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Abstract

Reduced rank regression extracts an essential information from examples of input–output pairs. It is understood as a three-layer neural

network with linear hidden units. However, reduced rank approximation is a non-regular statistical model which has a degenerate Fisher

information matrix. Its generalization error had been left unknown even in statistics. In this paper, we give the exact asymptotic form of its

generalization error in Bayesian estimation, based on resolution of learning machine singularities. For this purpose, the maximum pole of the

zeta function for the learning theory is calculated. We propose a new method of recursive blowing-ups which yields the complete

desingularization of the reduced rank approximation.
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1. Introduction

Hierarchical learning machine such as reduced rank

regression, multi-layer perceptron, normal mixture and

Boltzmann machine has its singular Fisher matrix function

I(w) for a parameter w. Specifically, det I(w0)Z0 for a

particular parameter w0, representing some small model.

The parameter w0 is not identifiable, since the subset, which

consists of parameters representing the small model is an

analytic variety in all parameter space. Such a learning

model is called a non-regular (non-identifiable) statistical

model. For example, consider a learning machine

pðyjx;A;BÞ Z
1

ð
ffiffiffiffiffiffi
2p

p
Þ2

expðK1

2
ky KBAxk2Þ;

of the reduced rank approximation with a 2!2 matrix AZ
(aij) and a 2!2 matrix BZ(bij). Assume that this machine

estimates the true distribution p(yjx,A0,B0), where B0A0Z0.

Denote the subset of the parameters representing the small
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model by

W0 Z fðA;BÞ; pðyjx;A;BÞ Z pðyjx;A0;B0Þg:

Then we have

W0 IfðA;BÞ;A Z 0gg fðA;BÞ;B Z 0g:

Recently, the asymptotic form of the Bayesian stochastic

complexity has been obtained, using the method of

resolution of singularities by Watanabe (1999, 2001a,b).

Let n be the number of any training samples. The average

stochastic complexity (the free energy) F(n) is asymptoti-

cally equal to

FðnÞ Z l log n K ðm K1Þlog log n COð1Þ;

where l is a positive rational number, m is a natural number

and O(1) is a bounded function of n. Hence, if exists, the

Bayesian generalization error G(n) has an asymptotic

expansion given by

GðnÞyl=n K ðm K1Þ=ðn log nÞ:

Let j(w) be a certain a priori probability density

function, q(x,y) the true simultaneous distribution of input

and output, and p(x,yjw) the learning model. The Kullback

information K(w) can be formulated as

KðwÞ Z
Ð

qðx; yÞlogfqðx; yÞ=pðx; yjwÞgdxdy:
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Mathematical Symbols

x M-dimensional input

y N-dimensional output

w, w0 d-dimensional parameter

I(w) Fisher information matrix

W0 subset of parameter space

n number of any training samples

G(n) generalization error

F(n) average stochastic complexity

l positive and rational number

m natural number

O(1) bounded function of n

j(w) a priori probability distribution on the parameter

space

p(x,yjw) learning machine

q(x,y) true simultaneous distribution of input and

output

K(w) Kullback information

J(z) zeta function for learning theory

w0 true parameter

XnZ(X1,X2,.,Xn) set of training samples

p(wjXn) a posteriori probability density function

p(x,yjXn) average inference of the Bayesian distribution

En{ } the expectation value over all sets of n training

samples

Kn(w) empirical Kullback information

f,f1,f2 real analytic functions

V,Vw neighborhood of w

U,Uw real analytic manifold

m proper analytic map from U to V

E subset of U

uZ(u1,.,ud) local analytic coordinate

s1,.,sd non-negative integers

W compact subset

g,g1,g2 CN-functions with compact support W

z(z) zeta function

Ui d-dimensional real space

M a real manifold

(x1i,.,xdi) coordinate of Ui

p proper analytic map from M to Rd

X subspace of Rd

A H!M matrix

B N!H matrix

T,T1,T2, matrix

kTkZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j tij

�� ��2q
norm of any matrix TZ(tij)

q(x) probability density function of x

B0, A0 true parameter

r rank of B0A0

XZ
Ð

xixjqðxÞdx
� �

matrix

c1,c2O0 positive numbers

SZBAKB0A0 matrix

Q orthogonal matrix

KL(f,g) maximum pole of z(z)

a2R-{0} number

Mat(N 0,M 0) set of N 0!M 0 matrices

a,b,g positive numbers

P0, Q0 regular matrices

F function of A and B

C1Z ðcð1Þij Þ r!r matrix

C2Z ðcð2Þij Þ (NKr)!r matrix

C3Z ðcð3Þij Þ r!(MKr) matrix

A 0 H!M matrix

B 0 N!H matrix

A1 r!r matrix

A2 (HKr)!r matrix

A3 r!(MKr) matrix

A4Z(aij) (HKr)!(MKr) matrix

B1 r!r matrix

B2 (NKr)!r matrix

B3 r!(HKr) matrix

B4Z(bij) (NKr)!(HKr) matrix

F 0, F 00 functions of C1, C2, C3, A4 and B4

j 0(w 0) CN-function with compact support W 0

E r!r unit matrix

s positive integer

A(sC1) (HKrKs)!(MKrKs)

B(sC1) (NKr)!(HKrKs)

bsC1 NKr vector

Di(akl) function of the entries of the matrix A4 excluding

the entries of A(sC1)

~asC1 MKrKsK1 vector

asC1 HKrKsK1 vector

Col1(Di) first column of Di

D0
i DiZ(Col1(Di)D

0
i)

[(s) function from integers to real numbers
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Then the zeta function for the learning theory is defined

by

JðzÞ Z
Ð

KðwÞzjðwÞdw:

Watanabe (1999, 2001a,b) proved that the maximum

pole of J(z) (as real numbers) is Kl and its order is m,

calculated by using the blowing-up process. For regular

models, lZd/2 and mZ1, where d is the dimension of the

parameter space. Non-regular models have smaller value l
than d/2, so they are effective learning machines than

regular ones provided that the Bayes estimation is applied.

In Watanabe and Watanabe (2003), the upper bound of

the constant l for the reduced rank regression model was

obtained. The exact value for l has been left unknown.

In this paper, we use the inductive method to obtain the

exact value l for the reduced rank regression model, and

give the asymptotic form of the stochastic complexity

explicitly. Reduced rank regression estimates the con-

ditional probability by using a reduced rank linear operator



M. Aoyagi, S. Watanabe / Neural Networks 18 (2005) 924–933926
from higher dimensional input to higher dimensional output.

The aim of this model is to find small rank relation between

input and output. The model is a three-layer neural network

with linear hidden units (Baldi & Hornik, 1995). In order to

be able to understand characters of layered neural networks,

it is important to analyze the model mathematically.

The proposed method in this paper is recursive blowing-

ups. By Hironaka’s Theorem (1964), it is known that the

desingularization of an arbitrary polynomial can be obtained

by using the blowing-up process. However, the desingular-

ization of any polynomial in general, although it is known as

a finite process, is very difficult.

It is well-known that there are many information criteria

for statistical model selection of regular statistical models,

for example, model selection methods AIC (Akaike, 1974),

TIC (Takeuchi, 1976), HQ (Hannan & Quinn, 1979), NIC

(Murata, Yoshizawa, & Amari, 1994), BIC (Schwarz,

1978), MDL (Rissanen, 1984). However, the theory of

regular statistical models cannot be applied to analyzing

such non-regular models. The result of this paper clarifies

the asymptotic behavior of the marginal likelihood and the

stochastic complexity.

In practical usage, the stochastic complexity is calculated

by some numerical calculation, for example, the Markov

Chain Monte Carlo method (MCMC). By the MCMC

method, the estimated values of marginal likelihoods had

been calculated for hyper-parameter estimations and model

selection methods of complex learning models, but the

theoretical values were not known. The theoretical values of

marginal likelihoods are given in this paper. This enables us

to construct mathematical foundation for analyzing and

developing the precision of the MCMC method.
2. Bayesian learning models

In this section, we give the framework of Bayesian

learning.

Let RM be the input space, RN the output space and W the

parameter space contained in Rd. Take x2RM, y2RN and

w2W. Consider a learning machine p(x,yjw) and a fixed a

priori probability density function j(w). Assume that the

true probability distribution is expressed by p(x,yjw0), where

w0 is fixed.

Let XnZ(X1,X2,.,Xn), XiZ(xi,yi) be arbitrary n training

samples. Xi’s are randomly selected from the true

probability distribution p(x,yjw0). Then, the a posteriori

probability density function p(wjXn) is written by

pðwjXnÞ Z
1

Zn

jðwÞ
Yn

iZ1

pðXijwÞ;

where

Zn Z

ð
W

jðwÞ
Yn

iZ1

pðXijwÞdw:
So the average inference p(x,yjXn) of the Bayesian

distribution is given by

pðx; yjXnÞ Z
Ð

pðx; yjwÞpðwjXnÞdw:

Let G(n) be the generalization error (the learning

efficiency) as follows

GðnÞ Z En

ð
pðx; yjw0Þlog

pðx; yjw0Þ

pðx; yjXnÞ
dxdy


 �
;

where En{$} is the expectation value.

Then the average stochastic complexity (the free energy)

FðnÞ ZKEn log
Ð

expðKnKnðwÞÞjðwÞdw
� 


;

satisfies

GðnÞ Z Fðn C1ÞKFðnÞ;

where

KnðwÞ Z
1

n

Xn

iZ1

log
pðXijw0Þ

pðXijwÞ
:

Define the zeta function J(z) of the learning model by

JðzÞ Z
Ð

KðwÞzjðwÞdw;

where K(w) is the Kullback information

KðwÞ Z

ð
pðx; yjw0Þlog

pðx; yjw0Þ

pðx; yjwÞ
dx:

Then, for the maximum pole Kl of J(z) and its order m,

we have

FðnÞ Z l log n K ðm K1Þlog log n COð1Þ; (1)

and

GðnÞyl=n K ðm K1Þ=ðn log nÞ; (2)

where O(1) is a bounded function of n.

The values l and m can be calculated by using the

blowing-up process.
3. Resolutions of singularities

In this section, we introduce the Hironaka’s theorem

(1964) on the resolution of singularities. The blowing up is

the main tool in the resolution of singularities of an

algebraic variety. We also show its application in the field of

learning theory (Watanabe, 1999, 2001a,b).

Theorem 1. (Hironaka (1964)). Let f be a real analytic

function in a neighborhood of wZ(w1,.,wd)2Rd with

f(w)Z0. There exist an open set VHw, a real analytic

manifold U and a proper analytic map m from U to V such

that
(1)
 m:UKE/VKfK1(0) is an isomorphism, where EZ
mK1(fK1(0)),
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(2)
 for each u2U, there is a local analytic coordinate

(u1,.,ud) such that f ðmðuÞÞZGu
s1

1 u
s2

2 .u
sd

d , where

s1,.,sd are non-negative integers.
The above theorem is an analytic version of the

Hironaka’s theorem used by Atiyah (1970).

Theorem 2. (Atiyah (1970), Bernstein (1972), Björk

(1979), Sato and Shintani (1974)). Let f(w) be an analytic

function of a variable w2Rd. Let g(w) be a CN-function

with compact support W.

Then

zðzÞ Z

ð
W

jf ðwÞjzgðwÞdw;

is a holomorphic function in the right-half plane.

Furthermore, z(z) can be analytically extended to a

meromorphic function on the entire complex plane. Its poles

are negative rational numbers.

Theorem 2 follows from Theorem 1.

Applying the Hironaka’s theorem to the Kullback

information K(w), for each w2KK1(0)hW, we have a

proper analytic map mw from an analytic manifold Uw to a

neighborhood Vw of w satisfying Theorem 1 of (1) and (2).

Then the local integration on Vw of the zeta function J(z) of

the learning model is

JwðzÞ Z

ð
Vw

KðwÞzjðwÞdw

Z

ð
Uw

ðu
2s1

1 u
2s2

2 .u
2sd

d ÞzjðmwðuÞÞjm
0
wðuÞjdu:

Therefore, the values Jw(z) can be obtained. For each

w2W\KK1(0), there exists a neighborhood Vw such that

K(w 0)s0, for all w 02Vw. So JwðzÞZ
Ð

Vw
KðwÞzjðwÞdw has

no poles. Since the set of parameters W is compact, the poles

and their orders of J(z) are computable.

Next, we explain the construction of blowing up. There

are three kinds of blowing up: blowing up at the point,

blowing up along the manifold and blowing up with respect

to the coherent sheaf of ideals. The blowing up along the

manifold is a generalization of the blowing up at the point.

The blowing up with respect to the coherent sheaf of ideals

is a generalization of the blowing up along the manifold.

Here, let us explain only the blowing up along the

manifold used in this paper. Define a manifold M by gluing

k open sets UiyRd, iZ1,2,.,k (dRk) as follows.

Denote the coordinate of Ui by (x1i,.,xdi).

Define the equivalence relation

ðx1i; x2i;.; xdiÞwðx1j; x2j;.; xdjÞ
at xjis0 and xijs0, by

xij Z 1=xji; xjj Z xiixji;

xhj Z xhi=xji; 1%h%k; hsi; j;

x[j Z x[i; k C1%[%d:

Set MZ
‘k

iZ1 Ui=w.

Define the blowing map p : M/Rd by

ðx1i;.; xdiÞ

1 ðxiix1i;.; xiixiK1i; xii; xiixiC1i;.; xiixki; xkC1i;.; xdiÞ;

for each (x1i,.,xdi)2Ui.

This map is well-defined and called the blowing up along

X Z fðw1;.;wk;wkC1;.;wdÞ2Rdjw1 Z/Z wk Z 0g:

The blowing map satisfies
(1)
 p : M/Rd is proper.
(2)
 p : MKpK1ðXÞ/Rd KX is an isomorphism.
4. Learning curves of reduced rank regression model

In this section, we show how to obtain the maximum pole

of the zeta function of learning models in the case of the

reduced rank regression model.

Let

fw Z ðA;BÞjA is an H !M matrix; B is an N !H matrixg;

be the set of parameters.

We define the norm of a matrix TZ(tij) by

kTkZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j tij

�� ��2q
:

Denote the input value by x2RM with a probability

density function q(x). Assume that all eigenvalues of the

M!M matrix XZ
Ð

xixjqðxÞdx
� �

are positive numbers.

Such a matrix is called a positive definite.

Then the output value y2RN of the reduced rank

regression model is given by

y Z BAx:

Consider the statistical model

pðyjx;wÞ Z
1

ð
ffiffiffiffiffiffi
2p

p
ÞN

expðK1

2
jjy KBAxjj2Þ;

with Gaussian noise. Let w0Z(A0,B0) be the true parameter.

Assume that the a priori probability density function j(w) is

a CN-function with compact support W, satisfying

j(A0,B0)O0.

We can apply Section 2, by using p(x,yjw0)Zp(yjx,w0)!
q(x) and n training samples XnZ(X1,X2,.,Xn), XiZ(xi,yi)

which are randomly selected from the true probability

distribution p(x,yjw0).
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In Main Theorem, we give the formulas for the

parameters l and m appearing Eqs. (1) and (2).

Lemma 1. There exist constants c1O0 and c2O0 such that

c1jjBA KB0A0jj
2 %KðwÞ%c2jjBA KB0A0jj

2: (3)

Proof. Put
l Z max
ðN CMÞr Kr2 CsðN KrÞC ðM Kr KsÞðH Kr KsÞ

2

(

lZ
KðHC

lZ
KðHC
qðx; yÞ Z pðyjx; ðA0;B0ÞÞqðxÞ:

Then we have the Kullback information

KðwÞ Z

ð
qðx; yÞlog

pðyjx; ðA0;B0ÞÞ

pðyjx;wÞ
dxdy

Z
1

2

ð
jjðBA KB0A0Þxjj

2qðxÞdx:

Let SZBAKB0A0Z(si,j) and Q an orthogonal matrix

such that QtXQ is diagonal.

Then, we have

KðwÞ Z
1

2

ð
jjSxjj2qðxÞdx Z

1

2

ðX
i

X
j

sijxj

 !2

qðxÞdx

Z
1

2

X
i;j1;j2

Sij1
Sij2

ð
xj1

xj2
qðxÞdx Z

1

2
TrðSXStÞ

Z
1

2
TrðSQQtXQðSQÞtÞ:

Since we assume all eigenvalues of X are positive

numbers, there exist c1O0 and c2O0 such that

c1 TrðSQðSQÞtÞ Z c1 TrðSStÞ%KðwÞ%c2 TrðSQðSQÞtÞ

Z c2 TrðSStÞ:

Since Tr(SSt)ZkSk2, this completes the proof. ,

Lemma 2. (Watanabe (2001c)). Let f(w), f1(w), f2(w) be

analytic functions of w2Rd. Let g(w), g1(w), g2(w) be CN-

functions with compact support W.

Put

zðzÞ Z

ð
W

jf ðwÞjzgðwÞdw:

Denote the maximum pole of z(z) by KL(f,g).

If jf1j%jf2j and g1Rg2 then we have L(f1,g1)

%L(f2,g2).

Lemmas 1 and 2 yield that the zeta function can be

written as follows:
JðzÞ Z

ð
W

jjBA KB0A0jj
2z

jðwÞdw:

Main Theorem

Let r be the rank of B0A0.

F(n) and G(n) in Eqs. (1) and (2) are given by using the

following maximum pole Kl of J(z) and its order m:����� 0%s%minfM Cr;H Crg

)
:

Case (1)
 Let NCr%MCH, MCr%NCH and HCr%MC
N.
(a)
 If MCHCNCr is even, then mZ1 and

rÞ2 KM2 KN2 C2ðHCrÞMC2ðHCrÞNC2MN

8
:

(b)
 If MCHCNCr is odd, then mZ2 and

rÞ2 KM2 KN2 C2ðHCrÞMC2ðHCrÞN C2MN C1

8
:

Case (2)
 Let MCH!NCr. Then mZ1 and

lZ ðHMKHrCNrÞ=2.
Case (3)
 Let NCH!MCr. Then mZ1 and

lZ ðHNKHrCMrÞ=2.
Case (4)
 Let MCN!HCr. Then mZ1 and lZMN/2.
For practical use, the case of M[H and N[H are

considered, so Case (4) does not occur.

This model has MHCNH dimensional parameter space.

Therefore, the maximum pole is K(MHCNH)/2 for regular

models with MHCNH dimensional parameter space. In

other words, it does not depend on the true distribution

parameter w0 for regular models. However, non-regular

models have l depending on w0. So, it is difficult to construct

the model selection methods for non-regular models.

The Fisher information matrix of the model is singular

for each case since l!(MHCNH)/2.

In order to prove Main Theorem, we need the following

three lemmas.

Lemma 3. Let U be a neighborhood of w02Rd. Let

T1(w),T2(w),T(w) be functions from U to Mat(N 0,H 0),

Mat(N 0,M 0), Mat(H 0,M 0), respectively.

Assume that the function kT(w)k is bounded.

Then, there exist positive constants aO0 and bO0 such

that

aðjjT1jj
2 C jjT2jj

2Þ% jjT1jj
2 C jjT2 CT1Tjj2

%bðjjT1jj
2 C jjT2jj

2Þ:
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Proof. Since kT(w)k is bounded, there exists bO3 such that

jjT1jj
2 C jjT2 CT1Tjj2 % jjT1jj

2 C2jjT2jj
2 C2jjT1Tjj2

%bðjjT1jj
2 C jjT2jj

2Þ:

Also, there exists gO3 such that

jjT2jj
2%2ðjjT2 CT1Tjj2 C jjKT1Tjj2Þ

%2ðjjT2 CT1Tjj2 CgjjT1jj
2Þ;

and hence

jjT1jj
2 C jjT2jj

2 %2jjT2 CT1Tjj2 C ð2g C1ÞjjT1jj
2

% ð2g C1ÞðjjT2 CT1Tjj2 C jjT1jj
2Þ:

Putting aZ1/(2gC1) completes the proof. ,

Lemma 4. Let U be a neighborhood of w02Rd. Also let

T(w) be a function from U to Mat(H 0,M 0).

Let P0, Q0 be any regular M 0!M 0, H 0!H 0 matrices,

respectively.

Then there exist positive constants aO0, bO0 such that

ajjTjj2% jjP0TQ0jj
2%bjjTjj2:

Proof. There exists bO0 such that

jjP0TQ0jj
2%bjjTjj2:

Also, there exists gO0

jjTjj2 Z jjPK1
0 P0TQ0QK1

0 jj2%gjjP0TQ0jj
2:

The proof follows by putting aZ1/g. ,

Lemma 5. Put

F Z jjBA KB0A0jj
2:

Then there exist a function F 0 and an a priori probability

density function j 0(w 0) such that
(a)
 F0Z jjC1jj
2C jjC2jj

2C jjC3jj
2 C jjB4A4jj

2; where C1 is

an r!r matrix, C2 is an (NKr)!r matrix, C3 is an r!
(MKr) matrix, A4 is an (HKr)!(MKr) matrix and B4

is an (NKr)!(HKr) matrix.
(b)
 j 0(w 0) is a CN-function with compact support W 0,

where j 0(0)O0 and w 0Z(C1,C2,C3,B4,A4).Ð

(c)
 the maximum pole of W Fzj dw is equal to that ofÐ

W F0 zj0 dw0.
Proof. Since the rank of B0 A0 is r, there exist regular

matrices P0, Q0 such that

PK1
0 B0A0QK1

0 Z
E 0

0 0

 !
;

where E is the r!r identity matrix.

Change variables from B, A to B 0, A 0 by B0ZPK1
0 B and

A0ZAQK1
0 .
Then

F Z

�����P0 B0A0 K
E 0

0 0

 ! !
Q0

�����
2

:

Let

A0 Z
A1 A3

A2 A4

 !
;

and

B0 Z
B1 B3

B2 B4

 !
;

where

A1 is an r!r matrix; A3 is an r!ðMKrÞmatrix;

A2 is an ðH KrÞ!r matrix; A4 is an ðH KrÞ!ðMKrÞmatrix;

B1 is an r!r matrix; B3 is an r!ðH KrÞmatrix;

B2 is an ðN KrÞ!r matrix; B4is an ðN KrÞ!ðH KrÞmatrix:

Let U(A0,B0) be a sufficiently small neighborhood of any

point (A0,B0) with

B0A0K
E 0

0 0

 !
Z0:

Since the rank (B1,B3)
A1

A2

 !
is r, we can assume A1 is

regular. Thus we can change the variables from B1, B2 to C1,

C2 by C1ZB1A1CB3A2KE and C2ZB2A1CB4A2.

Thus,

B0A0 K
E 0

0 0

 !
Z

C1 ðC1 CE KB3A2ÞA
K1
1 A3 CB3A4

C2 ðC2 KB4A2ÞA
K1
1 A3 CB4A4

 !
:

Changing the variables from A4 to A0
4 by A0

4 ZKA2AK1
1

A3 CA4 gives

B0A0 K
E 0

0 0

 !
Z

C1 C1AK1
1 A3 CAK1

1 A3 CB3A0
4

C2 C2AK1
1 A3 CB4A0

4

 !
:

By changing the variables from A3 to A0
3 by

A0
3 ZAK1

1 A3CB3A0
4, we obtain

B0A0 K
E 0

0 0

 !
Z

C1 C1ðA
0
3 KB3A0

4ÞCA0
3

C2 C2ðA
0
3 KB3A0

4ÞCB4A0
4

 !
;

and

F Z

����P0

C1 C1ðA
0
3 KB3A0

4ÞCA0
3

C2 C2ðA
0
3 KB3A0

4ÞCB4A0
4

 !
Q0

����2

:

By Lemmas 2 and 4, the maximum pole of
Ð

UðA0 ;B0 Þ
Fzj

dw is equal to that ofð
UðA0 ;B0 Þ

���� C1 C1ðA
0
3 KB3A0

4ÞCA0
3

C2 C2ðA
0
3 KB3A0

4ÞCB4A0
4

 !����2z

j dw:



sÞ
:

:
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Then Lemmas 2 and 3 yield that the maximum pole ofÐ
UðA0 ;B0 Þ

Fzj dw is equal to that of

ð
UðA0 ;B0 Þ

���� C1 A0
3

C2 B4A0
4

 !����2z

j dw:

Let C3ZA0
3, A4ZA0

4 and

j0ðC1;C2;C3;A4;B4Þ Z jðA;BÞ:

The proof follows from the fact that the poles of the

above function are same when (A 0,B 0) with

B0A0 K
E 0

0 0

 !
Z 0

varies. ,

Before the proof of Main Theorem, let us give some

notation.

Since we often change the variables by using the

blowing-up process, it is more convenient for us to use the

same symbols aij rather than a0
ij; a

00
ij;.;, for the sake of

simplicity. For instance,

Let
a11 Z u11;

aij Z u11aij; ði; jÞsð1; 1Þ
:

(

instead of

Let
a11 Z u11

aij Z u11a0
ij; ði; jÞsð1; 1Þ

:

(

Proof of Main Theorem

Let A4 Z

a11 / a1;MKr

a21 / a2;MKr

«

aHKr;1 / aHKr;MKr

0
BBB@

1
CCCA;

B4 Z

b11 / b1;HKr

b21 / b2;HKr

«

bNKr;1 / bNKr;HKr

0
BBBB@

1
CCCCA

Suppose that C1,C2 and C3 are as in Lemma 5. Denote

C1Z ðcð1Þij Þ, C2Z ðcð2Þij Þ and C3Z ðcð3Þij Þ. We need to calculate

poles of the following function by using the blowing-up

process together with an inductive method.

Let [ðjÞZ ðNCMÞrKr2C jðNKrÞC ðMKrK jÞ!
ðHKrK jÞK1 for jZ0,.,min{HKr,MKr}.
Assume

F00 Zu2
11.u2

ss jjC1jj
2 C jjC2jj

2 C jjC3jj
2 C

Xs

iZ1

jjbijj
2

 

C

����Xs

iZ1

biDi CBðsC1ÞAðsC1Þ

����2
!
; ð4Þ

where

BðsC1Þ Z

b1;sC1 . b1;HKr

b2;sC1 . b2;HKr

«

bNKr;sC1 . bNKr;HKr

0
BBBB@

1
CCCCA;

AðsC1Þ Z

asC1;sC1 . asC1;MKr

asC2;sC1 . asC2;MKr

«

aHKr;sC1 . aHKr;MKr

0
BBB@

1
CCCA and

bi Z

b1i

«

bNKr;i

0
B@

1
CA for i Z 1;.;H Kr:

Di(akl) is a function, defined on the entries of the matrix,

obtained from A4 by omitting the entries of A(sC1). The

definition of the function Di(akl) will be given recursively

later on in Eq. (5).

Also we inductively have poles

K
[ðsÞC1

2

ZK
ðN CMÞr Kr2 CsðN KrÞC ðM Kr KsÞðH Kr K

2

(Basis of the induction). Construct the blowing up of F 0

along the submanifold {C1ZC2ZC3ZA4Z0}

Let

cð1Þ11 Z v;

cð1Þij Z vcð1Þij ; ði; jÞsð1; 1Þ;

C2 Z vC2; C3 Z vC3; A4 Z vA4:

8>><
>>:
Then we have

F0 Z v2 1 C
X

ði;jÞsð1;1Þ

ðcð1Þij Þ2 C jjC2jj
2 C jjC3jj

2 C jjB4A4jj
2

 !

Here, the Jacobian is n[ð0Þ. Therefore, we have the pole

K
[ð0ÞC1

2
;

since

F0 z dw0 Z F0 zv[ð0Þ dv

!
Y

ði;jÞsð1;1Þ

dcð1Þij

Y
ði;jÞ

dcð2Þij

Y
ði;jÞ

dcð3Þij

Y
ði;jÞ

daij

Y
ði;jÞ

dbij;

in this coordinate.
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If we set the general case as cð1Þj;i Zv, cð2Þj;i Zv, cð3Þj;i Zv, we

obtain the same pole.

Consider another transformation.

Let

C1 Z u11C1; C2 Z u11C2; C3 Z u11C3;

a11 Z u11;

aij Z u11aij; ði; jÞsð1; 1Þ:

8<
:
By the symmetry of the norm function, this setting is the

general case as ai,jZu11.

Then we have

F0 Z u2
11 jjC1jj

2 C jjC2jj
2 C jjC3jj

2 C jjb1

 

CBð2Þa1jj
2 C

����ðb1Bð2ÞÞ
~a1

Að2Þ

 !����
2!

;

where ~a1Z ða12.a1;MKrÞ and a1Z(a21 / aHKr,1)T. T

denotes the transpose.

Put b1Zb1CB(2)a1. Then

F0 Z u2
11 jjC1jj

2 C jjC2jj
2 C jjC3jj

2 C jjb1jj
2

 

C

����ð b1 KBð2Þa1 Bð2Þ Þ
~a1

Að2Þ

 !����
2!

Z u2
11 jjC1jj

2 C jjC2jj
2 C jjC3jj

2 C jjb1jj
2

 

C

����ð b1 0 Þ
~a1

Að2Þ

 !
CBð2ÞðKa1 E Þ

~a1

Að2Þ

 !����
2!

Z u2
11 jjC1jj

2 C jjC2jj
2 C jjC3jj

2 C jjb1jj
2

�
Ckb1 ~a1 CBð2ÞðKa1 ~a1 CAð2ÞÞk

2
�
:

Let Að2ÞZKa1 ~a1CAð2Þ, then we have Eq. (4) with sZ1:

F0 Z u2
11ðjjC1jj

2 C jjC2jj
2 C jjC3jj

2 C jjb1jj
2

C jjb1 ~a1 CBð2ÞAð2Þjj2Þ:

The Jacobian of this setting is u[ð0Þ
11 .

By the symmetry of the norm function, it is enough to

consider the above two cases.

Now we apply the induction method to Eq. (4).

(Inductive step). Construct the blowing up of F 00 in (4)

along the submanifold {C1ZC2ZC3ZbiZA(sC1)Z0,

1%i%s}.

Let

cð1Þ11 Z v;

cð1Þij Z vcð1Þij ; ði; jÞsð1; 1Þ;

bj Z vbj; 1% j%s; C2 Z vC2; C3 Z vC3;
AðsC1Þ Z vAðsC1Þ:

8>>><
>>>:
Substituting them into Eq. (4) gives

F00 Z u2
11.u2

ssv
2 1 C

X
ði;jÞsð1;1Þ

ðcð1Þij Þ
2 C jjC2jj

2 C jjC3jj
2

 

C
Xs

iZ1

jjbijj
2 C

����Xs

iZ1

biDi CBðsC1ÞAðsC1Þ

����
2
!
:

Here, the Jacobian is u[ð0Þ
11 .u[ðsK1Þ

ss v[ðsÞ.

Because

F0 z dw0 Z F00 zu[ð0Þ
11 /u[ðsK1Þ

ss v[ðsÞ dw00;

in this new coordinate w 00, we have the poles

K
[ð0ÞC1

2
;.;K

[ðsÞC1

2
:

If we set the general case as cð1Þj;i Zu, cð2Þj;i Zu, cð3Þj;i Zu,

bj;iZu, we obtain the same pole by symmetry

Next let

asC1;sC1 Z usC1;sC1;

aj[ Z usC1;sC1aj[; s C1% j%H Kr;

s C1%[%M Kr; ðj; [Þsðs C1; s C1Þ;

C1 Z usC1;sC1C1; C2 Z usC1;sC1C2;

C3 Z usC1;sC1C3; bi Z usC1;sC1bi; 1% i%s:

8>>>>><
>>>>>:

We also obtain the same pole by setting aj[ZusC1;sC1 for

any ðj; [Þ.
Substituting our new variables into Eq. (4) implies

F00 Z u2
11.u2

ssu
2
sC1;sC1 jjC1jj

2 C jjC2jj
2 C jjC3jj

2

 

C
Xs

iZ1

jjbijj
2 C

����Xs

iZ1

biDi

C ð bsC1 BðsC2Þ Þ
1 ~asC1

asC1 AðsC2Þ

 !����
2!

Z u2
11 /u2

ssu
2
sC1;sC1 jjC1jj

2 C jjC2jj
2 C jjC3jj

2

 

C
Xs

iZ1

jjbijj
2 C

����Xs

iZ1

biDi C bsC1 CBðsC2ÞasC1 0
� �

C ð bsC1 BðsC2Þ Þ
0 ~asC1

AðsC2Þ

 !����
2!

;

where ~asC1Z ðasC1;sC2 /asC1;MKrÞ and asC1Z(asC2,sC1

/aHKr,sC1)T.

Denote the first column of Di by Col1(Di). Let

DiZ ðCol1ðDiÞ D0
i Þ.



K
Kð

K
Kð
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Put bsC1 ZbsC1CBðsC2ÞasC1C
Ps

iZ1 bi Col1ðDiÞ. Then

F00=u2
11.u2

sC1;sC1

Z jjC1jj
2 CjjC2jj

2 CjjC3jj
2 C

Xs

iZ1

jjbijj
2 CjjbsC1jj

2

C

����Xs

iZ1

biD
0
i C bsC1 KBðsC2ÞasC1

 

K
Xs

iZ1

biCol1ðDiÞ BðsC2Þ

!
~asC1

AðsC2Þ

 !����2

Z jjC1jj
2 CjjC2jj

2 CjjC3jj
2 C

XsC1

iZ1

jjbijj
2

C

����Xs

iZ1

biD
0
i C bsC1 K

Xs

iZ1

biCol1ðDiÞ 0

 !
~asC1

AðsC2Þ

 !

C KBðsC2ÞasC1 BðsC2Þ
� � ~asC1

AðsC2Þ

 !����2

Z jjC1jj
2 CjjC2jj

2 CjjC3jj
2 C

XsC1

iZ1

jjbijj
2

C

����Xs

iZ1

biðD
0
i KColðDiÞ ~asC1ÞCbsC1 ~asC1

CBðsC2ÞðKasC1;EÞ
~asC1

AðsC2Þ

 !����2

Z jjC1jj
2 CjjC2jj

2 CjjC3jj
2 C

XsC1

iZ1

jjbijj
2

C

����Xs

iZ1

biðD
0
i KCol1ðDiÞ ~asC1ÞCbsC1 ~asC1

CBðsC2ÞðKasC1 ~asC1 CAðsC2Þ

����2

:

Now let AðsC2ÞZKasC1~asC1CAðsC2Þ. Then,

F00=u2
11 /u2

sC1;sC1

Z jjC1jj
2 C jjC2jj

2 C jjC3jj
2 C

XsC1

iZ1

jjbijj
2

Ck
Xs

iZ1

biðD
0
i KCol1ðDiÞ ~asC1ÞCbsC1 ~asC1

CBðsC2ÞAðsC2Þk2:

The Jacobian is u[ð0Þ
11 /u[ðsÞ

sC1;sC1.

Repeat this whole process by setting

Di Z D0
i KCol1ðDiÞ ~asC1ð1% i%sÞ and DsC1 Z ~asC1:

(5)

Then, s will be replaced by sC1 in (4) and so on.

Therefore, we obtain poles
K
[ðsÞC1

2
;

for sZ0,.,min{HKr,MKr}.
(i)
 If (MCHKNKr)/2!0, then the maximum pole at sZ
0 is

K
HM KHr CNr

2
;

and its order m is 1.
(ii)
 If 0%(MCHKNKr)/2%min{HKr,MKr} and MC
HKNKr is even then the maximum pole at sZ ðMC
HKNKrÞ=2 is

HCrÞ2 KM2 KN2 C2ðHCrÞMC2ðHCrÞNC2MN

8
;

and its order m is 1.
(iii)
 If 0%(MCHKNKr)/2%min{HKr,MKr} and MC
HKN-r is odd, then the maximum pole at sZ ðMC
HKNC1KrÞ=2 and ðMCHKNK1KrÞ=2 is

HCrÞ2 KM2 KN2 C2ðHCrÞMC2ðHCrÞNC2MN C1

8
;

and its order m is 2.
(iv)
 If (MCHKNKr)/2Omin{HKr,MKr} and H%M,

then the maximum pole at sZHKr is

K
HN KHr CMr

2
;

and its order m is 1.
(v)
 If (MCHKNKr)/2Omin{HKr,MKr} and M!H,

then the maximum pole at sZMKr is

K
MN

2
;

and its order m is 1.
So Main Theorem follows.

Remark 1. Let g(w) be a CN-function with compact support

W and g(w0)s0 for a fixed parameter w02W. Let f1(w),

f2(w) be analytic functions of w2W with f1(w0)Zf2(w0)Z0.

Assume that 0%af1%f2%bf1 for any constants aO0 and

bO0.

By the assumption together with the Hironaka’s

theorem, we have a proper analytic map m from an

analytic manifold U to a neighborhood V of w0 satisfying

the followings;
(1)
 m : UKE/V K fK1
1 ð0Þ is an isomorphism, where

EZmK1ðfK1
1 ð0ÞÞ.
(2)
 For each u2U, there is a local analytic coordinate

(u1,.,ud) such that f1ðmðuÞÞZu
2s1

1 u
2s2

2 /u
2sd

d f 01 and

f2ðmðuÞÞZu
2s1

1 u
2s2

2 /u
2sd

d f 02, where s1,.,sd are non-

negative integers and f 01 s0, f 02 s0.
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Fig. 1. The curve of l-values in y-axis and H-values in x-axis, when MZ
NZ10.
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The Jacobian of m is Jmðu1;.; udÞZu
m1

1 /u
md

d
~Jm

ðu1;.; udÞ, where m1,.,md are non-negative integers and
~Jpð0;.; 0Þs0.

Then,
Ð

W f1ðwÞ
zgðwÞdw and

Ð
W f2ðwÞ

zgðwÞdw have poles

K
m1 C1

2s1

;.;K
md C1

2sd

:

Remark 2. The blowing-up computation in the proof of

Main Theorem shows that
Ð

W 0 F0zj0 dw0 have always poles

Kð[ðsÞC1Þ=2 for any j 0 with j 0(A0,B0)O0. Furthermore,

there is a maximum among the poles Kð[ðsÞC1Þ=2. From

Remark 1,
Ð

W Fzj dw and
Ð

W 0 F0zj0 dw0 have poles

Kð[ðsÞC1Þ=2. Note that
Ð

W Fzj dw and
Ð

W 0 F0zj0 dw0

have many other poles than Kð[ðsÞC1Þ=2.
5. Discussion and conclusion

In this paper, we introduce a computational method to

obtain the poles of the zeta functions for the reduced rank

regression model.

Note that if the rank r of A0B0 is zero, then H, M and N

can be permuted in the formula for l in Main Theorem.

Fig. 1 shows the graphs of the maximum poles l with l-

values in y-axis and H-values in x-axis, when MZNZ10

and rZ0. It is clear that the curve is not linear. If the reduced

rank approximation was a regular statistical model, l would

be (MCN)H/2 and linear. The behaviors of l for regular and

no-regular models are so different.

In this paper, we assume that
Ð
ðyjxÞ2qðxÞdxZ0, if and

only if yZ0, where (y/x) is the inner product of y and x. IfÐ
ðy0jxÞ

2qðxÞdxZ0 for some ys02RM, then q(x) is the

function defined on the hypersurface (y0jx)Z0. Then the

dimension becomes MK1. So the assumption is natural.
Algebraic methods can be effectively used to solve the

problems in Learning theory.

The method would be useful to calculate the asymptotic

form for not only the reduced rank regression model but also

other cases. Our aim is to develop a mathematical theory in

that context.
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