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Abstract

The log canonical threshold of Vandermonde matrix type singu-
larities over the real field serves to measure the learning efficiencies in
hierarchical learning models. Imposing certain orthogonality condi-
tions for such singularities, explicit computational results for the log
canonical thresholds are given. Applying such results to a three lay-
ered neural network, we clarify its generalization error and stochastic
complexity in learning theory.
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1 Introduction

Recently, the term “algebraic statistics” arises from the study of probabilistic
models and techniques for statistical inference using methods from algebra
and geometry [24]. Our study is to consider the generalization error and
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stochastic complexity in learning theory by using the log canonical threshold
in algebraic geometry.

The log canonical threshold cZ(Y, f) is analytically defined by

cZ(Y, f) = sup{c : |f |−c is locally L2 near Z},

over C and

cZ(Y, f) = sup{c : |f |−c is locally L1 near Z},

over R for a nonzero regular function f on a smooth variety Y , where Z ⊂ Y
is a closed subscheme [17], [20]. It is known that c0(Cd, f) is the largest root
of the Bernstein-Sato polynomial b(s) ∈ C[s] of f , where b(s)f s = Pf s+1 for
a linear differential operator P [9], [10], [16]. The log canonical threshold
cZ(Y, f) also corresponds to the largest pole of

∫
near Z

|f |2zψ(w)dw over C,
(
∫

near Z
|f |zψ(w)dw over R), where ψ(w) is a C∞− function with a compact

support and ψ(w) ̸= 0 on Z.
In this paper, we consider the log canonical threshold of Vandermonde

matrix type singularities over the real field (Definition 3). We have recently
proved that such thresholds serve to measure the learning efficiencies in hi-
erarchical learning models, i.e., they correspond to the main term of the
generalization error for hierarchical learning models.

Hierarchical learning models such as the layered neural network, the re-
duced rank regression, the normal mixture model and the Boltzmann ma-
chine are known as effective learning models to analyze complicated data
influenced by many factors. The theoretical study of hierarchical learning
models has been rapidly developed in recent years, after these models were
recognized not to be analyzed using the classic theories of regular statistical
models, since they have singular Fisher metrics [14], [25], [13], [11]. These
models are called non-regular statistical models. Watanabe proved that the
largest pole of a zeta function for the hierarchical learning model gives the
main term of the generalization error of the model asymptotically [26],[27].
Clarifying the generalization errors is one of the important topics in learning
theory. We have shown that the log canonical threshold of Vandermonde
matrix type singularities include the main terms of the generalization error
for three layered neural networks, normal mixture models and mixtures of
binomial distributions [4], [6], [29], [31].

The Vandermonde matrix type singularities are degenerate with respect
to their Newton polyhedrons [12], their singularities are not isolated and they
are not simple polynomials, i.e., they have parameters.
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In general, singularities appeared in learning theory have such properties,
and therefore, obtaining the largest pole of zeta functions for learning theory
is a still difficult problem. Moreover, our study is over the real field not the
complex field. In algebraic geometry and algebraic analysis, these studies
are usually done over an algebraically closed field [17], [20]. We have many
differences between the real field and the complex field, for example, log
canonical thresholds over the complex field are less than 1, while those over
the real field are not necessarily less than 1. We cannot therefore apply
results over an algebraically closed field to our cases, directly.

In this paper, we first show certain orthogonality conditions for Vander-
monde matrix type singularities (Theorem 1). It means that the learning
model learns a true distribution independently on each element. (Section
3). Theorem 2 gives explicit computational results for the log canonical
thresholds under some conditions. Applying such results, we consider the
generalization error and the stochastic complexity of the three layered neu-
ral network (Theorem 4).

In [7], we obtained learning efficiencies for the reduced rank regression
which is the three layered neural network with linear hidden units. Rusakov
and Geiger [22] obtained them for Naive Bayesian networks. In the recent
paper [8], we have also obtained them in the case of the normal mixture
models with dimension one.

This paper consists of three sections and Appendixes. In Section 2, we
show our main results of Vandermonde matrix type singularities. In Section
3, we summarize the framework of Bayesian learning models and our result
for a three layered neural network.

2 Vandermonde matrix type singularities

In this paper, we denote constants by a∗, b∗, etc.

Define the norm of a matrix C = (cij) by ||C|| =
√∑

i,j |cij|2. Denote by

⟨C⟩ the ideal generated by {cij}. Set N+0 = N ∪ {0}, where N is the set of
all natural numbers.

Definition 1 Denote cZ(f) = cZ(Rd, f) = sup{c : |f |−c is locally L1 near Z}
over R and by θZ(f) its order i.e., the order of the largest pole of

∫
near Z

|f |zdx,
for a nonzero regular function f on Rd, where Z ⊂ Rd is a closed subscheme.
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Definition 2 Fix Q ∈ N. Define [b∗1, b
∗
2, · · · , b∗N ]Q = γi(0, · · · , 0, b∗i , · · · , b∗N)

if b∗1 = · · · = b∗i−1 = 0, b∗i ̸= 0, and γi =

{
1 if Q is odd,
|b∗i |/b∗i if Q is even.

Definition 3 Fix Q ∈ N and m ∈ N+0.

Let A =


a11 · · · a1H a∗1,H+1 . . . a∗1,H+r

a21 · · · a2H a∗2,H+1 . . . a∗2,H+r
...

...
aM1 · · · aMH a∗M,H+1 . . . a∗M,H+r

, I = (ℓ1, . . . , ℓN) ∈

N+0
N ,

BI = (
N∏

j=1

b
ℓj

1j,
N∏

j=1

b
ℓj

2j, · · · ,
N∏

j=1

b
ℓj

Hj,
N∏

j=1

b∗H+1,j
ℓj , · · · ,

N∏
j=1

b∗H+r,j
ℓj)t

and B = (BI)ℓ1+···+ℓN=Qn+m,0≤n≤H+r−1 (t denotes the transpose).
We call singularities of ||AB||2 = 0 Vandermonde matrix type singulari-

ties.
To simplify, we usually assume that

(a∗1,H+j, a
∗
2,H+j, · · · , a∗M,H+j)

t ̸= 0, (b∗H+j,1, b
∗
H+j,2, · · · , b∗H+j,N) ̸= 0

for 1 ≤ j ≤ r and

[b∗H+j,1, b
∗
H+j,2, · · · , b∗H+j,N ]Q ̸= [b∗H+j′,1, b

∗
H+j′,2, · · · , b∗H+j′,N ]Q

for j ̸= j′.

From now on, we set A and B as in Definition 3.

Remark 1 By the ascending chain condition, we have ⟨AB⟩ = ⟨AB′⟩ where
B′ = (BI)ℓ1+···+ℓN=Qn+m,0≤n≤H′ and H ′ ≥ H + r − 1.

Example 1 If N = 1, m = 0, and r = 0, we have A =


a11 · · · a1H

a21 · · · a2H
...

aM1 · · · aMH


and

B =


1 bQ11 b2Q

11 · · · b
Q(H−1)
11

1 bQ21 b2Q
21 · · · b

Q(H−1)
21

...

1 bQH1 b2Q
H1 · · · b

Q(H−1)
H1

.
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(The matrix B with Q = 1 as above is usually called a Vandermonde
matrix.)

Example 2 If N = 3, m = Q = 1 and r = H = 1, we have A =
a11 a∗12
a21 a∗22
...

...
aM1 a∗M,2

 and B =

(
b11 b211 b12 b212 b13 b213 b11b12 b11b13 b12b13
b∗21 b∗21

2 b22 b∗22
2 b23 b∗23

2 b∗21b
∗
22 b∗21b

∗
23 b∗22b

∗
23

)
.

Theorem 1 Consider a sufficiently small neighborhood Uw∗ of

w∗ = {a∗ki, b
∗
ij}1≤k≤M,1≤i≤H,1≤j≤N

and w = {aki, bij}1≤k≤M,1≤i≤H,1≤j≤N ∈ Uw∗.
Set (b∗∗01, b

∗∗
02, · · · , b∗∗0N) = (0, . . . , 0).

Let each (b∗∗11, b
∗∗
12, · · · , b∗∗1N), . . ., (b∗∗r′1, b

∗∗
r′2, · · · , b∗∗r′N) be a different real vec-

tor in
[b∗i1, b

∗
i2, · · · , b∗iN ]Q ̸= 0, for i = 1, . . . , H + r :

{(b∗∗11, · · · , b∗∗1N), . . . , (b∗∗r′1, · · · , b∗∗r′N) ; [b∗i1, · · · , b∗iN ]Q ̸= 0, i = 1, . . . , H + r}.

Then r′ ≥ r and set (b∗∗i1 , · · · , b∗∗iN) = [b∗H+i,1, · · · , b∗H+i,N ]Q, for 1 ≤ i ≤ r.
Assume that

[b∗11, · · · , b∗1N ]Q
...

[b∗H01, · · · , b∗H0N ]Q

 = 0,

[b∗H0+1,1, · · · , b∗H0+1,N ]Q
...

[b∗H0+H1,1, · · · , b∗H0+H1,N ]Q

 = (b∗∗11, · · · , b∗∗1N),

[b∗H0+H1+1,1, · · · , b∗H0+H1+1,N ]Q
...

[b∗H0+H1+H2,1, · · · , b∗H0+H1+H2,N ]Q

 = (b∗∗21, · · · , b∗∗2N),

...
[b∗H0+···+Hr′−1+1,1, · · · , b∗H0+···+Hr′−1+1,N ]Q

...
[b∗H0+···+Hr′−1+Hr′ ,1

, · · · , b∗H0+···+Hr′−1+Hr′ ,N
]Q

 = (b∗∗r′1, · · · , b∗∗r′N).

and H0 + · · · +Hr′ = H.
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Then we have

cw∗(||AB||2) =
r′∑

α=0

cw(α)∗(||A(α)B(α)||2), θw∗(||AB||2) = (
r′∑

α=0

θw(α)∗(||A(α)B(α)||2)−1)+1,

where w(α)∗ = {a(α)
ki

∗
, b

(α)
ij

∗
} = {a∗k,H0+···+Hα−1+i, b

∗∗
αj}1≤k≤M,1≤i≤Hα,1≤j≤N ,

I = (ℓ1, . . . , ℓN) ∈ N+0
N ,

A(α) =


a

(α)
11 a

(α)
12 · · · a

(α)
1Hα

a
(α)
21 a

(α)
22 · · · a

(α)
2Hα

...

a
(α)
M1 a

(α)
M2 · · · a

(α)
MHα

, B(α)
I =


∏N

j=1 b
(α)
1j

ℓj∏N
j=1 b

(α)
2j

ℓj

...∏N
j=1 b

(α)
Hαj

ℓj

,
for α = 0, r + 1 ≤ α ≤ r′,

A(α) =


a

(α)
11 a

(α)
12 · · · a

(α)
1Hα

a∗1,H+α

a
(α)
21 a

(α)
22 · · · a

(α)
2Hα

a∗2,H+α
...

a
(α)
M1 a

(α)
M2 · · · a

(α)
MHα

a∗M,H+α

, B(α)
I =



∏N
j=1 b

(α)
1j

ℓj∏N
j=1 b

(α)
2j

ℓj

...∏N
j=1 b

(α)
Hαj

ℓj∏N
j=1 b

∗∗
αj

ℓj


,

for 1 ≤ α ≤ r,

B(0) = (B
(0)
I )ℓ1+...+ℓN=Qn+m,0≤n≤H0−1 and B(α) = (B

(α)
I )ℓ1+...+ℓN=n,0≤n≤Hα−1

for 1 ≤ α ≤ r′.

(Proof)
Set

(a
(0)
i1 , . . . , a

(0)
iH0

) = (ai1, . . . , aiH0),

(a
(1)
i1 , . . . , a

(1)
iH1

) = (ai,H0+1, . . . , ai,H0+H1),
...

(a
(r′)
i1 , . . . , a

(r′)
iHr′

) = (ai,H0+···+Hr′−1+1, . . . , ai,H0+···+Hr′ ),

for 1 ≤ i ≤ M ,

and
(b

(0)
1j , . . . , b

(0)
H0j) = (b1j, . . . , bH0j),

(b
(1)
1j , . . . , b

(1)
H1j) = (bH0+1,j, . . . , bH0+H1,j),

...

(b
(r′)
1j , . . . , b

(r′)
Hr′j

) = (bH0+···+Hr′−1+1,j, . . . , bH0+···+Hr′ ,j),

for 1 ≤ j ≤ N .
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For γi(b
(α)
i1 , · · · , b

(α)
iN ) = [b

(α)
i1 , · · · , b

(α)
iN ]Q, we again set a

(α)
ki by a

(α)
ki /(γi)

m

and b
(α)
ij by b

(α)
ij γi, 1 ≤ j ≤ N and 1 ≤ k ≤M .

Main parts of its proof are appeared in Appendix. By applying Corollary
1 and Lemma 5 in Appendix, we have this theorem.

Q.E.D.
Usually, r corresponds to the number of elements of a true distribution.

This theorem shows that the Bayesian learning coefficient related with such
singularities is the sum of each for the small model with respect to each
element of a true distribution (cf. Section 3).

Theorem 2 We use the same notations as in Theorem 1. If N = 1, we
have

cw∗(||AB||2) =
MQk0(k0 + 1) + 2H0

4(m+ k0Q)

+
Mr′

2
+

r∑
α=1

Mkα(kα + 1) + 2Hα

4(1 + kα)
+

r′∑
α=r+1

Mk′α(k′α + 1) + 2(Hα − 1)

4(1 + k′α)
,

θw∗(||AB||2) = 1 + #Θ,

where
k0 = max{i ∈ Z; 2H0 ≥M(i(i− 1)Q+ 2mi)},

kα = max{i ∈ Z; 2Hα ≥M(i2 + i)}, for 1 ≤ α ≤ r,

k′α = max{i ∈ Z; 2(Hα − 1) ≥M(i2 + i)}, for r + 1 ≤ α ≤ r′,

and

Θ = {k0, kα, k
′
α ; 2H0 = M(k0(k0 − 1)Q+ 2mk0),

2Hα = M(k2
α + kα), for 1 ≤ α ≤ r,

2(Hα − 1) = M(k′2α + k′α), for r + 1 ≤ α ≤ r′}.

For the proof of Theorem 2, we use Theorem 1 and a similar method in
[6], [4], where we used recursive blowing ups and toric resolution. The proof
is very complicated since we see all blanches of recursive blowing ups at every
singularity which is not isolated.

Recently, we also have the explicit values cw∗(||AB||2) for general natural
numbers N and M but for H ≤ 2 [5].

Our future purpose is to obtain the log canonical thresholds of Vander-
monde matrix type singularities in general.
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3 Learning theorem

In this section, we overview learning theory, especially the stochastic com-
plexity and the generalization error in Bayesian estimation.

A learning system consists of data, a learning model and a learning algo-
rithm. The purpose of such a system is to estimate an unknown true density
function from data distributed by the true density function. The data in
learning theory are usually very complicated and not generated by a sim-
ple normal distribution. For example, such data are associated with image
or speech recognition, artificial intelligence, the control of a robot, genetic
analysis, data mining, time series prediction. Learning models to analyze
such data should likewise have complicated structures. Hierarchical learning
models such as the layered neural network model, the Boltzmann machine,
the reduced rank regression model and the normal mixture model are known
as effective learning models. These models are called non-regular statistical
models and cannot be analyzed using the classic theories of regular statistical
models [14], [25], [13], [11]. The theoretical study has therefore been started
to construct a mathematical foundation for non-regular statistical models.

The generalization error of a learning model is a difference between a true
density function and a predictive density function obtained using distributed
training samples. It is one of the most important topics in learning theory.
The largest pole of a zeta function for a learning model, which is called a
learning coefficient, gives the main term of the generalization error.

Let q(x) be a true probability density function and (x)n := {xi}n
i=1 be n

training independent and identical samples from q(x). Consider a learning
model which is written by a probability form p(x|w), where w is a parameter.
The purpose of the learning system is to estimate q(x) from (x)n by using
p(x|w).

Let p(w|(x)n) be the a posteriori probability density function:

p(w|(x)n) =
1

Zn

ψ(w)
n∏

i=1

p(xi|w),

where ψ(w) is an a priori probability density function on the parameter set
W and

Zn =

∫
W

ψ(w)
n∏

i=1

p(xi|w)dw.
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So the average inference p(x|(x)n) of the Bayesian density function is
given by

p(x|(x)n) =

∫
p(x|w)p(w|(x)n)dw,

which is the predictive density function.
Set

K(q||p) =

∫
q(x) log

q(x)

p(x|(x)n)
dx.

This is always a positive value and satisfies K(q||p) = 0 if and only if q(x) =
p(x|(x)n).

The generalization error G(n) is its expectation value En over n training
samples:

G(n) = En{
∫
q(x) log

q(x)

p(x|(x)n)
dx}.

Let

Kn(w) =
1

n

n∑
i=1

log
q(x)

p(xi|w)
.

The average stochastic complexity or the free energy is defined by

F (n) = −En{log

∫
exp(−nKn(w))ψ(w)dw}.

Then we have G(n) = F (n + 1) − F (n) for an arbitrary natural number n
([18], [2], [3]). F (n) is known as the Bayesian criterion in Bayesian model
selection [23], stochastic complexity in universal coding [21], [30], Akaike’s
Bayesian criterion in optimization of hyperparameters [1] and evidence in
neural network learning [19]. Therefore, F (n) is an important function for
analyzing the generalization error.

It has recently been proved that the largest pole of a zeta function
gives the generalization error of hierarchical learning models asymptotically
[26],[27]. We assume that the true density distribution q(x) is included in the
learning model, i.e., q(x) = p(x|w∗

t ) for w∗
t ∈ W , where W is the parameter

space.

Theorem 3 (Watanabe[26, 27]) Define the zeta function J(z) of a com-
plex variable z for the learning model by

J(z) =

∫
K(w)zψ(w)dw,
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where K(w) is the Kullback function:

K(w) =

∫
p(x|w∗

t ) log
p(x|w∗

t )

p(x|w)
dx.

Then, for the largest pole −λ of J(z) and its order θ, we have

F (n) = λ log n− (θ − 1) log log n+O(1), (1)

where O(1) is a bounded function of n, and if G(n) has an asymptotic ex-
pansion,

G(n) ∼=
λ

n
− θ − 1

n log n
as n→ ∞. (2)

To prove the above theorem, Watanabe used the function

v(t) =

∫
δ(t−K(w))φ(w)dw =

∂

∂t

∫
K(w)<t

φ(w)dw,

which satisfies
∫
v(t)f(t)dt =

∫
f(K(w))ψ(w)dw for any analytic function

f(t). The Laplace transform of v(t) is

Z(n) =

∫
exp(−nK(w))φ(w)dw,

and the Mellin transform of v(t) is

ζ(z) =

∫
K(w)zφ(w)dw =

∫
tzv(t)dt.

The key point of the proof is that by using poles of ζ(z) and the inverse Mellin
transform of ζ(z), he obtained the asymptotic expansion of v(t), and then
the asymptotic expansion of Z(n). The analysis of the difference between
− logZ(n) and F (n) completes the proof.

In learning theory, λ is, therefore, an essential value, which corresponds
to the log canonical threshold of K(w).

We here show the following two hierarchical learning models such that
the log canonical thresholds of Vandermonde matrix type singularities are
equal to their λ.

(a) The three layered neural network with N input units, H hidden units and
M output units which is trained for estimating the true distribution with r
hidden units:

Denote an input value by x(1) = (x
(1)
j ) ∈ RN with a probability density

function q(x) which has a compact support W̃ . Then an output value x(2) =
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(x
(2)
k ) ∈ RM of the three layered neural network is given by x

(2)
k = fk(x

(1), w)+
(noise), where w = {aki, bij; 1 ≤ k ≤M, 1 ≤ i ≤ H, 1 ≤ j ≤ N} and

fk(x
(1), w) =

H∑
i=1

aki tanh(
N∑

j=1

bijx
(1)
j ).

Consider a statistical model

p(x(2)|x(1), w) =
1

(2π)M/2
exp(−1

2
||x(2) − f(x(1), w)||2).

Assume that the true distribution

p(x(2)|x(1), w∗
t ) =

1

(2π)M/2
exp(−1

2
||x(2) − f(x(1), w∗

t )||2),

is included in the learning model, where w∗
t = {a∗ki, b

∗
ij; 1 ≤ k ≤ M,H + 1 ≤

i ≤ H + r, 1 ≤ j ≤ N} and fk(x
(1), w∗

t ) =
∑H+r

i=H+1(−a∗ki) tanh(
∑N

j=1 b
∗
ijx

(1)
j ).

Suppose that an a priori probability density function ψ(w) is a C∞− function
with a compact support W where ψ(w∗

t ) > 0. Then the model has the zeta
function

∫
W
||AB||2zdw with Q = 2 and m = 1, where A and B are defined

in Definition 3.
The Taylor expansion tanhx =

∑∞
i=1 αix

2(i−1)+1, with αi ̸= 0 at 0 to-
gether with Lemma 5 in [26] proves this fact.

Remark 2 Let σ(x) =
∑∞

i=1 αix
Q(i−1)+1 and αi ̸= 0. The maximum pole of∫

W

(

∫
W̃

(

p∑
m=1

a(w)
m σ(b(w)

m x) −
p∑

m=1

a∗mσ(b∗mx))
2q(x)dx)zψ(w)dw,

and its order are the same as in Main Theorem 1.

(b) The normal mixture model with H peaks which is trained for estimating
the true distribution with r peaks [29]:

Consider a normal mixture model

p(x|w) =
1

(2π)N/2

H∑
i=1

a1i exp(−
∑N

j=1(xj − bij)
2

2
),
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where w = {a1i, bij; 1 ≤ i ≤ H, 1 ≤ j ≤ N} and
∑H

i=1 a1i = 1. Set the true
distribution by

p(x|w∗
t ) =

1

(2π)N/2

H+r∑
i=H+1

(−a∗1i) exp(−
∑N

j=1(xj − b∗ij)
2

2
),

where w∗
t = {a∗1i, b

∗
ij;H + 1 ≤ i ≤ H + r, 1 ≤ j ≤ N} and

∑H+r
i=H+1 a

∗
1i = −1.

Suppose that an a priori probability density function ψ(w) is a C∞− function
with a compact support W where ψ(w∗

t ) > 0.
Then the model has the zeta function

∫
W
||AB||2zdw with Q = 1, M = 1

and m = 1, where A and B are defined in Definition 3.

(a) and (b) as above show that λ in Theorem 3 for three layered neural
networks and for normal mixture models are obtained by the same type
of singularities, i.e., Vandermonde matrix type singularities. The paper [31],
moreover, shows that λ for mixtures of binomial distributions is also obtained
by Vandermonde matrix type singularities. These facts seem to imply that
Vandermonde matrix type singularities are essential for learning theory.

Theorem 4 We use the same notations in (a).
For the three layered neural network with one input unit, the maximum

pole −λ and its order θ in (1) and (2) are obtained by

λ = min
w̃∈W ∗

cw̃(||AB||2)

with its order θ, where Q = 2, m = 1 and W ∗ = {w̃ ∈ Rd | f(x(1), w̃) =
f(x(1), w∗

t ) for any x(1)}.
More precisely,

• for H − r + 1 ≤


10, M = 1,
5, M = 2,
4 +M, M ≥ 3,

we have λ = (r − 1)
M + 1

2
+
M

2
+
M(k2

1 + k1) + 2(H − r + 1)

4(k1 + 1)
,

θ =

{
1, if M(k2

1 + k1) < 2(H − r + 1),
2, if M(k2

1 + k1) = 2(H − r + 1),

where k1 = max{i ∈ Z | M(i2 + i) ≤ 2(H − r + 1)}.
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• For H − r + 1 >


10, M = 1,
5, M = 2,
4 +M, M ≥ 3,

we have λ = r
M + 1

2
+
M(k2

0 + k0) +H − r

4k0 + 2
, θ =

{
1, if Mk2

0 < H − r,
2, if Mk2

0 = H − r,

where k0 = max{i ∈ Z | Mk2
0 ≤ H − r}.

Its proof is obtained by setting Q = 2 and m = 1 in Theorem 2 and the
following Lemma 1.

Lemma 1 Set

λ0(Q,H0) =
MQ(k0

2 + k0) + 2H0

4(m+ k0Q)
,

where k = max{i ∈ Z | M(Q(i2 − i) + 2mi) ≤ 2H0}, and

λ1(H1) =
M

2
+
M(k1 + k2

1) + 2H1

4(1 + k1)
=
M((k1 + 1) + (k1 + 1)2) + 2H1

4(1 + k1)
,

where k1 = max{i ∈ Z | M(k2
1 + k1) ≤ 2H1}.

We have

1. (r − 1)λ1(1) + λ1(
r∑

i=1

Hi − r + 1) ≤
r∑

τ1=1

λ1(Hi).

2. λ0(Q,H0 +
r′∑

i=r+1

Hi) ≤ λ0(Q,H0) +
r′∑

i=r+1

λ1(Hi − 1).

3. λ0(Q,H0) + λ1(H1) ≥ min{λ1(H0 +H1), λ1(1) + λ0(Q,H0 +H1 − 1)}.

4. If m ≥ 2, then

λ1(1) + λ0(Q,H0 +H1 − 1) ≤ λ1(H0 +H1).

5. If m = 0, 1 and Q = 1, then

λ1(H0 +H1) ≤ λ1(1) + λ0(Q,H0 +H1 − 1).

13



6. Let m = 1 and Q ≥ 2.

If 1 ≤ H0 +H1 ≤M , then λ1(H0 +H1) = λ1(1) + λ0(Q,H0 +H1 − 1).

There exists H̃ > M such that if M + 1 ≤ H0 +H1 ≤ H̃ then λ1(H0 +
H1) ≥ λ1(1) + λ0(Q,H0 + H1 − 1), and if H̃ + 1 ≤ H0 + H1 then
λ1(H0 +H1) < λ1(1) + λ0(Q,H0 +H1 − 1).

7. Let m = 0 and Q ≥ 2.

If 1 ≤ H0+H1 ≤M−1, then λ1(H0+H1) > λ1(1)+λ0(Q,H0+H1−1).

There exists H̃ > M such that if M ≤ H0 + H1 ≤ H̃ then λ1(H0 +
H1) ≥ λ1(1) + λ0(Q,H0 + H1 − 1), and if H̃ + 1 ≤ H0 + H1 then
λ1(H0 +H1) < λ1(1) + λ0(Q,H0 +H1 − 1).

H̃はたぶん 10, 5,M + 4のこと!

As space is limited, we omit its proof here.

Example 3 Assume that M = 1 and a true distribution is given by

p(x(2)|x(1), w∗
t ) =

1

(2π)1/2
exp(−1

2
||x(2) − 1

2
tanh(x(1)) − 1

2
tanh(2x(1))||2),

and a learning model by

p(x(2)|x(1), w) =
1

(2π)1/2
exp(−1

2
||x(2) −

H∑
i=1

ai tanh(bix
(1))||2).

If H0 + H1 + H2 = H and b∗1 = · · · = b∗H0
= 0, b∗H0+1 = · · · = b∗H0+H1

=
1, a∗H0+1 + · · · + a∗H0+H1

= 1
2
, b∗H0+H1+1 = · · · = b∗H0+H1+H2

= 2, a∗H0+H1+1 +
· · · + a∗H0+H1+H2

= 1
2
, then we have p(x(2)|x(1), w∗

t ) = p(x(2)|x(1), w∗).

The above theorem shows that for H − 2 + 1 ≤ 10, we have λ =
3

2
+

k2
1 + k1 + 2(H − 1)

4(k1 + 1)
, θ =

{
1, if k2

1 + k1 < 2(H − 1),
2, if k2

1 + k1 = 2(H − 1),
where k1 = max{i ∈ Z | i2 + i ≤ 2(H − 1)}.

For H−1 > 10, we have λ = 2+
k2

0 + k0 +H − 2

4k0 + 2
, θ =

{
1, if k2

0 < H − 2,
2, if k2

0 = H − 2,
where k0 = max{i ∈ Z | k2

0 ≤ H − 2}.

Figure 1 shows the curves of λ when M = 1 and r = 1, 2, 3, 4, 5.
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Figure 1: The curves of λ when r = 1, 2, 3, 4, 5. x-axis is H and y-axis is λ.

4 Appendix: Proof of Theorem 1

Lemma 2 Let U be a neighborhood of w∗ ∈ Rd. Let I be the ideal generated
by f1, . . . , fn which are analytic functions defined on U . If g1, . . . , gm ∈ I,
then cw∗(f 2

1 + · · · + f2
n) is greater than cw∗(g2

1 + · · · + g2
m). In particular, if

g1, . . . , gm generate the ideal I then

cw∗(f 2
1 + · · · + f 2

n) = cw∗(g2
1 + · · · + g2

m).

Lemma 3 Let B′ =

 bm1 bQ+m
1 · · · b

Q(H−1)+m
1

...
...

bmH bQ+m
H · · · b

Q(H−1)+m
H

 and b′
j =

 b
Q(j−1)+m
1

...

b
Q(j−1)+m
H

.

Consider a sufficiently small neighborhood U of {b∗i }1≤i≤H . and {bi}1≤i≤H ∈
U .

Let b∗i = γi|b∗i |.

Set b′′
ij =

{
γm

i

∏
|b∗k|=|b∗i |,1≤k≤j−1(bk/γk − bi/γi), if b∗i ̸= 0,

bmi
∏

b∗k=0,1≤k≤j−1(b
Q
k − bQi ), if b∗i = 0,

for 1 ≤ j ≤

i and b′′
j = (0, · · · , 0,b′′

jj, · · · ,b′′
Hj)

t, for 1 ≤ j ≤ H.

Then there exists a regular matrix R such that B′R =
(

b′′
1,b

′′
2, . . . ,b

′′
H

)
.

(Proof) We only need to prove that the vector space generated by b′′
1,b

′′
2, . . . ,b

′′
H

is equal to that generated by b′
1,b

′
2, . . . ,b

′
H .
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Some computation shows that the vector space generated by

 bm
1
...

bm
H

,


0
bm
2 (bQ

1 − bQ
2 )

...
bm
H(bQ

1 − bQ
H)

,


0
0

bm
3 (bQ

1 − bQ
3 )(bQ

2 − bQ
3 )

...
bm
H(bQ

1 − bQ
H)(bQ

2 − bQ
H)

, · · · ,


0
...
0

bm
1 (bQ

1 − bQ
H) · · · (bQ

H−1 − bQ
H)


is equal to that generated by b′

1,b
′
2, . . . ,b

′
H .

Therefore, we may set

b′
1 =

 bm1
...
bmH

,b′
2 =


0

bm2 (bQ1 − bQ2 )
...

bmH(bQ1 − bQH)

, · · · ,b′
H =


0
...
0

bmH(bQ1 − bQH) · · · (bQH−1 − bQH)

.
We use an induction.
From now on, denote by ⟨c1, c2, . . . , cH⟩ the vector space generated by

vectors c1, c2, . . . , cH .
It is easy to check that ⟨b′

1,b
′
2, . . . ,b

′
H⟩ = ⟨b′

1,b
′
2, . . . ,b

′
H−1,b

′′
H⟩.

Let gj,j(x), gj+1,j(x), . . . , gH,j(x) be polynomials of x, bj−1, . . . , b1 such
that gj′,j(xγj′) = gj′′,j(xγj′′) if |b∗j′ | = |b∗j′′| ̸= 0 and gj′,j(x) − gj′′,j(x

′) can

be devided by xQ − x′Q if b∗j′ = b∗j′′ = 0.
Assume that (0, · · · , 0, gj,j(bj)b

′′
jj, · · · , gH,j(bH)b′′

Hj)
t is an element of ⟨b′′

j , . . . ,b
′′
H⟩

and that
⟨b′

1, · · · ,b′
H⟩ = ⟨b′

1, · · · ,b′
j−1,b

′′
j , · · · ,b′′

H⟩.

Since

b′
j−1 =



0
...
0

bmj−1(b
Q
1 − bQj−1) · · · (b

Q
j−2 − bQj−1)

...

bmH(bQ1 − bQH) · · · (bQj−2 − bQH)


=



0
...
0

gj−1,j−1(bj−1)b
′′
j−1,j−1

...
gH,j−1(bH)b′′

H,j−1


,

where
gj−1,j−1(bj−1) ̸= 0, . . . , gH,j−1(bH) ̸= 0,
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gj′,j−1(γj′x) = gj′′,j−1(γj′′x) if |b∗j′| = |b∗j′′| ≠ 0 and gj′,j−1(x) − gj′′,j−1(x
′) can

be divided by x′Q − xQ if b∗j′ = b∗j′′ = 0, we have

b′
j−1 = b′′

j−1gj−1,j−1(bj−1) +



0
...
0

(gj,j−1(bj) − gj−1,j−1(bj−1))b
′′
j,j−1

...
(gH,j−1(bH) − gj−1,j−1(bj−1))b

′′
H,j−1



= b′′
j−1gj−1,j−1(bj−1) +



0
...
0

gj,j(bj)b
′′
j,j

...
gH,j(bH)b′′

H,j


,

where

{
gk,j(bk) = gk,j−1(bk) − gj−1,j−1(bj−1), if |b∗k| ̸= |b∗j−1|,
gk,j(bk) = (gk,j−1(bk) − gj−1,j−1(bj−1))/(bj−1/γj−1 − bk/γk), if |b∗k| = |b∗j−1| ̸= 0,

gk,j(bk) = (gk,j−1(bk) − gj−1,j−1(bj−1))/(bQ
j−1 − bQ

k ) if b∗k = b∗j−1 = 0.

By the inductive assumption, (0, · · · , 0, gj,j(bj)b
′′
j,j, · · · , gH,j(bH)b′′

H,j)
t is

an element of the vector space generated by b′′
j , · · · ,b′′

H .
Therefore,

⟨b′
1, · · · ,b′

H⟩ = ⟨b′
1, · · · ,b′

j−1,b
′′
j , · · · ,b′′

H⟩ = ⟨b′
1, · · · ,b′

j−2,b
′′
j−1,b

′′
j , · · · ,b′′

H⟩.

Q.E.D.

Lemma 4 Let B′ =

 bm1 bQ+m
1 · · · b

Q(H−1)+m
1

...
...

bmH bQ+m
H · · · b

Q(H−1)+m
H

 and b′
j =

 b
Q(j−1)+m
1

...

b
Q(j−1)+m
H

.

Consider a sufficiently small neighborhood U of {b∗i }1≤i≤H and {bi}1≤i≤H ∈
U .

Let b∗i = γi|b∗i |.
Let each |b∗∗1 |, . . . , |b∗∗r | be a different real number in {|b∗i | ; |b∗i | ̸= 0}:

{|b∗∗1 |, . . . , |b∗∗r | ; |b∗∗i | ̸= |b∗∗j |, i ̸= j} = {|b∗i | ; |b∗i | ̸= 0}.
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Also set b∗∗0 = 0.
Assume that b∗1 = · · · = b∗H0

= b∗∗0 , |b∗H0+1| = · · · = |b∗H0+H1
| = |b∗∗1 |, . . .,

|b∗H0+···+Hr−1+1| = · · · = |b∗H0+···+Hr
| = |b∗∗r |.

Set

(b
(0)
1 , . . . , b

(0)
H0

) = (b1, . . . , bH0),

(b
(1)
1 , . . . , b

(1)
H1

) = (bH0+1, . . . , bH0+H1),

...

(b
(r)
1 , . . . , b

(r)
Hr

) = (bH0+···+Hr−1+1, . . . , bH0+···+Hr).

Let b
(α)
i

∗
= γ

(α)
i |b(α)

i

∗
|.

Then there exists a regular matrix R such that B′R =


B(0) 0 0 · · · 0

0 B(1) 0 · · · 0
...

. . .
0 0 0 · · · B(r)

,

where B(0) =

 b
(0)
1

m
b
(0)
1

Q+m
· · · b

(0)
1

Q(H0−1)+m

...
...

...

b
(0)
H0

m
b
(0)
H0

Q+m
· · · b

(0)
H0

Q(H0−1)+m

 and

B(α) =

 γ
(α)
1

m
γ

(α)
1

m
b
(α)
1 /γ

(α)
1 γ

(α)
1

m
(b

(α)
1 /γ

(α)
1 )2 · · · γ

(α)
1

m
(b

(α)
1 /γ

(α)
1 )Hα−1

...
...

...

γ
(α)
Hα

m
γ

(α)
Hα

m
b
(α)
Hα
/γ

(α)
Hα

γ
(α)
Hα

m
(b

(α)
Hα
/γ

(α)
Hα

)2 · · · γ
(α)
Hα

m
(b

(α)
Hα
/γ

(α)
Hα

)Hα−1


for 1 ≤ α ≤ r.

(Proof)

Set b′′(0)
1 =


b
(0)
1

m

b
(0)
2

m

...

b
(0)
H0

m

 and b′′(0)
j =



0
...
0

b
(0)
j

m ∏
1≤k≤j−1(b

(0)
k

Q
− b

(0)
j

Q
)

...

b
(0)
H0

m ∏
1≤k≤j−1(b

(0)
k

Q
− b

(0)
H0

Q
)


for j ≥ 2.
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Also set , b′′(α)
j =



0
...
0

γ
(α)
j

m ∏
1≤k≤j−1(b

(α)
k /γ

(α)
k − b

(α)
j /γ

(α)
j )

...

γ
(α)
Hα

m ∏
1≤k≤j−1(b

(α)
k /γ

(α)
k − b

(α)
H /γ

(α)
H )


for 1 ≤ α ≤

r, 2 ≤ j ≤ i.
Then, by Lemma 3, there exists a regular matrix R such that

B′R =


b′′(0)

1 b′′(0)
2 · · · b′′(0)

H0
0 · · · 0

b′′(1)
1 b′′(1)

1 · · · b′′(1)
1 b′′(1)

1 b′′(1)
2 · · · b′′(1)

H1
0 · · · 0

...
...

b′′(r)
1 b′′(r)

1 · · · b′′(r)
1 b′′(r)

1 b′′(r)
1 · · · b′′(r)

1 · · · b′′(r)
1 · · · b′′(r)

Hr

.
Therefore, we have

B′RR′ =


b′′(0)

1 b′′(0)
2 · · · b′′(0)

H0
0 · · · 0

0 0 · · · 0 b′′(1)
1 b′′(1)

2 · · · b′′(1)
H1

0 · · · 0
...

...
0 0 · · · 0 0 0 · · · 0 · · · b′′(r)

1 · · · b′′(r)
Hr

,
for some regular matrix R′.

By applying Lemma 3 to B(α), we have the proof.
Q.E.D.

Lemma 5 Let BI =


∏N

j=1 b
ℓj

1j∏N
j=1 b

ℓj

2j
...∏N

j=1 b
ℓj

Hj


and B = (BI)ℓ1+...+ℓN=Q(n−1)+m,n∈N.

Consider a sufficiently small neighborhood U ′ of {b∗ij}1≤i≤H,1≤j≤N and
{bij}1≤i≤H,1≤j≤N ∈ U ′.

Let each (b∗∗11, b
∗∗
12, · · · , b∗∗1N), . . ., (b∗∗r1, b

∗∗
r2, · · · , b∗∗rN) be a different real vector

in
[b∗i1, b

∗
i2, · · · , b∗iN ]Q ̸= 0, i = 1, . . . , H + r :

{(b∗∗11, · · · , b∗∗1N), . . . , (b∗∗r1, · · · , b∗∗rN)} = {[b∗i1, · · · , b∗iN ]Q ̸= 0 ; i = 1, . . . , H}.
Set (b∗∗01, b

∗∗
02, · · · , b∗∗0N) = (0, . . . , 0).

19



Assume that
[b∗11, · · · , b∗1N ]Q

...
[b∗H01, · · · , b∗H0N ]Q

 = 0,

[b∗H0+1,1, · · · , b∗H0+1,N ]Q
...

[b∗H0+H1,1, · · · , b∗H0+H1,N ]Q

 = (b∗∗11, · · · , b∗∗1N),

[b∗H0+H1+1,1, · · · , b∗H0+H1+1,N ]Q
...

[b∗H0+H1+H2,1, · · · , b∗H0+H1+H2,N ]Q

 = (b∗∗21, · · · , b∗∗2N),

...
[b∗H0+···+Hr−1+1,1, · · · , b∗H0+···+Hr′−1+1,N ]Q

...
[b∗H0+···+Hr−1+Hr,1, · · · , b∗H0+···+Hr−1+Hr,N ]Q

 = (b∗∗r1, · · · , b∗∗rN).

and H0 + · · · +Hr = H.
Set

(b
(0)
1j , . . . , b

(0)
H0j) = (b1j, . . . , bH0j),

(b
(1)
1j , . . . , b

(1)
H1j) = (bH0+1,j, . . . , bH0+H1,j),

...

(b
(r)
1j , . . . , b

(r)
Hrj) = (bH0+···+Hr−1+1,j, . . . , bH0+···+Hr,j),

for 1 ≤ j ≤ N .

Let I = (ℓ1, . . . , ℓN) ∈ N+0
N , B

(α)
I =


γ

(α)
1

m−|I| ∏N
j=1 b

(α)
1j

ℓj

γ
(α)
2

m−|I| ∏N
j=1 b

(α)
2j

ℓj

...

γ
(α)
Hα

m−|I| ∏N
j=1 b

(α)
Hαj

ℓj


and B(0) = (B

(0)
I )ℓ1+...+ℓN=m+Q(n−1),n∈N, B

(α) = (B
(α)
I )ℓ1+...+ℓN=n,n∈N+0 for

1 ≤ α ≤ r, where

γ
(α)
i (b

(α)
i1

∗
, · · · , b(α)

iN

∗
) = [b

(α)
i1

∗
, · · · , b(α)

iN

∗
]Q.
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Then there exists a regular matrix R such that

BR =


B(0) 0 0 · · · 0
0 B(1) 0 · · · 0

...
. . .

0 0 0 · · · B(r)

.
(Proof)

The key point of the proof is to use


∏N

j=1 b1j
ℓj∏N

j=1 b2j
ℓj

...∏N
j=1 bHj

ℓj



=


b11

ℓ′1
∏N

j=2 b1j
ℓj 0 · · · 0

0 b21
ℓ′1

∏N
j=2 b2j

ℓj · · · 0
...

. . . 0

0 0 · · · bH1
ℓ′1

∏N
j=2 bHj

ℓj




b11
ℓ1−ℓ′1

b21
ℓ1−ℓ′1

...

bH1
ℓ1−ℓ′1

,
and Lemma 4.

Q.E.D.

5 Appendix: Toric variety

Here we introduce toric varieties [11, 28]. Most of the Kullback functions are
degenerate (over R) with respect to their Newton polyhedrons. So we cannot
directly obtain desingularization using toric varieties. We can however, use
the idea partially for obtaining the maximum pole.

Set R+ = {r ∈ R | r ≥ 0}.

Definition 4 (Convex rational polyhedral cone) A convex polyhedral cone
σ is a cone generated by a finite number of vectors aj (j = 1, . . . , i) in Rd:
σ = R+a1 + · · · + R+ai = {r1a1 + · · · + riai ∈ Rd | r1 ≥ 0, · · · , ri ≥ 0}.

A strongly convex rational polyhedral cone σ is a cone which is generated
by vectors aj (i = 1, . . . , i) in Zd (“rational”), and contains no line through
the origin (“strong”).

Definition 5 (Dual of a set) The dual σ∨ of any set σ is defined by σ∨ =
{u ∈ Rd | ⟨u,v⟩ ≥ 0 for all v ∈ σ}.
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If σ is a convex polyhedral cone, then σ∨ is also a convex polyhedral cone
and σ∨ ∩ Zd is a finitely generated semigroup [12].

Definition 6 (Face of a cone) A face σu of a convex polyhedral cone σ is
σu = σ ∩ {u}⊥ = {v ∈ σ | ⟨u,v⟩ = 0} for some u ∈ σ∨.

Definition 7 (Fan) A fan ∆ is a collection of strongly convex rational poly-
hedral cones, satisfying the following conditions: every face of a cone in ∆
is also a cone in ∆, and the intersection of two cones in ∆ is a face of each.

Suppose that a1, . . . , ai ∈ Zd of a cone σ = R+a1+ · · ·+R+ai, are the first
points in Zd along the edges of σ. Then σ is called non-singular if a1, . . . , ai

is a part of a basis of Zd.
Also a fan ∆ is called non-singular if every cone in ∆ is non-singular.

Definition 8 (Toric variety) For a fan ∆ and a cone σ ∈ ∆, consider a
group ring R(σ) =

⊕
u∈σ∨∩Zd Rxu = {

∑
u∈σ∨∩Zd cux

u finite sum | cu ∈ R},
where xu is a basis, as u varies over u ∈ σ∨ with multiplication xuxu′

=
xu+u′

. Let

Uσ = Hom(R(σ),R)

= {P : R(σ) → R | ring homomorphism with P (1) = 1}.

The toric variety X(∆) is defined by taking the disjoint union of Uσ, σ ∈ ∆,
and gluing Uσ to Uτ by the identification at Uσ∩τ . For σ, τ ∈ ∆, Uσ∩τ is
identified as a principal open subvariety of Uσ and Uτ .

A fan ∆ is non-singular, then X(∆) is a non-singular manifold [12].

Definition 9 (Refinement of a fan) A fan ∆′ is called a refinement of
a fan ∆, if there exists σ ∈ ∆ such that σ′ ⊂ σ for any σ′ ∈ ∆′, and if
∪σ∈∆σ = ∪σ′∈∆′σ′.

Definition 10 (Rational convex polytope) A convex polytope is defined
as Γ = ∩m

i=1{u ∈ Rd | ⟨u,vi⟩ ≥ ρi}, for some vi ∈ Rd and ρi ∈ R, which is
the convex hull of a finite set of points.

If vi ∈ Zd and ρi ∈ Z then the convex polytope is called rational.
A face Γ(v) of Γ for v ∈ Zd, is the intersection with a supporting affine

hyperplane: Γ(v) = {u ∈ Γ | ⟨u,v⟩ = minu′∈Γ⟨u′,v⟩}.
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Theorem 5 (Rational convex polytope and fan [12]) Let Γ be a ratio-
nal convex polytope. Define a cone σF by σF = {v ∈ Rd | Γ(v) ⊃ F}, for a
face F of Γ. Then ∆ = {σF | F is a face of Γ} is a fan.

Theorem 6 (Resolution of singularities of toric varieties [12]) For any
fan ∆, there is a refinement ∆′ of ∆ so that ∆′ is non-singular.

Then the morphism map from X(∆′) to X(∆) induced by the natural map
Uσ′ → Uσ for σ′ ⊂ σ, is a resolution of singularities.

For i = 1, . . . , d, set ei = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Zd, whose ith element
is 1, and V = {e1, . . . , ed}. ( T denotes the transpose).

Let

L = (l1, · · · , ld) =


l11 l12 · · · l1d

l21 l22 · · · l2d
...

... · · · ...
ld1 ld2 · · · ldd

 .

Define Ly = (yl11
1 yl12

2 · · · yl1d
d , yl21

1 yl22
2 · · · yl2d

d , · · · , yld1
1 yld2

2 · · · yldd
d ), for y =

(y1, · · · , yd).
Fix

∆̃ = {σ | σ =
m∑

i=1

R+vi,vi ∈ V, 1 ≤ i ≤ m ≤ d} ∪ {0}, (3)

in this paper. ∪σ∈∆̃σ is the first quadrant.

Then the toric variety X(∆̃) is identified as Rd by the map

U∑d
i=1 Rdei

→̃Rd; P 7→ (y1, . . . , yd) := (P (xe1), . . . , P (xed)).

Let ∆ be a non-singular fan and a refinement of ∆̃ in (3).
The toric variety X(∆) is constructed as follows.
For a d-dimensional σ =

∑d
i=1 R+ai ∈ ∆, where the set of a1, . . . , ad is a

basis of Zd, we have Uσ
∼= Rd; Uσ ∋ P 7→ (y1, . . . , yd) := (P (xa1), . . . , P (xad)) ∈

Rd.
For d-dimensional σ =

∑d
i=1 R+ai ∈ ∆ and τ =

∑d
i=1 R+bi ∈ ∆, assume

asi
,bti ̸∈ σ ∩ τ, i = 1, · · · ,m0.
Take the coordinate systems of Uσ and Uτ by yσ and yτ , respectively.
The identification on Uσ∩τ is

yσ ∼ yτ ⇐⇒ A−1
τ Aσyσ = yτ , yσ

si
̸= 0, yτ

ti
̸= 0, i = 1, · · · ,m0,
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where Aσ = (a1, · · · , ad) and Aτ = (b1, · · · ,bd).
Then X(∆) is ⨿dim σ=dUσ/ ∼.
The map π from X(∆) to X(∆̃) ∼= Rd is

πσ : yσ = (y1, · · · , yd) ∈ Uσ 7→ Aσyσ ∈ Rd.

Lemma 6 Let L = (l1, . . . , ld) be any regular d× d matrix, where d dimen-
sional vectors li are in Zd

+.

Set σL =
∑d

i=1 R+li.
Then there is a refinement fan ∆ of ∆̃ in (3) such that σL ∈ ∆.

Proof Set e = (1, . . . , 1)T and ρi = ⟨e, li⟩ for i = 1, . . . , d. Let Γ =
∩d

i=1{u ∈ Rd | ⟨u, li⟩ ≥ ρi} ∩d
i=1 {u ∈ Rd | ⟨u, ei⟩ ≥ 0}. Then by Theorem 5,

∆ = {σF | F is a face of Γ} is a fan where σF = {v ∈ Rd | Γ(v) ⊃ F}. Let
F = Γ(l1 + · · ·+ ld) = {u ∈ Γ | ⟨u, l1 + · · ·+ ld⟩ = minu′∈Γ⟨u′, l1 + · · ·+ ld⟩} =
∩d

i=1{u ∈ Γ | ⟨u, li⟩ = ρi}. Since L is regular, F = {e}. We will show that
σL = σF ∈ ∆. The fact e ∈ Γ(li) yields σL ⊂ σF . Suppose v ∈ σF \ σL

and v = r1l1 + · · · + rdld for ri ∈ R. Then some ri are minus. Assume
that ri1 < 0. Let u1 be a vector satisfying ⟨u1, li⟩ = 0 for i ̸= i1 and
⟨u1, li1⟩ = 1. For a large number I, we have e + u1/I ∈ Γ and ⟨e,v⟩ =∑d

i=1 riρi > ⟨e + u1/I,v⟩ =
∑d

i=1 riρi + ri1/I. This is a contradiction to
v ∈ σF , i.e., e ∈ Γ(v). Therefore σF = σL. Finally we show that ∆ is a
refinement of ∆̃. Let F be any face of Γ. If σF ̸⊂

∑d
i=1 R+ei, then there is

a vector v = (v1, . . . , vd)
T ∈ σF with some vi0 < 0. For any large number

I, e + Iei0 ∈ Γ and ⟨e + Iei0 ,v⟩ → −∞ as I → ∞. This is a contradiction
to ⟨u,v⟩ = minu′∈Γ⟨u′,v⟩ for any u ∈ F . Therefore σF ⊂

∑d
i=1 R+ei. Since

minu′∈Γ⟨u′, ei⟩ ≥ 0, we have Γ(ei) = {u ∈ Γ | ⟨u, ei⟩ = minu′∈Γ⟨u′, ei⟩} ̸= ϕ.
Therefore σΓ(ei) ⊃ R+ei. That is, ∪FσF =

∑d
i=1 R+ei. Q.E.D.

If a regular function f(x) ̸= 0, x ∈ Rd is non-degenerate with respect to
its Newton polyhedron Γ+ and if c = min{c′ ≥ 0 : c′e ∈ Γ+} > 1 then we
have c0(f) = 1/c and θ0(f) = min{d, θ′}, where e = (1, . . . , 1)t and θ′ is the
number of faces T ∋ ce with dimension d− 1 of Γ+ [12].

Remark 3 Let

f1 = us11
1 us12

2 · · ·us1d
d , f2 = us21

1 us22
2 · · ·us2d

d , · · · , fp = u
sp1

1 u
sp2

2 · · ·uspd

d ,

g = ut1
1 u

t2
2 · · ·utd

d du and Γ+ be the Newton diagram of f 2
1 + · · · + f 2

p .
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Let c = min{c′ ≥ 0 : c′(t + e) ∈ Γ+} and θ = min{d, θ′}, where e =
(1, . . . , 1)t, t = (t1, . . . , td)

t and θ′ is the number of faces T ∋ c(t + e) with
dimension d− 1 of Γ+.

Then, the largest pole of
∫

near 0
(f 2

1 + · · · + f2
p )zg is 1/c and its order is

θ. In this case, the condition c > 1 is not necessary.

Corollary 1 Let fα(x
(α)
1 , . . . , x

(α)
dα

) ≥ 0 be a regular function and cw∗
α
(fα) =

cα, θw∗
α
(fα) = θα, for α = 1, . . . , r.

Then for f(x
(1)
1 , . . . , x

(1)
d1
, . . . , x

(r)
1 , . . . , x

(r)
dr

) =
∑r

α=1 fα and w∗ = (w∗
1, . . . , w

∗
r),

we have cw∗(f) =
∑r

α=1 cα, θw∗(f) =
∑r

α=1(θα − 1) + 1.

(Proof)
By blowing ups at w∗

α, we may set

f z
αdx(α) = (u

(α)
1

2s
(α)
1
u

(α)
2

2s
(α)
2 · · ·u(α)

dα

2s
(α)
dα )zu

(α)
1

t
(α)
1
u

(α)
2

t
(α)
2 · · ·u(α)

dα

t
(α)
dα du(α)

on one of local analytic coordinate systems and

cα =
t
(α)
1 + 1

2s
(α)
1

= · · · =
t
(α)
θα

+ 1

2s
(α)
θα

<
t
(α)
i + 1

2s
(α)
i

, for i ≥ θα + 1.

Let d =
∑r

α=1 dα and

L = (l1, · · · , ld) =



l
(1)
11 l

(1)
12 · · · l

(1)
1d

...
... · · · ...

l
(1)
d11 l

(1)
d12 · · · l

(1)
d1d

...
... · · · ...

l
(r)
11 l

(r)
12 · · · l

(r)
1d

...
... · · · ...

l
(r)
dr1 l

(r)
dr2 · · · l

(r)
drd


, l

(α)
ij ∈ N.

Set the mapping by

u =Lu′ = (u
′l(1)11
1 u

′l(1)12
2 · · ·u′l

(1)
1d

d , u
′l(1)21
1 u

′l(1)22
2 · · ·u′l

(1)
2d

d , · · · , u′l
(r)
dr1

1 u
′l(r)

dr2

2 · · ·u′l
(r)
drd

d ),

for u′ = (u′1, · · · , u′d).
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Then we have

f z

r∏
α=1

dx(α) = (
r∑

α=1

u
(α)
1

2s
(α)
1
u

(α)
2

2s
(α)
2 · · · u(α)

dα

2s
(α)
dα )z

r∏
α=1

u
(α)
1

t
(α)
1
u

(α)
2

t
(α)
2 · · ·u(α)

dα

t
(α)
dα du(α)

= (
r∑

α=1

u
′2
∑dα

i=1 s
(α)
i l

(α)
i1

1 · · · u′2
∑dα

i=1 s
(α)
i l

(α)
id

d )zu
′
∑r

α=1

∑dα
i=1(t

(α)
i +1)l

(α)
i1 −1

1

· · ·u′
∑r

α=1

∑dα
i=1(t

(α)
i +1)l

(α)
id −1

d du′,

on a local coordinate system u′.
If L is related with a face σ(L) with dimension d of a refinement of the

fan defined by the Newton diagram of
∑r

α=1 u
(α)
1

2s
(α)
1
u

(α)
2

2s
(α)
2 · · ·u(α)

dα

2s
(α)
dα , then

there exists α0 such that
∑dα0

i=1 s
(α0)
i l

(α0)
ij ≤

∑dα

i=1 s
(α)
i l

(α)
ij , for α = 1, . . . , r and

j = 1, . . . , d. Therefore, we have poles

λj :=

∑r
α=1

∑dα

i=1(t
(α)
i + 1)l

(α)
ij

2
∑dα0

i=1 s
(α0)
i l

(α0)
ij

, j = 1, . . . , d,

on a local coordinate system u′.
We have

λj ≥
r∑

α=1

∑dα

i=1(t
(α)
i + 1)l

(α)
ij

2
∑dα

i=1 s
(α)
i l

(α)
ij

≥
r∑

α=1

cα,

and λj =
∑r

α=1 cα, if and only if

(a) l
(α)
ij = 0, i ≥ θα + 1, 1 ≤ α ≤ r, (b)

d1∑
i=1

s
(1)
i l

(1)
ij = · · · =

dr∑
i=1

s
(r)
i l

(r)
ij .

We can choose
∑r

α=1 θα − (r− 1) independent vectors lj satisfing (a) and
(b) by using Lemma 6, and this fact completes the proof.

Q.E.D.
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