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Abstract

A new genetic algorithm (GA) based on feature clustering with an
energy function is proposed for obtaining optimal segmentation. In
the proposed algorithm, which we call the modified genetic algorithm
(MGA), the length of each genome is the number of features and each
individual (genome) represents one assignment of the input-features
to labels. The energy function, which is used as a fitness function
for our GA, consists of local competitive and cooperative interactions
among features and a global inhibition. We construct the function
in order to control the local competitive and cooperative interactions,
which fits to various features.

1 Introduction

In this paper, a new genetic algorithm (GA) based on feature clustering
with an energy function is proposed for obtaining optimal segmentation.
In general, for clustering method, each feature is labeled so that features
belonging to the same cluster have the same label and features belonging to
different clusters have different labels. Usually, each feature is denoted by a
parameter vector. A typical vector example consists of a pixel’s position and
its gray (or color) level in the image. Another vector example consists of the
pixel’s position and its local edge orientation. The problem for the local edge
orientation is called contour grouping. Figure 1(a) shows image segmentation
using information of gray levels and (b) shows that using information of local
edge orientations.

The GA has been applied successfully to many problems of searching for
an approximate global minimum of the objective function. Therefore, it is
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Figure 1: (a) Image segmentation using features whose vectors consist of their positions
and gray levels; regions with homogeneous gray levels have the same label and are com-
bined. (b) Image segmentation using features whose vectors consist of their positions and
local edge orientations (contour grouping problem); features that lie along a curve are
combined.

natural to consider how to apply the GA to the feature clustering problem.
Although there are some applications to the image segmentation, there is
a few applications to the feature clustering problem[1]. The method in the
paper [1] is to solve the problem of partitioning a feature group into homoge-
neous ones based on some measure (e.g. Figure 1(a)). However, the method
is not suitable for application to contour grouping (Figure 1(b)).

2 MGA ALGORITHM

In this section, we introduce our MGA algorithm.
Energy function (Fitness function)

Consider the problem of clustering R features which are denoted by pa-
rameter vectors gr, 1 ≤ r ≤ R.

Let L be the number of labels. Consider L output layers with R (the
number of features) variables in each layer. Denote the rth variable in the
lth output-layer by vrl which takes a value of 0 or 1. The feature gr having
the lth lavel is expressed by the activities vrl = 1 and vrl′ = 0 for l′ 6= l.
Therefore, the feature clustering is achieved by determining vrl so that each
feature gr is properly assigned to one of the output layers.

We denote a local interaction between features gr and gr′ by a scalar value
fgrgr′ , which is a symmetric function of the feature parameters; fgrgr′ = fgr′gr .
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A positive value fgrgr′ > 0 means that gr and gr′ are very likely to belong to
the same cluster, and a negative value fgrgr′ < 0 means that gr and gr′ are
likely to belong to different clusters.

In order to measure the fitness of assignment of the input features to the
output layers, let us consider the following energy function;

E = −1

2

L∑

l=1

R∑
r=1

R∑

r′=1,r′ 6=r

fgrgr′vrlvr′l +
k

2

L∑

l=1

R∑
r=1

R∑

r′=1,r′ 6=r

vrlvr′l, (1)

where
∑

l vrl = 1, vrl ∈ {0, 1} and k ≥ 0 is a control parameter that adjusts
the strength of a global inhibition. This energy function is obtained by using
the local interactions fgrgr′ and global inhibition. It is similar to those used
in a Potts spin model [3] and in the competitive-layer model (CLM) [4].

The corresponding CLM energy function with the combination of the
local and winner-take-all interactions and the global inhibition is

ECLM =
J

2
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r=1

(hr −
L∑

l=1

vrl)
2 + E +

T
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L∑

l=1

R∑
r=1

v2
rl, (2)

where vrl ≥ 0 is a real number. The term J
∑

r(hr −
∑

l vrl)
2 corresponds

to the winner-take-all interactions with strength J between vrl and vrl′ of
the feature gr. hr is the significance of the detection of the feature gr. In
the MGA, this term disappears since we put

∑
l vrl = 1. The parameter T

in the last term is used to slow the local self-inhibition in order to increase
grouping quality. The CLM method used gradual lowering of the inhibitory
T . However, this annealing method on T does not work properly for some
complex input patterns, as was shown in [2]. Since the MGA does not use
the annealing method, this term T

2

∑
l,r v2

rl also disappears.
We explain how to initially produce each individual with a genome for

our GA.
Define an iteration for a step function vrl by

vrl(new) =

{
1 if l = min{l1 : wrl1 ≥ wrl2∀l2}
0 for the others,

(3)

where,

wrl =
R∑

r′=1,r′ 6=r

fgrgr′vr′l(old). (4)
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To determine initial values vrlr(initial), one of output layers lr, 1 ≤ lr ≤ L,
is chosen randomly for each feature gr. Set vrl(initial) as

vrlr(initial) = 1, vrl(initial) = 0 if l 6= lr. (5)

In each iteration, we modify only L variables vrl, l = 1, · · · , L, for the feature
gr selected randomly.

Let

Elocal = −1

2

L∑

l=1

R∑
r=1

R∑

r′=1,r′ 6=r

fgrgr′vrlvr′l, (6)

which is the first term of the energy function E (1).
Theorem By the iteration (3) and (4), we have Elocal(new) ≤ Elocal(old).
That is, Elocal makes a decreasing sequence.

Proof Fix r. Suppose

R∑

r′=1,r′ 6=r

fgrgr′vr′m1 = · · · =
R∑

r′=1,r′ 6=r

fgrgr′vr′mk

>

R∑

r′=1,r′ 6=r

fgrgr′vr′m′ , m′ 6= m1, m2, · · · , mk,

where 1 ≤ m1 < m2 < · · · < mk ≤ L, then we have vrm1(new) = 1,
vrm(new) = 0 where m 6= m1.

Now by using

Elocal = −1

2
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and
L∑

l=1

R∑

r′=1,r′ 6=r

fgrgr′vrl(new)vr′l =
R∑

r′=1,r′ 6=r

fgrgr′vr′m1

≥
L∑

l=1

vrl(old)
R∑

r′=1,r′ 6=r

fgrgr′vr′l,

we obtain Elocal(new) ≤ Elocal(old). Q.E.D
The second step : Applying GA
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Figure 2: Grouping of image data. (a) Input image. (b) The result of the output layers
at the 340th generation. 10 output layers and 20 individuals are prepared. Processing time
is 4 minutes on Pentium III. (c) Graphs of the fitness value −E for the elite individual in
each generation with 10 and 20 individuals in a population. The convergence probability
is lower for the smaller population size.

The purpose of the second step is to reach the globally minimal value of
the energy function E (1) by using GA. In other words, our aim is to obtain
the state of image processing, where split contours generated by the first
step are gathered and combined into proper groups. In this step, the global
inhibition is taken into account.

A genome of each individual contains a set of R parameters (l1, l2, · · · , lR).
Each parameter lr implies the output layer’s number of the feature gr. An
individual represents one assignment of features to the output layers. The
fitness function of GA is the energy function defined by (1), which is rewritten
as follows.

E = −1

2

R∑
r=1

R∑

r′=1,r′ 6=r,lr′=lr

fgrgr′ + k

L∑

l=1

R∑

r=1,lr=l

vrlr .

We propose four kinds of special mutations. The mutations and the
algorithm were listed in [2]. Moreover, comprisons of MGA, the standard
GA and CLM were shown in [2].
Numerical method to obtain a(r), a local interaction fgrgr′ and a
coefficient of global inhibition k

The pairwise local interaction fgrgr′ between edge features is depicted
in Figure 5. This interaction field is similar to the cocircular interaction
employed in [4]. In [4], Wersing, Steil, & Ritter used only coarse images, i.e.,
they assumed that only coarsely sampled features are active in numerical
experiments. Therefore, their interaction field is relatively wide and is not
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Figure 3: Grouping of image data. (a) Input image. (b) The result of the output layers
at the 577th generation. 30 output layers and 30 individuals are prepared. Processing time
is 9 minutes. The gray curves show the original image. (c) Graphs of the fitness value −E
for the elite individual in each generation with 20 and 30 individuals in a population.

(a) (b) (c) (d)

Figure 4: Grouping of image data. (a) Input image. (b) Edge features. (c) Image after
noise removal with EPS = 3. (d) The result of the output layers at the 601st generation.
30 output layers and 40 individuals are prepared. Different symbols denote activity in
different output layers. Processing time is 10 minutes.
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Figure 5: Local interaction for contour grouping; edges gr′ in the left picture have
fgrgr′ > 0 and ones in the right picture have fgrgr′ < 0, where gr is the horizontal edge at
the center. Length of each edge codes interaction strength.

suitable for our cases.
In all our examples, each edge orientation of a feature is generated by

applying the least square method to 5× 5 pixels surrounding the position of
the feature. Local interactions fgrgr′ are defined as follows.

Denote the position parameter of gr by n(r).
Let d = n(r) − n(r′) be the difference vector for two positions of gr, gr′ ,

and ad the angle of d.
Let 0 ≤ da1 < π be

da1 = a(r′)− a(r) mod π.

For c = ad − a(r) mod π (0 ≤ c < π), put

da2 =





a(r′)− a(r)− c mod π if c < π/4 or c > 3π/4,
a(r′)− a(r)− (π/2− c) mod π if π/4 ≤ c ≤ π/2,
a(r′)− a(r)− (3π/2− c) mod π if π/2 ≤ c ≤ 3π/4,

where 0 ≤ da2 < π.
Let P be a constant which controls the spatial range. Define their local

interaction by

fgrgr′ (7)

=

{ {b(da1) + b(da2)} exp(−|d|2/P ) if da1 < π/4 or da1 > 3π/4,
−0.5 if π/4 ≤ da1 ≤ 3π/4,

where

b(x) =

{ − 4
π
x + 1 0 ≤ x < π/2,

4
π
x− 3 π/2 ≤ x ≤ π.
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b(x) is a piecewise linear function of x with a corner at π/2, which attains
its minimum −1 at π/2 and its maximum 1 at 0 and π.

If two features gr and gr′ have the same orientation, then b(da1) is equal
to 1 and contributes to increasing its local interaction. If gr lies at right
angles to gr′ , then b(da1) is equal to −1 and contributes to decreasing its
local interaction.

da2 is adopted to admit excitatory interaction if two features can be
connected by a curve with a small curvature. The parameters da1 and c
contribute to increasing or decreasing its local interaction.

P = 25 in (7) is used for Figures 2 and 3. P = 100 is used for Figure 4.
The coefficient of the global inhibition is computed by letting k = 0.3/R in
(1), which controlls the spatial range.
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