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Abstract

Layered neural network is non-regular learning machine. There-
fore, there are many difficult problems to solve. Recently it was proved
that the maximum pole of the zeta function asymptotically gives the
stochastic complexity of non-regular learning machine in Bayesian es-
timation, where the zeta function for the learning theory is the inte-
gral of the Kullback distance and a certain a priori probability density
function. For several non-regular learning machines, upper bounds of
the main term in the asymptotic form of the stochastic complexity
were obtained. The exact values have been left unknown, because
of their computational complexities. In this paper, we introduce a
new computational technique, and compute explicitly the main term
in the asymptotic form of the stochastic complexity in the case of a
three layered neural network.

1 Introduction

Hierarchical learning machines such as reduced rank regression, multi-layer
perceptrons, normal mixtures and Boltzmann machines, are important re-
search topics, and have useful applications in many fields. These learning
models are called non-regular (non-identifiable) statistical models. A few
mathematical theories for such learning machines are known. So it is neces-
sary and crucial to construct fundamental mathematical theories.

The main topic of this paper is about the zeta function which is the
integral of the Kullback function and a certain a priori probability density
function. Recently, Watanabe[7, 8] proved that the maximum pole of the
zeta function asymptotically gives the stochastic complexity of non-regular
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learning machine. Furthermore, he showed that the poles of the zeta function
can be calculated by using desingularization. By Hironaka’s Theorem[5],
it is known that the desingularization of an arbitrary polynomial can be
obtained by using the blowing-up process. However the desingularization of
any polynomial in general, although it is known as a finite process, is very
difficult.

In order to calculate the maximum pole of the zeta function, first we
obtain the desingularization of the Kullback function.

The main problems in obtaining the desingularization are that

• most of the Kullback functions are degenerate (over R) with respect to
their Newton polyhedrons,

• the Kullback functions have parameters, for example, p of Equation (1),

• singular points are not isolated.

We note that there are many classical results to calculate the maximum
pole of the zeta function using the desingularization of a plane curve in the
dimension two. Also there have been many investigations for the case of
the prehomogenious vector space, which corresponds a special case. The
Kullback function do not occur in the prehomogenious vector space.

In this paper, we give the desingularization of the zeta function for a
layered neural network by using a recursive blowing-up and obtain the exact
maximum pole.

The applications of our result from the viewpoint of Learning theory are
as follows. First, using our result, we can discuss the model selection method
for Bayesian estimation. Second, we can analyze and develop the precision
of the MCMC method. By the MCMC method, the estimated value of a
marginal likelihood had been calculated for the hyper-parameter estimation
and the model selection method of complex learning models. We formulated
the theoretical value of a marginal likelihood which is given in this paper.
Then we can compare the calculated value and the theoretical value.

2 Poles of the zeta function for a three neural

network

In this section, we show how to obtain the poles of the zeta function of a
learning model in the case of a three neural network.

2



Consider a three-layer neural perceptron with one input unit, p hidden
units, and one output unit.

Let w = (a1, · · · , ap, b1, · · · , bp) ∈ Rp be a parameter. Denote the input
value by x.

Then the statistical model of the three layered neural network is

p(y|x,w) =
1

(
√

2π)N
exp(−1

2
(y − f(x,w))2),

where f(x,w) =
∑p

m=1 ak tanh(bkx).
Assume that the true parameter w is w = 0 and that the a priori prob-

ability density function ψ(w) is a C∞− function with compact support W
where ψ(0) > 0.

Then the zeta function of this model is written as follows [1].

J(z) =

∫

W

{
p∑

n=1

(

p∑
m=1

amb2n−1
m )2}z

p∏
m=1

damdbm. (1)

This is obtained by using the Tayler expansion of hyperbolic tangent.

Main Theorem
Let −λ be the maximum pole of

∫
W

Ψ and m its order.
Set i0 = max{i | i2 ≤ p}. Then

λ =
i0 + i20 + p

4i0 + 2
, ` =

{
2 (i20 = p),
1 (i20 < p).

Consider the following differential form

Ψ = {
p∑

n=1

(

p∑
m=1

amb2n−1
m )2}z

p∏
m=1

damdbm.

Put the auxiliary function fn,l by

fn,l(x1, · · · , xl) =
∑

j1+···+jl=n−l

x2j1
1 · · · x2jl > 0.

This function satisfies

fn,l(x1, · · · , xl−1, yl)− fn,l(x1, · · · , xl−1, zl)

= ((yl)
2 − (zl)

2)fn,l+1(x1, · · · , xl−1, zl, yl).

3



Let

ci =

p∑
m=i

ambm(b2
m − b2

1)(b
2
m − b2

2) · · · (b2
m − b2

i−1).

Then we have

Ψ = {
p∑

n=1

(fn,1(b1)c1 + fn,2(b1, b2)c2 + fn,3(b1, b2, b3)c3 + · · ·

+fn,n(b1, . . . , bn)cn)2}z

p∏
m=1

damdbm.

Proof of Main Theorem : Part 1
Let J, J (α), J

(α)
m be elements in Rα. Denote J (α) = (J (α′), ∗) by J (α) >

J (α′)(α > α′) and J (α) = (0, · · · , 0) by J (α) = 0(α) or J (α) = 0. Set Z+ =
N ∪ {0}.

We need to calculate poles of the following function by using the blowing-
up process together with an inductive method of k, K, α.
Inductive statement

Set s(J) = #{m; k ≤ m ≤ p, J
(α)
m = J}, s(i, J) = #{m; k ≤ m ≤

i− 1, J
(α)
m = J}, for J ∈ Rα, where # implies the number of elements.

(a) K ≥ k，

(b) Ψ = {vt1
1 vt2

2 vt3
3 · · · vtk−1

k−1

(
d2

1 + (d1f2,1 + d2f2,2)
2 + · · ·+ (d1fK−1,1 + · · ·

+dK−1fK−1,K−1)
2 +

∑p
n=K(d1fn,1 + · · ·+dK−1fn,K−1 +

∑p
i=K fn,ici)

2
)
}z

∏k−1
m=1 vqm

m

∏K−1
m=1 ddm

∏p
m=K dam

∏k−1
m=1 dvm

∏p
m=k dbm.

Here, tl, qm ∈ Z+. Also, there exist RJ (α) ⊂ Rα, t(i, J, l) ∈ Z+ and
functions g(i,m) 6= 0, (K ≤ i ≤ p, 1 ≤ l ≤ k − 1, i ≤ m ≤ p) such that

ci = v
t(i,0,1)
1 v

t(i,0,2)
2 · · · vt(i,0,k−1)

k−1

∑
i≤m≤p

J
(α)
m =0

g(i,m)ambm

∏
k≤i′<i

J
(α)

i′ =0

(b2
m − b2

i′)

+
∑

J∈RJ(α)

v
t(i,J,1)
1 v

t(i,J,2)
2 · · · vt(i,J,k−1)

k−1

∑
i≤m≤p

J
(α)
m =J

g(i,m)ambm

∏
k≤i′<i

J
(α)

i′ =J

(bm − bi′)
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+
∑

J 6∈RJ(α),J 6=0

v
t(i,J,1)
1 v

t(i,J,2)
2 · · · vt(i,J,k−1)

k−1

∑
i≤m≤p

J
(α)
m =J

g(i, m)am

∏
k≤i′<i

J
(α)

i′ =J

(bm − bi′).

(c) J
(α)
i′ 6= J

(α)
i for k ≤ i′ < i < K and J

(α)
i 6∈ RJ (α) ∪ {0} for k ≤ i < K.

(d) Let t̃(i, J, l) := tl/2+ t(i, J, l), where J ∈ Rα, K ≤ i ≤ p, 1 ≤ l ≤ k− 1.
There exist DJ(µ),l ∈ Z+ such that

t̃(i, J, l) =
∑

J>0(µ)

D0(µ),l(2s(i, 0
(µ)) + 1)

+
∑

J>J(µ)

J(µ)∈RJ(µ)

DJ(µ),l(s(i, J
(µ)) + 1) +

∑

J>J(µ)

J(µ) 6∈RJ(µ),J(µ) 6=0

DJ(µ),ls(i, J
(µ)).

(e) There exist gl ∈ Z+, η
(ξ)
k′,l ∈ Z+ (2 ≤ k′ ≤ K − 1, 1 ≤ ξ ≤ gl, 1 ≤ l ≤

k − 1) such that

tl
2

=

gl∑

ξ=1

(1 + η
(ξ)
2,l + · · ·+ η

(ξ)
K−1,l),

0 ≤ η
(ξ)
2,l ≤ 2, 0 ≤ η

(ξ)
2,l + η

(ξ)
3,l ≤ 4,

...

0 ≤ η
(ξ)
2,l + η

(ξ)
3,l + · · ·+ η

(ξ)
K−1,l ≤ 2(K − 2).

(f) Let ϕ
(ξ)
l := p + 2η

(ξ)
2,l + · · · + (K − 1)η

(ξ)
K−1,l. There exist φl ∈ Z+(1 ≤

l ≤ k − 1) such that gl ≤
∑

J
(α)
m >J(µ) DJ(µ),l and

ql + 1 =

gl∑

ξ=1

ϕ
(ξ)
l + φl +

p∑

m=k

(−gl +
∑

J
(α)
m >J(µ)

DJ(µ),l).

The end of inductive statement

Statements (d), (e) and (f) are needed when we compare poles.

If J
(α)
m = 0 for all m,α, then α = k − 1 and

(a’) k = K.
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(b’) ci = v
t(i,0,1)
1 v

t(i,0,2)
2 · · · vt(i,0,k−1)

k−1

∑
i≤m≤p ambm

∏
k≤i′<i(b

2
m − b2

i′), for k ≤
i ≤ p.

(d’) D0(l−1),l = 1, others 0.

t̃(i, 0(k−1), l) = D0(l−1),l(2(i− l) + 1) = 2(i− l) + 1.

(e’) tl
2

= 1 + η
(1)
2,l + · · ·+ η

(1)
k−1,l,

η
(1)
2,l = 0, . . . , η

(1)
l−1,l = 0, η

(1)
l,l = 2, . . . , η

(1)
k−2,l = 2,

0 ≤ η
(1)
k−1,l ≤ 2, t(k, 0(k−1), l) + η

(1)
k−1,l = 2.

(f’) Set ϕ
(1)
l := p + 2η

(1)
2,l + · · ·+ (k − 1)η

(1)
k−1,l. Then ql + 1 = ϕ

(1)
l .

The proof of Part 1 will appear in [1].

Proof of Main Theorem : Part 2
To obatain the maximum pole, we need the following four lemmas.

Lemma 2.1 The case of J
(α)
m = 0 for all m and α, then we obtain the

following poles.

−p
2
,

−p+k
4

, −p+2k
6

,

−p+2k+k+1
8

, −p+2k+2(k+1)
10

,
...

−p+(i−1)(2k−2+i)+k+i−1
4i

, −p+(i−1)(2k−2+i)+2(k+i−1)
4i+2

,
...

− (p−k−1)(k−2+p)+p−1
4(p−k)

, −p+(p−k−1)(k−2+p)+2(p−2)
4(p−k)+2

.

Proof This can be proved by using the proof of Part 1.

Lemma 2.2 If am, bm > 0, m ∈ N, then
P

amP
bm
≥ min{am

bm
}.

Lemma 2.3 Let k ∈ N.
Assume 0 ≤ η2 ≤ 2, · · · , 0 ≤ η2 + η3 + · · · + ηk−1 ≤ 2(K − 2), where

ηk′ ∈ Z+ and 2 ≤ k′ ≤ K − 1.
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Set
t := 1 + η2 + · · ·+ ηK−1,

ϕ := p + 2η2 + · · ·+ (K − 1)ηK−1,

and
t = 2i + m, i ∈ N, m = 0 or 1.

Then

ϕ

2t
>

p + i2 + im

4i + 2m
=

p + 1 + 1 + 2 + 2 + · · ·+ (i− 1) + (i− 1) + i + im

2t
.

Remark −p+i2+im
4i+2m

stated in Lemma 2.3 are equal to poles where k = 1 in
Lemma 2.1.

Lemma 2.4 The maximum pole among ones obtained in Part 1 is one of
poles in Lemma 2.1.

Proof This proof will also appear in [1].

Therfore, the maximum pole is the maximum one among

−p
2
,−p+1

4
,−p+2

6
,

−p+4
8

,−p+6
10

,

...

−p+i2

4i
,−p+i2+i

4i+2
,

...

−p+(p−1)2

4(p−1)
,−p+(p−1)2+(p−1)

4(p−1)+2
.

So Main Theorem follows.
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