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Abstract

Reduced rank regression extracts an essential information from examples of input—output pairs. It is understood as a three-layer neural
network with linear hidden units. However, reduced rank approximation is a non-regular statistical model which has a degenerate Fisher
information matrix. Its generalization error had been left unknown even in statistics. In this paper, we give the exact asymptotic form of its
generalization error in Bayesian estimation, based on resolution of learning machine singularities. For this purpose, the maximum pole of the
zeta function for the learning theory is calculated. We propose a new method of recursive blowing-ups which yields the complete

desingularization of the reduced rank approximation.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Hierarchical learning machine such as reduced rank
regression, multi-layer perceptron, normal mixture and
Boltzmann machine has its singular Fisher matrix function
I(w) for a parameter w. Specifically, det I(wy)=0 for a
particular parameter w,, representing some small model.
The parameter w is not identifiable, since the subset, which
consists of parameters representing the small model is an
analytic variety in all parameter space. Such a learning
model is called a non-regular (non-identifiable) statistical
model. For example, consider a learning machine

1
pOIx, A, B) = —— exp(—lly — BAx|),

(v2m)?

of the reduced rank approximation with a 2X2 matrix A=
(a;) and a 2X2 matrix B=(b;;). Assume that this machine
estimates the true distribution p(y|x,Aq,Bp), where BoAdo=0.
Denote the subset of the parameters representing the small
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model by

Wo ={(A, B); pOlx, A, B) = p(ylx, Ag, By)}-
Then we have

W, D1{(A,B);A = 0}U{(A,B); B = 0}.

Recently, the asymptotic form of the Bayesian stochastic
complexity has been obtained, using the method of
resolution of singularities by Watanabe (1999, 2001a,b).
Let n be the number of any training samples. The average
stochastic complexity (the free energy) F(n) is asymptoti-
cally equal to

F(n) = Alogn — (m — Dlog log n + O(1),

where A is a positive rational number, m is a natural number
and O(1) is a bounded function of n. Hence, if exists, the
Bayesian generalization error G(n) has an asymptotic
expansion given by

G(n) = Mn — (m — 1)/(nlog n).
Let y(w) be a certain a priori probability density
function, g(x,y) the true simultaneous distribution of input

and output, and p(x,y|w) the learning model. The Kullback
information K(w) can be formulated as

K(w) = [q(x, )loglg(x,y)/p(x, ylw)}dxdy.
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Mathematical Symbols

X M-dimensional input

y N-dimensional output

w, wo  d-dimensional parameter

I(w) Fisher information matrix

Wo subset of parameter space

n number of any training samples

G(n)  generalization error

F(n) average stochastic complexity

A positive and rational number

m natural number

o) bounded function of n

Y(w)  apriori probability distribution on the parameter
space

p(x,ylw) learning machine

q(x,y)  true simultaneous distribution of input and

output
K(w)  Kullback information
J(2) zeta function for learning theory
Wo true parameter

X"=(X,X5,...,X,) set of training samples

pw|X™) a posteriori probability density function

p(x,y|X") average inference of the Bayesian distribution

E,{} the expectation value over all sets of n training
samples

K,(w) empirical Kullback information

fifif>  real analytic functions

V.V, neighborhood of w

U,U,, real analytic manifold

u proper analytic map from U to V

& subset of U

u=(uy,...,uy) local analytic coordinate

S1,.-.,S¢ Non-negative integers

w compact subset

g.21,g> C~-functions with compact support W

(@) zeta function

U; d-dimensional real space

m a real manifold

(&1ir..-,54;) coordinate of U;

proper analytic map from 171 to RY

T
X subspace of R?
A H XM matrix
B N X H matrix

T,1T,,T,, i

ITl= /> |t[j|2 norm of any matrix 7= (r;)
q(x) probability density function of x
By, Ag true parameter

r rank of ByAg

X = ([xix;q(x)dx) matrix

¢1,¢2 >0 positive numbers

S=BA—ByA, matrix

(0] orthogonal matrix

— A(f,g) maximum pole of {(z)
a€R-{0} number

Mat(N',M") set of N' X M’ matrices
a0,y positive numbers

Py, Qo regular matrices

o function of A and B

C, = (cg»l)) r X r matrix

C,= (cl@) (N—r)Xr matrix

Cy;= (cgjé)) r X (M —r) matrix

A HX M matrix

B’ N X H matrix

Aq r X r matrix

A, (H—r) X r matrix

Az rX (M —r) matrix
As=(a;) (H—r)X(M—r) matrix
B, r X r matrix

B, (N—r) X r matrix

B3 r X (H—r) matrix

By=(by) (N—r)X(H—r) matrix
@', @" functions of C;, C,, C3, A4 and B,

Y'(w")  C”-function with compact support W’
E rXr unit matrix
s positive integer

ACTD (H—r—s)X(M—r—s)

BtD  (N—pP)X(H—r—ys)

b, N—r vector

Dya;;) function of the entries of the matrix A4 excluding
the entries of A¢*1

a, M—r—s—1 vector

F: H—r—s—1 vector

Col (D)) first column of D;

Df D;= (COll(Di)Dz,')

s) function from integers to real numbers

Then the zeta function for the learning theory is defined
by

J(2) = [K(w)*Y(w)dw.

Watanabe (1999, 2001a,b) proved that the maximum
pole of J(z) (as real numbers) is —A and its order is m,
calculated by using the blowing-up process. For regular
models, A=d/2 and m=1, where d is the dimension of the
parameter space. Non-regular models have smaller value A

than d/2, so they are effective learning machines than
regular ones provided that the Bayes estimation is applied.

In Watanabe and Watanabe (2003), the upper bound of
the constant A for the reduced rank regression model was
obtained. The exact value for A has been left unknown.

In this paper, we use the inductive method to obtain the
exact value A for the reduced rank regression model, and
give the asymptotic form of the stochastic complexity
explicitly. Reduced rank regression estimates the con-
ditional probability by using a reduced rank linear operator
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from higher dimensional input to higher dimensional output.
The aim of this model is to find small rank relation between
input and output. The model is a three-layer neural network
with linear hidden units (Baldi & Hornik, 1995). In order to
be able to understand characters of layered neural networks,
it is important to analyze the model mathematically.

The proposed method in this paper is recursive blowing-
ups. By Hironaka’s Theorem (1964), it is known that the
desingularization of an arbitrary polynomial can be obtained
by using the blowing-up process. However, the desingular-
ization of any polynomial in general, although it is known as
a finite process, is very difficult.

It is well-known that there are many information criteria
for statistical model selection of regular statistical models,
for example, model selection methods AIC (Akaike, 1974),
TIC (Takeuchi, 1976), HQ (Hannan & Quinn, 1979), NIC
(Murata, Yoshizawa, & Amari, 1994), BIC (Schwarz,
1978), MDL (Rissanen, 1984). However, the theory of
regular statistical models cannot be applied to analyzing
such non-regular models. The result of this paper clarifies
the asymptotic behavior of the marginal likelihood and the
stochastic complexity.

In practical usage, the stochastic complexity is calculated
by some numerical calculation, for example, the Markov
Chain Monte Carlo method (MCMC). By the MCMC
method, the estimated values of marginal likelihoods had
been calculated for hyper-parameter estimations and model
selection methods of complex learning models, but the
theoretical values were not known. The theoretical values of
marginal likelihoods are given in this paper. This enables us
to construct mathematical foundation for analyzing and
developing the precision of the MCMC method.

2. Bayesian learning models

In this section, we give the framework of Bayesian
learning.

Let R be the input space, R" the output space and W the
parameter space contained in R?. Take x€RY, yeR" and
we W. Consider a learning machine p(x,y|w) and a fixed a
priori probability density function y/(w). Assume that the
true probability distribution is expressed by p(x,y|wg), where
wy is fixed.

Let X" =(X,X2,...,X,,), X;=(x;,y;) be arbitrary n training
samples. X;’s are randomly selected from the true
probability distribution p(x,y|w). Then, the a posteriori
probability density function p(w|X") is written by

1 n
pwlX") = Z—nv/(w) gp(x,»lvo,
where

Z, = J Y(w) HP(X,‘|W)dW.
W i=1

So the average inference p(x,y|X") of the Bayesian
distribution is given by

px,yIX") = [plx, ylw)p(wlX™")dw.

Let G(n) be the generalization error (the learning
efficiency) as follows

G(Vl) = En { Jp(x5 )’|W0)10g M dXdy}s

plx, yIX™)

where E,{-} is the expectation value.
Then the average stochastic complexity (the free energy)

F(n) = —E,{log [exp(—nK,(w)y(w)dw},
satisfies

Gn) =F@mn + 1) — F(n),

where

1 &
Kn(w) = ; Zlog

i=1

pXilwo)
pXilw)
Define the zeta function J(z) of the learning model by
J(2) = [K(w)yy(w)dw,
where K(w) is the Kullback information
P (-x >y | WO)
p(x,yIw)

Then, for the maximum pole — A of J(z) and its order m,
we have

K(w) = J px, ylwg)log

F(n) = Alogn — (m — 1)log log n + O(1), (1)
and
G(n) = An — (m — 1)/(nlog n), 2)

where O(1) is a bounded function of n.
The values A and m can be calculated by using the
blowing-up process.

3. Resolutions of singularities

In this section, we introduce the Hironaka’s theorem
(1964) on the resolution of singularities. The blowing up is
the main tool in the resolution of singularities of an
algebraic variety. We also show its application in the field of
learning theory (Watanabe, 1999, 2001a,b).

Theorem 1. (Hironaka (1964)). Let f be a real analytic
function in a neighborhood of w=wy,....w))ERY with
fw)=0. There exist an open set VSw, a real analytic
manifold U and a proper analytic map u from U to V such
that

(D) ,u:U—é’—>V—f1(0) is an isomorphism, where §=
AR ()
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(2) for each u€ U, there is a local analytic coordinate
(Uy,...,ug) such that f(u(u))==u]uy...u’’, where
LUy .Uy
S1,...,5q are non-negative integers.

The above theorem is an analytic version of the
Hironaka’s theorem used by Atiyah (1970).

Theorem 2. (Atiyah (1970), Bernstein (1972), Bjork
(1979), Sato and Shintani (1974)). Let fiw) be an analytic
function of a variable wER?. Let g(w) be a C”-function
with compact support W.

Then

2 = j o)),

w

is a holomorphic function in the right-half plane.

Furthermore, {(z) can be analytically extended to a
meromorphic function on the entire complex plane. Its poles
are negative rational numbers.

Theorem 2 follows from Theorem 1.

Applying the Hironaka’s theorem to the Kullback
information K(w), for each weK '(0)NW, we have a
proper analytic map u,, from an analytic manifold U,, to a
neighborhood V,, of w satisfying Theorem 1 of (1) and (2).
Then the local integration on V,, of the zeta function J(z) of
the learning model is

1) = JK(w)Z¢(w)dw

Vv,

w

= J<u%"ui”...ui‘”www(u»lu’w(mldu.
U

w

Therefore, the values J,,(z) can be obtained. For each
we W\K_l(O), there exists a neighborhood V,, such that
K(w")=0, for all w'€V,,. So J,,(z) = [ K(w)*¥(w)dw has
no poles. Since the set of parameters W is compact, the poles
and their orders of J(z) are computable.

Next, we explain the construction of blowing up. There
are three kinds of blowing up: blowing up at the point,
blowing up along the manifold and blowing up with respect
to the coherent sheaf of ideals. The blowing up along the
manifold is a generalization of the blowing up at the point.
The blowing up with respect to the coherent sheaf of ideals
is a generalization of the blowing up along the manifold.

Here, let us explain only the blowing up along the
manifold used in this paper. Define a manifold 771 by gluing
k open sets U,ER", i=1,2,....,k (d>k) as follows.

Denote the coordinate of U; by (&1,...,54).

Define the equivalence relation

E1is&ais 5 Eai) N(glj’EZj’ ~~-,§dj)

at EﬂiO and gU:/:O, by

Eij = UEji’ gjj = giigji’
Enj = EnilSjis 1<h<kh+1ij,

Set 772= i‘(:l Ul/~

Define the blowing map 7 : 171 — RY by
(TN N

= (51‘[511" AR giigi—lh E[i’ giigi-Hi’ ) giigkis gk-Hi’ (R ] gd[),

for each (&4,,....£4) € U,.
This map is well-defined and called the blowing up along

X = {(Wl, coes Wies Wit 15 ...,Wd) ERdlwl = =W = O}
The blowing map satisfies

(1) 7 : M — R is proper.
Q) m:M—7'X)—>RY—X is an isomorphism.

4. Learning curves of reduced rank regression model

In this section, we show how to obtain the maximum pole
of the zeta function of learning models in the case of the
reduced rank regression model.

Let

{w = (A, B)|A is an H X M matrix, B is an N X H matrix},

be the set of parameters.

We define the norm of a matrix T=(t;) by
1Tl = /S 15

Denote the input value by x€RY with a probability
density function g(x). Assume that all eigenvalues of the
MXM matrix X = ([x;x;q(x)dx) are positive numbers.
Such a matrix is called a positive definite.

Then the output value yERY of the reduced rank
regression model is given by

y = BAx.

Consider the statistical model

1
= WCXP(—%H)’ — BAxI?),
with Gaussian noise. Let wo=(A,By) be the true parameter.
Assume that the a priori probability density function Y/(w) is
a C%-function with compact support W, satisfying
W(Ag,Bo) > 0.

We can apply Section 2, by using p(x,ylwg) = p(ylx,wg) X
g(x) and n training samples X" =(X,X5,...,.X,), X;=(x;,y;)
which are randomly selected from the true probability
distribution p(x,y|wo).

pOlx, w)
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In Main Theorem, we give the formulas for the
parameters A and m appearing Eqgs. (1) and (2).

Lemma 1. There exist constants c¢; >0 and ¢,> 0 such that
c111BA — ByAo|I* < K(w) < o,|IBA — ByAlI*. 3)
Proof. Put

{(N+M)r—r2+s(N—r)+(M—r—s)(H—r—s)
A = max 5

q(x,y) = p(ylx, (Ag, Bp))gq(x).

Then we have the Kullback information

P()’|X, (Ao, By))

K(w) = Jq(x, ylog 2Ol w)

dxdy

1
=3 J [[(BA — ByAg)x|*g(x)dx.

Let S=BA—ByAy=(s;j) and Q an orthogonal matrix
such that Q' XQ is diagonal.

Then, we have

Kow =5 | IsilPgeode =5 [
— L isdiPacode = &
) 1 2 )2

1 1
= E Z S’jISUz ijlszq(x)dx = ETI'(stt)

i:f142

1
=5 Tr(SQQ' X Q(SQ)").

2
(Z s,~jxj> q(x)dx

J

Since we assume all eigenvalues of X are positive
numbers, there exist ¢; >0 and ¢, >0 such that

cy Tl‘(SQ(SQ)I) = Tr(SS’) <Kw<c, Tr(SQ(SQ)’)
= ¢, Tr(SS").
Since Tr(SS") = ||S||?, this completes the proof. [J

Lemma 2. (Watanabe (2001c)). Let fiw), fi(w), fo(w) be
analytic functions of wER?. Let g(w), g1(w), g2(w) be C*-
functions with compact support W.

Put

@) = Jlf(W)|zg(W)dW~
w
Denote the maximum pole of {(z) by — A(f,2).
If |AlL|fal and g, >g> then we have A(fi.g1)
< A(f2.82).

Lemmas 1 and 2 yield that the zeta function can be
written as follows:

J) = JIIBA — BoolPFyw)dw.
w

Main Theorem

Let r be the rank of BoAo.

F(n) and G(n) in Egs. (1) and (2) are given by using the
following maximum pole — A of J(z) and its order m:

0<s<min{M +r,H+r}}.

Case (1) Let N+r<M+H M~+r<N+Hand H+r<M+
N.
(@) If M+H~+N++ris even, then m=1 and

 —(H+7r*—M*—N?+2(H+r)M +2(H + r)N + 2MN

A
8
®) If M+H~+N++ris odd, then m=2 and
. —(H+7r?—M*—N?>+2(H+rM+2(H+r)N +2MN +1

8

Case (2) Let MA+H<N-+r. Then m=1 and
A= (HM — Hr + Nr)/2.

Case (3) Let N+H<M-+r. Then m=1 and
A= (HN — Hr + Mr)/2.

Case (4) Let M+N<H++r. Then m=1 and A=MN/2.

For practical use, the case of M>>H and N>>H are
considered, so Case (4) does not occur.

This model has MH + NH dimensional parameter space.
Therefore, the maximum pole is —(MH + NH)/2 for regular
models with MH+NH dimensional parameter space. In
other words, it does not depend on the true distribution
parameter w, for regular models. However, non-regular
models have 4 depending on wy. So, it is difficult to construct
the model selection methods for non-regular models.

The Fisher information matrix of the model is singular
for each case since A <(MH-+ NH)/2.

In order to prove Main Theorem, we need the following
three lemmas.

Lemma 3. Let U be a neighborhood of woER". Let
T\(w),T>(w),T(w) be functions from U to Mat(N' H'),
Mat(N',M"), Mat(H',M"), respectively.

Assume that the function ||[T(w)|| is bounded.

Then, there exist positive constants «>0 and >0 such
that

a(ITy P + TP < TP + N7y + 7071

< BUIT 1> + 1T ).
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Proof. Since ||T(w)|| is bounded, there exists 8>3 such that

Ty 1P + 1Ty + Ty TP < TP+ 2017017 + 207,711

< BUIT I + TP,

Also, there exists v >3 such that
ITLI1? <2017, + T TIP + 1| = T, TI1P)

<2017, + Ty 711> + YTy | ),

and hence
T, 11> + TR <2017, + Ty 711 + 2y + DIT PP
<@y + DT, + Ty TP + 1T, 11P).

Putting «=1/(2y+ 1) completes the proof. []

Lemma 4. Let U be a neighborhood of wo€R. Also let
T(w) be a function from U to Mat(H',M").

Let Py, Qo be any regular M'XM', H X H' matrices,
respectively.

Then there exist positive constants >0, 3> 0 such that

al|TI1? < 11PoTQol1* < BIITII.
Proof. There exists >0 such that
1PoTQlI* < BIITII.
Also, there exists y>0
ITII? = 1Py PoTQo Q0 ' II* < ¥IIPTQlI*.
The proof follows by putting a=1/y. [O

Lemma 5. Put
@ = ||BA — ByAl|*.

Then there exist a function ®' and an a priori probability
density function ¥'(w') such that

@ @ =IC/ 11>+ G + 1G5 + 11B4AlI%, where Cy is
an rXr matrix, C, is an (N—r) Xr matrix, Cs is an r X
(M —r) matrix, Ay is an (H—r) X (M —r) matrix and B,
is an (N—r) X (H—r) matrix.

(b) ¥'(W) is a C”-function with compact support W',
where ¥'(0)>0 and w'=(C;,C5,C3,B4,A4).

(c) the maximum pole of [y ®Y dw is equal to that of
J"W o'y dw.

Proof. Since the rank of By Ag is r, there exist regular
matrices Py, Qg such that

o o E 0
Py ByAgQy = 0 o)

where E is the rXr identity matrix.
Change variables from B, A to B/, A’ by B'= P;'B and
A'=AQ,".

Then

P,| B'A’ E0
0 0 0 Qo

where

Ajisanr X rmatrix, Azisanr X (M — r) matrix,

Ajisan (H —r) X rmatrix, Ajisan(H —r) X (M — r) matrix,

B isanr X rmatrix, Bsisanr X (H — r) matrix,

Byisan(N — r) X rmatrix, Bsisan(N —r) X (H — r) matrix.
Let Uy, gy be a sufficiently small neighborhood of any

point (A’,B") with

o (EO\
BA =0.
00

. 1. .
Since the rank (B;,B3) A is r, we can assume Aj is
2

regular. Thus we can change the variables from By, B, to Cy,

Cz by Cl =BIA1 +B3A2—E and C2=BzA1+B4A2.
Thus,

Bl E 0\ [(C (C+E — B3A)AT'Ay + B3A,
00 G, (C—BADAT'A; +BA, )

Changing the variables from A, to A} by A}, =—A,A;!
Az + Ay gives

Bu E 0 C, CiAT'A; +AT'A; + B3A)
0 0 C, CAT'Ay + BLA, '

By changing the variables from A; to A} by
Al =AT'As + B3Al, we obtain

BA E 0\ (G CA;—BA) +A;
0 0 C, CyA} —BsAl) + ByA, )

and
G,
Py
G

By Lemmas 2 and 4, the maximum pole of jU(A,R/)
dw is equal to that of '

J Ci Ci(Aj — B3AY) + A3
Uaan 1\ Cy  Cy(As — B3A}) + B4Al

2
é:

Ci(A5 — B3A}) + Aj
o
Cy(Ay — B3A}) + ByA}

DY

2z
Y dw.
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Then Lemmas 2 and 3 yield that the maximum pole of
J Uy, P¥ dw is equal to that of

[ o)

(A’ By

2z
Y dw.

Let C3 =A%, A, = A} and

¥/(Cy, Cy, C3, A4, By) = Y(A, B).

The proof follows from the fact that the poles of the
above function are same when (A’,B’) with

o (E 0\
B'A =0
0 0

varies. [

Before the proof of Main Theorem, let us give some
notation.

Since we often change the variables by using the
blowing-up process, it is more convenient for us to use the
same symbols a;; rather than au,a,j,. .,, for the sake of
simplicity. For instance,

app = uyg,
Let o .
a; =upay, () #(1,1)

instead of

ajp = U
Let o .
a;j ullalj’ (ls.]) '_'t(l’ 1)

Proof of Main Theorem

apy o A M—r
az| vt daM—r
Let A4 = . s
ag—r,1 Ag—rM—r
by o bip,
by o byp,
B4 =
bN—r,l bN—r,H—r

Suppose that C;,C, and Cj5 are as in Lemma 5. Denote

= (c(')) C,= (c(z)) and C3 = (6(3)) We need to calculate
poles of the followmg function by using the blowing-up
process together with an inductive method.

Let )=WN+Mr—r*+jN—r+M—r—jX
(H—r—j)— 1 for j=0,...,min{H—r,M—r}.

Assume

o' =u?1...ufs<IIC1II2 HIGIP +1GIP +) bl
i=1
s 2
ZbiDi + B(s+1)A(s+1) >, (4)
i=1

where
bl,s+1 bl,H—r
by b
s+1) 2,5+1 2,H—r
BStD = ,
bN—r,s-H bN—r,H—r
As+1,5+1 As+1.M—r
as+2,x+l as+2,M—r
AGTD = and
aHfr,erl aHfr,Mfr
bli
b, = : for i=1,...H—r
ber,i

Dy(ay,) is a function, defined on the entries of the matrix,
obtained from A, by omitting the entries of A“*". The
definition of the function D;(ay;) will be given recursively
later on in Eq. (5).

Also we inductively have poles

e +1
2

(N+Mr—r*+sN—r)+M—r—s)(H—r—ys)

2

(Basis of the induction). Construct the blowing up of @’
along the submanifold {C,=C,=C3=A4=0}
&=
Lete ¢ =vell), G #,1),
C2 = VCZ, C3 = VC3, A4 = VA4.
Then we have

=v2<1+ > <c§}>)2+||C2||2+||03||2+||B4A4||2>.
(i)#(1,1)
Here, the Jacobian is »*?. Therefore, we have the pole
)+ 1
—5
since
o' dw = ¢SO dy

< [T de’ TTde? TTdes” T day T by

@#(1,1) ()] ()] @) (@)

in this coordinate.
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If we set the general case as ¢ ( ) =v, P =v, V=, we

Ji Ji
obtain the same pole.
Consider another transformation.
C =uC, G =uGy,
Letq app = uyy,
az = uya, (G,7) # (1, 1).

C3 = uy1Cs,

By the symmetry of the norm function, this setting is the
general case as a; ;=1u;.
Then we have

' =uy <I|C1II2 G + G + by

~ 2
a
(2) 2 (2
+ Bl +H(b13 )(A@)H),

where al ((112 al’M_,) and a; 2(021
denotes the transpose.
Put b, =b; +B%a,. Then

T
ag—r1) . T

d)/ = M%l <||C1||2 + ||C2||2 + ”C‘}”2 + ||bl||2

~ 2
a;
2 2
+ H(b1 —B%a, B >)<A(2)) )

= ui, <|IC1II2 HNGIP + NG + 1 112

~ ~ 2
a 2, _ a;
+H(b, O)(A(2)>+B (—a, E)(A(2)>H>

HUICHP + G + G + 1yl

+ ”blﬁl +B(2)(_alﬁl +A(2))”2)

Let A®) = —q,a, + A®, then we have Eq. (4) with s=1:

o =ui, (IIC 1P + G + 1GsI1* + by
+||b,a, + BPAP|?).

The Jacobian of this setting is uQ(o).

By the symmetry of the norm functlon, it is enough to
consider the above two cases.

Now we apply the induction method to Eq. (4).

(Inductive step). Construct the blowing up of ®” in (4)
along the submanifold {C;=C,=C;=b;=A"""=0,

1<i<s}.
0(111) ="
Letd € =vels @) # (1),
b, =vb;, 1<j<s, C,=v(, C;3=vC;,

A(S‘+1) _— A(H—l)

Substituting them into Eq. (4) gives

" =ufy... <1+ ST @ +GIP +1cIP

)=+,
2)

Zb D +B(s+1)A(s+1)
=1

+ E 1,11 +
2(0) A= DS)
o Ugg .

Here, the Jacobian is u;
Because
O dw' = "D DO gy

in this new coordinate w”, we have the poles

RO OES!
i 5

If we set the general case as c(l) =u, c(z) =u, c(3) =u,
b;; = u, we obtain the same pole by symmetry

as+l,s+l = us+1,s+l s

g = Ugyi 4100, STI<j<H—r,
Next let s+1§QSM—r(j,Q)¢(s+l,s+1),

Ci =us11511C1, G = ugyy 5416y,

G =ty 1511C3, b= 1<i<s.

Usi15+1D;s

We also obtain the same pole by setting

any (j, 9).
Substituting our new variables into Eq. (4) implies

an = Usti,s+1 for

2 2 2 2 2 2
' = UL Ul 4] +1 <||C1|| + G| + 1G]

+3 1P +
i=1

i=1

~ 2
A p
AG+2)

= Uiy U 1 (||C1||2 +IGIP + NG

1
+ (bs+1 B(s+2) )
a4

w1 +BPag, 0)

+ Z I1b11> + ib,p,- + (b
i=1 i=1

s+1
(s+2)
+ by B )< A(wz))”)

where ag = Qg y—r) and ag 4 =(A54 2,541

(as+1 S22
Ay — r.s+ 1)

Denote the first column of D; by Col;(D;). Let

D[= (COI](Dl) D; )
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Put b, =by, + B“Pa_, + S L b, Col,(D,). Then
"Ity g

S
=GP + UG +HCIP + D b1 + b 1P
i=1

+

)
ZbiD; + <b5+1 —B“"a
i=1

S ﬁ‘erl
—> " bCol,(D,) B
=1 A(S+2)
s+1

=GP NG+ G+ b1
i=1

S S ﬁs-H
le; + bx - b,»COl D,' O
; ( +1 ; 1(Dy) ) (A(s+2)>

2

2

+

A(S+2)

ﬁs+l
+ ( _B(s+2)as+] B(s+2))

s+1

=GP + G + G117+ i1
i=1

S
+ || Y by(D} — Col(D))ay 1) + by 1y

i=1

ﬁs+1
+B<”2><—ax+1,E>< )

A(S+2)

2

s+1

=GP + G + G117+ iy
i=1

S
> bi(Dj — Col;(D)a, 1) + by 18,
i=1

+

2
+ B(5+2)( A4 5.s‘+1 + A(S+2)

Now let At = —a_  a ., +A“t?. Then,

@/,/u%l '”M§+l,s+l
s+1
= lICi P + NI +NGIP + > b1

i=1

B
+ Il Zbi(Dtl' — Coli(Dya4)) +byyay
i=1
+ B(”Z)A(”Z)IIZ.
The Jacobian is u}\” u%ﬁf)“ -
Repeat this whole process by setting

D,' = Dl, - CO]](Di)ﬁs-'rl(l <i< S) and D3+1 = 5S+1.

(&)

Then, s will be replaced by s+ 1 in (4) and so on.
Therefore, we obtain poles

() +1
TR

for s=0,....min{H—r,M—r}.

(1) If (M+H—N—r)/2<0, then the maximum pole at s=
0is
_ HM — Hr + Nr

2 9
and its order m is 1.

(i) If O<KM+H—N—nr2<min{H—r,M—r} and M+
H—N—ris even then the maximum pole at s = (M +
H—N-—r)/2is

_ —(H+r)?—M*—N>+2(H+r)M +2(H +r)N +2MN
3 )

and its order m is 1.

(i) f O<KM+H—N—n2<min{H—r,M—r} and M+
H—N-r is odd, then the maximum pole at s= (M +
H—N+1—prRand M+H—-N—1—r)2is

_ —(H+r? =M*—N*+2(H +r)M +2(H +r)N +2MN + 1
8

and its order m is 2.
Gv) If M+H—N—pr2>min{H—rM—r} and H<M,
then the maximum pole at s=H—r is

HN — Hr + Mr
T
and its order m is 1.
V) If M+H—N—nrR2>min{H—rM—r} and M<H,
then the maximum pole at s=M —r is
MN
-
and its order m is 1.

So Main Theorem follows.

Remark 1. Let g(w) be a C” -function with compact support
W and g(wy)#0 for a fixed parameter woE W. Let fi(w),
J>(w) be analytic functions of w € W with f|(wg) = f2(wg) =0.
Assume that 0<af} <f, <(f; for any constants >0 and
6>0.

By the assumption together with the Hironaka’s
theorem, we have a proper analytic map u from an
analytic manifold U to a neighborhood V of wy satisfying
the followings;

M pu:U—-E— V—le(O) is an isomorphism, where
R (O)

(2) For each u€ U, there is a local analytic coordinate
(uy,...,uy) such that fl(,u(u))=u%‘y‘u§yz~~-u§s"f{ and
fz(,u(u))=uf‘“u§”---u?,‘”’fé, where sy,...,5; are non-

negative integers and f] =0, f; #0.

l
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Fig. 1. The curve of A-values in y-axis and H-values in x-axis, when M=
N=10.

The Jacobian of u is J,(uy,...,ug)=u}" - uj'J,
(uy, ...,uy), where my,...,m, are non-negative integers and
J(0,...,0) #0.

Then, [y fi(w)*g(w)dw and [y, fo(w) g(w)dw have poles

my +1 my +1

25 T

Remark 2. The blowing-up computation in the proof of
Main Theorem shows that [y, @'y dw' have always poles
—((s)+ 1)/2 for any ¢’ with ¥/(Ay,Bo)>0. Furthermore,
there is a maximum among the poles —(2(s) + 1)/2. From
Remark 1, [y, @*¢dw and [y ®'°y/dw' have poles
—(s)+ 1)/2. Note that [y, @y dw and [y, &'y dw'
have many other poles than —(2(s) + 1)/2.

5. Discussion and conclusion

In this paper, we introduce a computational method to
obtain the poles of the zeta functions for the reduced rank
regression model.

Note that if the rank r of AgBy is zero, then H, M and N
can be permuted in the formula for A in Main Theorem.

Fig. 1 shows the graphs of the maximum poles A with A-
values in y-axis and H-values in x-axis, when M=N=10
and r=0. It is clear that the curve is not linear. If the reduced
rank approximation was a regular statistical model, A would
be (M + N)H/2 and linear. The behaviors of A for regular and
no-regular models are so different.

In this paper, we assume that j(ylx)zq(x)dxz 0, if and
only if y=0, where (y/x) is the inner product of y and x. If
f(yolx)zq(x)dx=0 for some yiOERM, then g(x) is the
function defined on the hypersurface (yo|lx)=0. Then the
dimension becomes M — 1. So the assumption is natural.

Algebraic methods can be effectively used to solve the
problems in Learning theory.

The method would be useful to calculate the asymptotic
form for not only the reduced rank regression model but also
other cases. Our aim is to develop a mathematical theory in
that context.
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