector space

generated by b′′j � 	 	 	 � b
′′
H .

Therefore, b′1,	 	 	 ,b′H� = b′1,	 	 	 ,b′j−1� b
′′
j ,	 	 	 ,b

′′
H� = b′1,	 	 	 ,b′j−2,b

′′
j−1� b

′′
j ,	 	 	 ,b

′′
H�.

Lemma A.3. Let B′ =

 bm1 b

Q+m
1 ··· b

Q�H−1�+m
1

			
			

bmH b
Q+m
H ··· b

Q�H−1�+m
H


 and b′j =


 b

Q�j−1�+m
1

			
b
Q�j−1�+m
H


.

Consider a sufficiently small neighborhood of �b∗i �1≤i≤H .

Let b∗i = �i�b∗i �.
Let each �b∗∗1 �� 	 	 	 � �b∗∗r � be a different real number in ��b∗i �� �b∗i � �= 0�:

��b∗∗1 �� 	 	 	 � �b∗∗r �� �b∗∗i � �= �b∗∗j �� i �= j� = ��b∗i �� �b∗i � �= 0�	

Also, set b∗∗0 = 0.

Assume that b∗1=· · ·=b∗H0
= b∗∗0 , �b∗H0+1�=· · ·=�b∗H0+H1

�=�b∗∗1 �,	 	 	 ,�b∗H0+···+Hr−1+1� =
· · · = �b∗H0+···+Hr

�=�b∗∗r �.
Set

�b
�0�
1 � 	 	 	 � b

�0�
H0
� = �b1� 	 	 	 � bH0

��

�b
�1�
1 � 	 	 	 � b

�1�
H1
� = �bH0+1� 	 	 	 � bH0+H1

��

			

�b
�r�
1 � 	 	 	 � b

�r�
Hr
� = �bH0+···+Hr−1+1� 	 	 	 � bH0+···+Hr

�	

Let b���i

∗ = �
���
i �b���i

∗�.
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Then there exists a regular matrix R such that B′R =

 B�0� 0 0 ··· 0

0 B�1� 0 ··· 0
			

			
0 0 0 ··· B�r�


, where

B�0� =



b
�0�
1

m
b
�0�
1

Q+m · · · b
�0�
1

Q�H0−1�+m

			
			

			

b
�0�
H0

m
b
�0�
H0

Q+m · · · b
�0�
H0

Q�H0−1�+m


 and

B��� =



�
���
1

m
�
���
1

m
b
���
1 /�

���
1 �

���
1

m
�b

���
1 /�

���
1 �2 · · · �

���
1

m
�b

���
1 /�

���
1 �H�−1

			
			

			

�
���
H�

m
�
���
H�

m
b
���
H�
/�

���
H�

�
���
H�

m
�b

���
H�
/�

���
H�
�2 · · · �

���
H�

m
�b

���
H�
/�

���
H�
�H�−1




for 1 ≤ � ≤ r .

Proof. Set b′′�0�1 =




b
�0�
1

m

b
�0�
2

m

			
b
�0�
H0

m


 and b′′�0�j =




0
			
0

b
�0�
j

m ∏
1≤k≤j−1

(
b
�0�
k

Q−b
�0�
j

Q
)

			
b
�0�
H0

m ∏
1≤k≤j−1

(
b
�0�
k

Q−b
�0�
H0

Q
)




for j ≥ 2.

Also, set b′′���j =




0
			
0

�
���
j

m ∏
1≤k≤j−1

(
b
���
k /�

���
k −b

���
j /�

���
j

)
			

�
���
H�

m ∏
1≤k≤j−1

(
b
���
k /�

���
k −b

���
H /�

���
H

)


 for 1 ≤ � ≤ r, 2 ≤ j ≤ i.

Then, by Lemma A.2, there exists a regular matrix R such that

B′R =




b′′�0�1 b′′�0�2 · · · b′′�0�H0
0 · · · 0

b′′�1�1 b′′�1�1 · · · b′′�1�1 b′′�1�1 b′′�1�2 · · · b′′�1�H1
0 · · · 0

			
			

b′′�r�1 b′′�r�1 · · · b′′�r�1 b′′�r�1 b′′�r�1 · · · b′′�r�1 · · · b′′�r�1 · · · b′′�r�Hr


 	

Therefore, we have

B′RR′ =




b′′�0�1 b′′�0�2 · · · b′′�0�H0
0 · · · 0

0 0 · · · 0 b′′�1�1 b′′�1�2 · · · b′′�1�H1
0 · · · 0

			
			

0 0 · · · 0 0 0 · · · 0 · · · b′′�r�1 · · · b′′�r�Hr


 �

for some regular matrix R′.
By applying Lemma A.2 to B���, we have the proof.
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Lemma A.4. Let BI =




∏N
j=1 b

�j
1j∏N

j=1 b
�j
2j

			∏N
j=1 b

�j
Hj


 and B = �BI��1+···+�N=Q�n−1�+m�n∈�.

Consider a sufficiently small neighborhood of �b∗ij�1≤i≤H�1≤j≤N .
Let each �b∗∗11� b

∗∗
12� 	 	 	 � b

∗∗
1N �, 	 	 	 , �b

∗∗
r1 � b

∗∗
r2 � 	 	 	 � b

∗∗
rN � be a different real vector in

�b∗i1� b
∗
i2� 	 	 	 � b

∗
iN Q �= 0� i = 1� 	 	 	 � H + r �

��b∗∗11� 	 	 	 � b
∗∗
1N �� 	 	 	 � �b

∗∗
r1 � 	 	 	 � b

∗∗
rN �� = ��b∗i1� 	 	 	 � b

∗
iN Q �= 0� i = 1� 	 	 	 � H�	

Set �b∗∗01� b
∗∗
02� 	 	 	 � b

∗∗
0N � = �0� 	 	 	 � 0�.

Assume that

�b∗11� 	 	 	 � b
∗
1N Q = · · · = �b∗H01

� 	 	 	 � b∗H0N
Q = �b∗∗01� 	 	 	 � b

∗∗
0N ��

�b∗H0+1�1� 	 	 	 � b
∗
H0+1�N Q = · · · = �b∗H0+H1�1

� 	 	 	 � b∗H0+H1�N
Q = �b∗∗11� 	 	 	 � b

∗∗
1N ��

	 	 	 �

�b∗H0+···+Hr−1+1�1� 	 	 	 � b
∗
H0+···+Hr−1+1�N Q = · · · = �b∗H0+···+Hr �1

� 	 	 	 � b∗H0+···+Hr �N
Q

= �b∗∗r1 � 	 	 	 � b
∗∗
rN �	

Set

�b
�0�
1j � 	 	 	 � b

�0�
H0j

� = �b1j� 	 	 	 � bH0j
��

�b
�1�
1j � 	 	 	 � b

�1�
H1j

� = �bH0+1�j� 	 	 	 � bH0+H1�j
��

			

�b
�r�
1j � 	 	 	 � b

�r�
Hr j

� = �bH0+···+Hr−1+1�j� 	 	 	 � bH0+···+Hr �j
��

for 1 ≤ j ≤ N .

Let I = ��1� 	 	 	 � �N � ∈ �+0
N , B

���
I =




�
���
1

m−�I� ∏N
j=1 b

���
1j

�j

�
���
2

m−�I� ∏N
j=1 b

���
2j

�j

			
�
���
H�

m−�I� ∏N
j=1 b

���
H�j

�j


 and B�0� =

�B
�0�
I ��1+···+�N=m+Q�n−1��n∈�, B��� = �B

���
I ��1+···+�N=n�n∈�+0

for 1 ≤ � ≤ r, where

�
���
i

(
b
���
i1

∗
� 	 	 	 � b

���
iN

∗) = [
b
���
i1

∗
� 	 	 	 � b

���
iN

∗]
Q
	

Then there exists a regular matrix R such that

BR =



B�0� 0 0 · · · 0
0 B�1� 0 · · · 0

			
	 	 	

0 0 0 · · · B�r�
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Proof. The key point of the proof is to use




∏N
j=1 b1j

�j∏N
j=1 b2j

�j

			∏N
j=1 bHj

�j


 =




b11
�′1
∏N

j=2 b1j
�j 0 · · · 0

0 b21
�′1
∏N

j=2 b2j
�j · · · 0

			
	 	 	 0

0 0 · · · bH1
�′1
∏N

j=2 bHj
�j







b11
�1−�′1

b21
�1−�′1

			

bH1
�1−�′1


 �

and Lemma A.3.

Appendix 2

Let A = �a1� 	 	 	 � aH� a
∗
H+1� 	 	 	 � a

∗
H+r �,

∑H
i=1 ai = 1,

∑r
i=H+1 a

∗
i = −1, and

B =




b1 · · · bH+r
1

b2 · · · bH+r
2

			

bH · · · bH+r
H

b∗H+1 · · · b∗H+1
H+r

			

b∗H+r · · · b∗H+r
H+r



	

Then we have:

�a1� 	 	 	 � aH� a
∗
H+1� 	 	 	 � a

∗
H+r �




bn1
bn2
			

bnH

b∗H+1
n

			

b∗H+1
n



= �a1� 	 	 	 � aH−1� a

∗
H+1� 	 	 	 � a

∗
H+r �




bn1 − bnH

bn2 − bnH
			

bnH−1 − bnH

b∗H+1
n − bnH
			

b∗H+r
n − bnH




by using
∑H

i=1 ai = 1,
∑r

i=H+1 a
∗
i = −1.

Let

B′ =




b1 − bH · · · bH+r
1 − bH+r

H

b2 − bH · · · bH+r
2 − bH+r

H

			

bH−1 − bH · · · bH+r
H−1 − bH+r

H

b∗H+1 − bH · · · b∗H+1
H+r − bH+r

H

			

b∗H+r − bH · · · b∗H+r
H+r − bH+r

H
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Since �bnm − bnH�− �bn−1
m − bn−1

H �b1 − �bm − bH�b
n−1
H = �bn−1

m − bn−1
H ��bm − b1�, we

have a regular matirx R such that

B′R =




b1 − bH 0 · · · 0

b2 − bH �b2 − bH��b2 − b1� 0 · · · 0

b3 − bH �b3 − bH��b3 − b1� �b3 − bH��b3 − b1��b3 − b2� · · · 0

	
	
	

bH−1 − bH �bH−1 − bH��bH−1 − b1� �bH−1 − bH��bH−1 − b1��bH−1 − b2� · · · 0

b∗H+1 − bH �b∗H+1 − bH��b
∗
H+1 − b1� �b∗H+1 − bH��b

∗
H+1 − b1��b

∗
H+1 − b2� · · · 0

	
	
	

b∗H+r − bH �b∗H+r − bH��b
∗
H+r − b1� �b∗H+r − bH��b

∗
H+r − b1��b

∗
H+r − b2� · · · �b∗H+r − bH� · · ·

�b∗H+r − b∗H+r−1�




�

and we have for some regular matirx R′,

B′R′ =




b1 − bH �b1 − bH�
2 · · · �b1 − bH�

H+r−1

b2 − bH �b2 − bH�
2 · · · �b2 − bH�

H+r−1

			

b∗H+r − bH �b∗H+r − bH�
2 · · · �b∗H+r − bH�

H+r−1


 	

Set

�a
′�1�
1 � 	 	 	 � a

′�1�
H1

� = �a1� 	 	 	 � aH1
��

�a
′�2�
1 � 	 	 	 � a

′�2�
H2

� = �aH1+1� 	 	 	 � aH1+H2
��

			

�a
′�r ′�
1 � 	 	 	 � a

′�r ′�
Hr′ � = �aH1+···+Hr′−1+1� 	 	 	 � aH1+···+Hr′ �	

and

�b
′�1�
1 � 	 	 	 � b

′�1�
H1

� = �b1 − bH� 	 	 	 � bH1
− bH��

�b
′�2�
1 � 	 	 	 � b

′�2�
H2

� = �bH1+1 − bH� 	 	 	 � bH1+H2
− bH��

			

�b
′�r ′�
1 � 	 	 	 � b

′�r ′�
Hr′ −1� = �bH1+···+Hr′−1+1 − bH� 	 	 	 � bH1+···+Hr′ −1 − bH�	

Let

A′��� =


�a

′���
1 � a

′���
2 � 	 	 	 � a

′���
H�

� a∗
H+��� for 1 ≤ � ≤ r� � ≤ r ′ − 1

�a
′���
1 � a

′���
2 � 	 	 	 � a

′���
H�

� 0�� for H + 1 ≤ � ≤ r ′ − 1�

A′�r ′� =


�a

′�r ′�
1 � a

′�r ′�
2 � 	 	 	 � a

′�r ′�
Hr′ −1� a

∗
H+r ′�� if r ′ = r�

�a
′�r ′�
1 � a

′�r ′�
2 � 	 	 	 � a

′�r ′�
Hr′ −1� 0�� if r ′ > r�
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B′��� =




1 b
′���
1 · · · b

′���
1

H�

1 b
′���
2 · · · b

′���
2

H�

			

1 b
′���
H�

· · · b
′���
H�

H�

1 b∗∗� − bH · · · �b∗∗� − bH�
H�




for 1 ≤ � ≤ r ′ − 1�

and

B′�r ′� =




b
′�r ′�
1 b

′�r ′�
1

2 · · · b
′�r ′�
1

Hr′

b
′�r ′�
2 b

′�r ′�
2

2 · · · b
′�r ′�
2

Hr′

			

b
′�r ′�
Hr′ −1 b

′�r ′�
Hr′ −1

2 · · · b
′�r ′�
Hr′ −1

Hr′

b∗∗r ′ − bH �b∗∗r ′ − bH�
2 · · · �b∗∗r ′ − bH�

Hr′



	

By Theorem 3.1, we only need to consider the case
∑r ′

�=0 �A���B����2 instead
of �AB�2.

Since b∗∗� �= b∗H = b∗∗r ′ for � = 1� 	 	 	 � r − 1, we have:

B′��� =




1 b
′���
1

b∗∗� −bH
· · ·

(
b
′���
1

b∗∗� −bH

)H�

1 b
′���
2

b∗∗� −bH
· · ·

(
b
′���
2

b∗∗� −bH

)H�

			

1
b
′���
H�

b∗∗� −bH
· · ·

(
b
′���
H�

b∗∗� −bH

)H�

1 1 · · · 1






1 0 · · · 0

0 b∗∗� − bH · · · 0
			

0 0 · · · �b∗∗� − bH�
H�


 	

We have, therefore, a regular matrix R′′ such that

B′���R′′ =




1 0 · · · 0

1 b
′���
2

b∗∗� −bH
− b

′���
1

b∗∗� −bH
· · ·

(
b
′���
2

b∗∗� −bH
− b

′���
1

b∗∗� −bH

)H�

			

1
b
′���
H�

b∗∗� −bH
− b

′���
1

b∗∗� −bH
· · ·

(
b
′���
H�

b∗∗� −bH
− b

′���
1

b∗∗� −bH

)H�

1 1− b
′���
1

b∗∗� −bH
· · ·

(
1− b

′���
1

b∗∗� −bH

)H�



	

Set

a
���
1 =



a
′���
1 + a

′���
2 + · · · + a

′���
H�

+ a∗
i � for 1 ≤ � ≤ r� � ≤ r ′ − 1�

a
′���
1 + a

′���
2 + · · · + a

′���
H�

� for H + 1 ≤ � ≤ r ′ − 1�
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A��� =




(
a
���
2 � a

���
3 � 	 	 	 � a

���
H�
� a∗

H+�

)
for 1 ≤ � ≤ r� � ≤ r ′ − 1

= (
a
′���
2 � a

′���
3 � 	 	 	 � a

′���
H�

� a∗
H+�

)
�(

a
���
2 � a

���
3 � 	 	 	 � a

���
H�
� = �a

′���
2 � a

′���
3 � 	 	 	 � a

′���
H�

)
� for H + 1 ≤ � ≤ r ′ − 1�

	

A�r ′� =


�a

�r ′�
2 � a

�r ′�
3 � 	 	 	 � a

�r ′�
Hr′ � a

∗
H+�� = �a

′�r ′�
1 � a

′�r ′�
2 � 	 	 	 � a

′�r ′�
H�−1� a

∗
H+��� if r = r ′�

�a
�r ′�
2 � a

�r ′�
3 � 	 	 	 � a

�r ′�
Hr′ � = �a

′�r ′�
1 � a

′�r ′�
2 � 	 	 	 � a

′�r ′�
H�−1�� if r < r ′�

	

and



b
���
1

			

b
���
H�


 =




b
′���
2

b∗∗� −bH
− b

′���
1

b∗∗� −bH

			

b
′���
H�

b∗∗� −bH
− b

′���
1

b∗∗� −bH

1− b
′���
1

b∗∗� −bH



�



b
�r ′�
1
			

b
�r ′�
Hr′


 =




b
′�r ′�
1

			

b
′�r ′�
Hr′ −1

b∗∗r ′ − bH


 	

Then we have Theorem 3.3.
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