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Abstract. In this paper, we obtain the main term of the average
stochastic complexity for certain complete bipartite graph-type spin
models in Bayesian estimation. We study the Kullback function of the
spin model by using a new method of eigenvalue analysis first and use a
recursive blowing up process for obtaining the maximum pole of the zeta
function which is defined by using the Kullback function. The papers
[1,2] showed that the maximum pole of the zeta function gives the main
term of the average stochastic complexity of the hierarchical learning
model.

1 Introduction

The spin model in statistical physics is also called the Boltzmann machine. In
mathematics, the spin model can be regarded as the Bayesian network or the
graphical model. So, the model is widely used in many fields. However, its many
theoretical problems have been unsolved so far. Clarifying its stochastic complex-
ity is one of those problems in the artificial intelligence. Stochastic complexities
are used in model selection methods well. Therefore, it is an important problem
to know the behavior of stochastic complexities. The fact that the spin model
is a non-regular statistical model makes the problem difficult. We cannot ana-
lyze it by using classic theories of regular statistical models, since their Fisher
matrix functions are singular. This is the reason why we may not apply model
selection methods such as AIC[3], TIC[4], HQ[5], NIC[6], BIC[7], MDL[8] to the
non-regular statistical model.

Recently, the papers [1,2] showed that the maximum pole of the zeta function
of hierarchical learning models gives the main term of their average stochastic
complexity. The results are for all non-regular statistical models which include
not only the spin model but also the layered neural network, the reduced rank
regression and the normal mixture model. It is known that the desingularization
of an arbitrary polynomial can be obtained by using a blowing up process (Hi-
ronaka’s Theorem [9]). Therefore, the maximum pole is obtained by a blowing
up process of its Kullback function.

However, in spite of such results, it is still difficult to obtain stochastic com-
plexities by the following two main reasons. (1) The desingularization of any

V. Torra, Y. Narukawa, and Y. Yoshida (Eds.): MDAI 2007, LNAI 4617, pp. 443–454, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



444 M. Aoyagi and S. Watanabe

polynomial in general, although it is known as a finite process, is very difficult.
Furthermore, most of the Kullback functions of non-regular statistical models
are degenerate (over R) with respect to their Newton polyhedrons, singularities
of the Kullback functions are not isolated, and the Kullback functions are not
simple polynomials, i.e., they have parameters. Therefore, to obtain the desin-
gularization of the Kullback functions is a new problem even in mathematics,
since these singularities are very complicated and so most of them have not been
investigated so far. (2) Since the main purpose is for obtaining the maximum
pole, getting the desingularization is not enough for us. We need some techniques
for comparing poles. However, no theorems for comparing poles have developed
as far as we know.

Therefore, the exact main terms of the average stochastic complexities of
spin models were unknown, while upper bounds were reported in several pa-
pers [10,11]. In this paper, we clarify explicitly the main terms of the stochas-
tic complexities of certain complete bipartite graph-type spin models, by us-
ing a new method of eigenvalue analysis and a recursive blowing up process
(Theorem 4).

We already have obtained the exact main terms of the average stochastic
complexities for the three layered neural network in [12] and [13], and the reduced
rank regression in [14].

There are usually direct and inverse problems to be considered. The direct
problem is to solve the stochastic complexity with a known true density function.
The inverse problem is to find proper learning models and learning algorithms
under the condition of an unknown true density function. The inverse problem is
important for practical usage, but in order to solve the inverse problem, first the
direct problem has to be solved. So it is necessary and crucial to construct fun-
damental mathematical theories for solving the direct problem. Our standpoint
comes from that direct problem.

This paper consists of five sections. In Section 2, we summary Bayesian learn-
ing models [1,2]. Section 3 contains Hironaka’s Theorem [9]. In Section 4, our
main results are stated. In Section 5, we conclude our paper.

2 Bayesian Learning Models

Let xn := {xi}n
i=1 be n training samples randomly selected from a true prob-

ability density function q(x). Consider a learning model p(x|w), where w is a
parameter. We assume that the true probability density function q(x) is defined
by q(x) = p(x|w∗), where w∗ is constant.

Let Kn(w) =
1
n

n∑

i=1

log
p(xn|w∗)
p(xn|w)

.

The average stochastic complexity or the free energy is defined by

F (n) = −En{log
∫

exp(−nKn(w))ψ(w)dw}.
Let p(w|xn) be the a posteriori probability density function:
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p(w|xn) =
1
Zn

ψ(w)
n∏

i=1

p(xi|w), where ψ(w) is an a priori probability density

function on the parameter set W and Zn =
∫

W
ψ(w)

∏n
i=1 p(xi|w)dw.

So the average inference p(x|xn) of the Bayesian density function is given by
p(x|xn) =

∫
p(x|w)p(w|xn)dw.

Set K(q||p) =
∑

x

q(x) log
q(x)

p(x|xn)
. This function represents a measure func-

tion between the true density function q(x) and the predictive density function
p(x|xn). It always takes a positive value and satisfies K(q||p) = 0 if and only if
q(x) = p(x|xn).

The generalization error G(n) is its expectation value over training samples:

G(n) = En{
∑

x

p(x|w∗) log
p(x|w∗)
p(x|xn)

},
which satisfies G(n) = F (n+ 1) − F (n) if it has an asymptotic expansion.

Define the zeta function J(z) of a complex variable z for the learning model

by J(z) =
∫
K(w)zψ(w)dw, where K(w) is the Kullback function: K(w) =

∑

x

p(x|w∗) log
p(x|w∗)
p(x|w)

. Then, for the maximum pole −λ of J(z) and its order

θ, we have
F (n) = λ logn− (θ − 1) log log n+O(1), (1)

where O(1) is a bounded function of n, and

G(n) ∼= λ/n− (θ − 1)/(n logn) as n→ ∞. (2)

Therefore, our aim is to obtain λ and θ in this paper.
We state Lemmas 2 and 3 in [14] below which are frequently used in this

paper. Define the norm of a matrix C = (cij) by ||C|| =
√∑

i,j |cij |2.

Lemma 1 ([14]). Let U be a neighborhood of w0 ∈ R
d, C(w) be an analytic

H ×H ′ matrix function from U , ψ(w) be a C∞ function from U with compact
support, and P , Q be any regular H×H, H ′×H ′ matrices, respectively. Then the
maximum pole of

∫
U ||C(w)||2zψ(w)dw is the same of

∫
U ||PC(w)Q||2zψ(w)dw.

3 Resolution of Singularities

In this section, we introduce Hironaka’s Theorem [9] on a resolution of singular-
ities and construction of blowing up. Blowing up is a main tool in a resolution
of singularities of an algebraic variety.

Theorem 1 (Hironaka [9])
Let f be a real analytic function in a neighborhood of w = (w1, · · · , wd) ∈ R

d

with f(w) = 0. There exists an open set V � w, a real analytic manifold U and
a proper analytic map μ from U to V such that
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(1) μ : U − E → V − f−1(0) is an isomorphism, where E = μ−1(f−1(0)),
(2) for each u ∈ U , there is a local analytic coordinate system (u1, · · · , un) such
that f(μ(u)) = ±us1

1 u
s2
2 · · ·usn

n , where s1, · · · , sn are non-negative integers.

Next we explain about blowing up along a manifold used in this paper [15].
Define a manifold M by gluing k open sets Ui

∼= R
d, i = 1, 2, · · · , k(d ≥ k) as

follows. Denote a coordinate system of Ui by (ξ1i, · · · , ξdi).
Define an equivalence relation (ξ1i, ξ2i, · · · , ξdi) ∼ (ξ1j , ξ2j , · · · , ξdj) at ξji �= 0

and ξij �= 0, by ξij = 1/ξji, ξjj = ξiiξji, ξhj = ξhi/ξji(1 ≤ h ≤ k, h �= i, j), ξ�j =
ξ�i(k + 1 ≤ � ≤ d), and set M =

∐k
i=1 Ui/ ∼. Also define π : M → R

d by
Ui � (ξ1i, · · · , ξni); 
→ (ξiiξ1i, · · · , ξiiξi−1i, ξii, ξiiξi+1i, · · · , ξiiξki, ξk+1i, · · · , ξdi).

This map is well-defined and called blowing up along
X = {(w1, · · · , wk, wk+1, · · · , wd) ∈ R

d | w1 = · · · = wk = 0}.
The blowing map satisfies (1) π : M → R

d is proper and (2) π : M −
π−1(X) → R

d −X is isomorphic.

Fig. 1. Hironaka Theorem Fig. 2. A complete bipartite graph-
type spin model

4 Spin Models

For simplicity, we use the notation da instead of
∏H

i=1

∏H′

j=1 daij for a = (aij).
Let 2 ≤ M ∈ N and N ∈ N. Consider a complete bipartite graph-type spin

model

p(x, y|a) =
exp(

∑M
i=1

∑N
j=1 aijxiyj)

Z(a)
, Z(a) =

∑

xi=±1,yi=±1,

exp(
M∑

i=1

N∑

j=1

aijxiyj),

with x = (xj) ∈ {1,−1}M and y = (yj) ∈ {1,−1}N .
We have

p(x|a) =

∏N
j=1(

∏M
i=1 exp(aijxi) +

∏M
i=1 exp(−aijxi))

Z(a)

= {
N∏

j=1

(
M∏

i=1

(1 + xi tanh(aij)) +
M∏

i=1

(1 − xi tanh(aij)))}
∏N

j=1

∏M
i=1 cosh(aij)
Z(a)

=

∏N
j=1

∏M
i=1 cosh(aij)
Z(a)

×
N∏

j=1

(2
∑

0≤p≤M/2

∑

i1<···<i2p

xi1xi2 · · ·xi2p tanh(ai1j) tanh(ai2j) · · · tanh(ai2pj)).
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Let B = (bij) = (tanh(aij)).

Denote BJ =
∏M

i=1

∏N
j=1 b

Jij

ij and xJ =
∏M

i=1 x
∑N

j=1 Jij

i , where J = (Jij) is an
M ×N matrix with Jij ∈ {0, 1}.

Then we have

p(x|a) =
2N
∏N

j=1

∏M
i=1 cosh(aij)

Z(a)

∑

J:
∑

M
i=1 Jij even for all j

BJxJ .

Let Z(b) =
Z(a)

2N
∏N

j=1

∏M
i=1 cosh(aij)

. Set I = {I ∈ {0, 1}M |∑M
i=1 Ii is even },

andBI =
∑

J:
∑M

i=1 Jij is even
∑N

j=1 Jij=Ii mod 2

BJ for I ∈ I. Then we have p(x|a) =
1

Z(b)

∑

I∈I
BIxI

and Z(b) = 2NB0. Since
∑

0≤i≤M/2

(
M
2i

)
= ((1 + 1)M + (1 − 1)M )/2 = 2M−1,

the number of all elements in I is 2M−1.
Assume that a true distribution is p(x|a∗) with a∗ = (a∗ij). Then the Kullback

function K(a) is
∑

xi=±1

p(x|a∗)(log p(x|a∗) − log p(x|a)) =
∑

xi=±1

p(x|a∗)
∞∑

i=2

(−1)i

i
(
p(x|a)
p(x|a∗) − 1)i.

Since we consider a neighborhood of p(x|a)
p(x|a∗) = 1, we only need to obtain the

maximum pole of J(z) =
∫
Ψz

0 db, where

Ψ0 =
∑

xi=±1

(p(x|a) − p(x|a∗))2
p(x|a∗) =

∑

xi=±1

(
∑

I∈I BIxI

Z(b) −
∑

I∈I B∗IxI

Z(b∗) )2

p(x|a∗) .

By Lemma 5 in [1], we may replace Ψ0 by

Ψ1 =
∑

I∈{0,1}M

22N(
BI

Z(b)
− B∗I

Z(b∗)
)2 =

∑

I∈{0,1}M

(
BI

B0
− B∗I

B∗0 )2.

Assume that the true distribution is p(x|a∗) with a∗ = 0. By using Lemma 1,
Ψ1 can be replaced by

Ψ(b) =
∑

I �=0∈I
(BI)2, (3)

and from now on, we consider the zeta function J(z) =
∫

V
Ψzdb, where V is a

sufficiently small neighborhood of 0.
Let I, I ′, I ′′ ∈ I. We set BI

N = BI and bIj =
∏M

i=1 b
Ii

ij . Also set

BN = (BI
N ) = (B(0,...,0)

N , B
(1,1,0,...,0)
N , B

(1,0,1,0,...,0)
N , . . .).

We have BI
N =

∑
I′+I′′=I mod 2 b

I′′
N BI′

N−1.

Now consider the eigenvalues of the matrix CN = (cI,I′
N ) where cI,I′

N = bI
′′

N

with I ′ + I ′′ = I mod 2. Note that BN = CNBN−1. Let � = (�1, . . . , �2M−1) =
(�I) ∈ {−1, 1}2M−1

with �(0,...,0) = 1. � is an eigenvector, if and only if
∑

I′∈I c
I,I′
N �I′ = �I

∑
I′∈I c

(0,...,0),I′

N �I′ = �I
∑

I′∈I b
I′
N�I′ . That is,
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� is an eigenvector ⇐⇒ if I + I ′ = I ′′ mod 2 (I + I ′ + I ′′ = 0 mod 2)
then �I′′ = �I�I′ ( �I�I′�I′′ = 1).

Denote the number of all elements in a set K by #K.

Theorem 2. Let K1,K2 ⊂ {1, . . . ,M}, 1 ∈ K2, K1 ∩K2 = φ, and K1 ∪K2 =
{1, . . . ,M}.

Set �I =
{−1, if #{i ∈ K1 : Ii = 1} is odd,

1, otherwise.
If K1 = φ, set � = (1, . . . , 1).

Then � = (�I) is an eigenvector of CN and its eigenvalue is
∑

I∈I �Ib
I
N .

Proof. Assume that I ′ + I ′′ + I ′′′ = 0 mod 2. If all #{i ∈ K1 : I ′i = 1},
#{i ∈ K1 : I ′′i = 1} and #{i ∈ K1 : I ′′′i = 1} are even, then �I′�I′′�I′′′ = 1.

If #{i ∈ K1 : I ′i = 1} and #{i ∈ K1 : I ′′i = 1} are odd, then #{i ∈ K1 : I ′′′i =
1} is even and �I′�I′′�I′′′ = 1 since I ′ + I ′′ + I ′′′ = 0 mod 2.

If #{i ∈ K1 : I ′i = 1} is odd, then #{i ∈ K1 : I ′′i = 1} or #{i ∈ K1 : I ′′′i = 1}
is odd, since I ′ + I ′′ + I ′′′ = 0 mod 2. ��
Since we have 2M−1 pairs of K1,K2 with 1 ∈ K2, K1 ∩ K2 = φ and K1 ∪
K2 = {1, . . . ,M}, those eigenvectors �’s span the whole space R

2M−1
and are

orthogonal to each other.
Set 1 = (1, . . . , 1)t ∈ Z

2M−1−1 (t denotes the transpose). Let D be the matrix

by arranging the eigenvectors �’s such that D =
(

1 1t

1 D′

)
and DD = 2M−1E,

where E is the unit matrix.

Since DD =
(

2M−1 1tD′

1 +D′1 11t +D′D′

)
= 2M−1E, we have D′1 = −1.

Theorem 3. Let C′
j = DCjD/2M−1 = DCjD

−1 =

⎛

⎜⎜⎜⎝

s0j 0 0 · · · 0
0 s1j 0 · · · 0
...

...
...

...
...

0 0 0 · · · s2M−1−1,j

⎞

⎟⎟⎟⎠

which is the diagonal matrix. We have the followings.

(1) Let dij =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i = 1 or j = 1,

DI,J , if I = i
(1, 0, . . . , 0, 1, 0, . . . , 0)

and J = j
(1, 0, . . . , 0, 1, 0, . . . , 0).

Then DI,J =
∏

i∈I,j∈J dij for all I, J ∈ I.

(2) BN = CNBN−1 = CN · · ·C2B1 = DC′
N · · ·C′

2D
−1B1 =

DC′
N · · ·C′

11
2M−1

.

(3) We have 2M−1D′−1 = D′ − 11t.
(4) Let B̃1 = (BI

1 )I �=0, B̃N = (BI
N )I �=0 and S =

(
N∏

j=2

s0j)

⎛

⎜⎝
1 · · · 1
...

...
...

1 · · · 1

⎞

⎟⎠+

⎛

⎜⎜⎜⎜⎝

∏N
j=2 s1j 0 0 · · · 0

0
∏N

j=2 s2j 0 · · · 0
...

...
...

...
0 0 0 · · · ∏N

j=2 s2M−1−1,j

⎞

⎟⎟⎟⎟⎠
.
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We have

(detS)D′−1S−1D′−12M−1B̃N = (detS)B̃1 − (1 D′)

⎛

⎜⎜⎜⎜⎝

∏
i�=0

∏N
j=2 sij∏

i�=1

∏N
j=2 sij

...∏
i�=2M−1−1

∏N
j=2 sij

⎞

⎟⎟⎟⎟⎠
.

(5) The corresponding element to I of (1 D′)

⎛

⎜⎜⎜⎜⎝

∏
i�=0

∏N
j=2 sij∏

i�=1

∏N
j=2 sij

...∏
i�=2M−1−1

∏N
j=2 sij

⎞

⎟⎟⎟⎟⎠
consists of

monomials cJ
∏M

i=1

∏N
j=2 b

Jij

ij , where cJ ∈ R, 0 ≤ Jij ∈ Z and
∑N

j=1 Jij = Ii
mod 2.

Proof. (5) is obtained by

(CN · · ·C2)−1 = D

⎛

⎜⎜⎜⎜⎝

1/
∏N

j=2 s0j 0 · · · 0
0 1/

∏N
j=2 s1j · · · 0

...
...

0 0 · · · 1/
∏N

j=2 s2M−1j

⎞

⎟⎟⎟⎟⎠
D−1.

We prove only (4). Let H = 2M−1 − 1. We have

2M−1B̃N =
(
1 D′ )C′

N · · ·C′
2

(
1 1t

1 D′

)
B1

=
(
1 D′ )

⎛

⎜⎜⎜⎜⎝

∏N
j=2 s0j 0 0 · · · 0

0
∏N

j=2 s1j 0 · · · 0
...

...
... · · ·

...

0 0 0 · · · ∏N
j=2 sH,j

⎞

⎟⎟⎟⎟⎠

(
1 1t

1 D′

)
B1

=
(
1 D′ ){

⎛

⎜⎜⎜⎜⎝

∏N
j=2 s0j∏N
j=2 s1j

...∏N
j=2 sH,j

⎞

⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎝

∏N
j=2 s0j 0 0 · · · 0

0
∏N

j=2 s1j 0 · · · 0
...

...
... · · ·

...

0 0 0 · · · ∏N
j=2 sH,j

⎞

⎟⎟⎟⎟⎠

(
1t

D′

)
B̃1}

=
(
1 D′ )

⎛

⎜⎜⎜⎜⎝

∏N
j=2 s0j∏N
j=2 s1j

...∏N
j=2 sH,j

⎞

⎟⎟⎟⎟⎠
+ D′(−1 E

)

⎛

⎜⎜⎜⎜⎝

∏N
j=2 s0j 0 0 · · · 0

0
∏N

j=2 s1j 0 · · · 0
...

...
... · · ·

...

0 0 0 · · · ∏N
j=2 sH,j

⎞

⎟⎟⎟⎟⎠

(−1t

E

)
D′B̃1

=
(
1 D′ )

⎛

⎜⎜⎜⎜⎝

∏N
j=2 s0j∏N
j=2 s1j

...∏N
j=2 sH,j

⎞

⎟⎟⎟⎟⎠
+ D′SD′B̃1.
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Therefore D′−12M−1B̃N =
(−1 E

)

⎛

⎜⎜⎜⎜⎝

∏N
j=2 s0j∏N
j=2 s1j

...∏N
j=2 sH,j

⎞

⎟⎟⎟⎟⎠
+ SD′B̃1.

We have

S−1
i1j1

= (detS)−1

{∑H
i2=0,i2 �=i1

∏
0≤i≤H,i�=i1,i2

∏N
j=2 sij , if i1 = j1,

−∏0≤i≤H,i�=i1,j1

∏N
j=2 sij , if i1 �= j1,

and det S =
∑H

i2=0

∏
i�=i2

∏N
j=2 sij .

Let s =

⎛

⎜⎜⎜⎜⎝

∏
i�=0

∏N
j=2 sij∏

i�=1

∏N
j=2 sij

...∏
i�=H

∏N
j=2 sij

⎞

⎟⎟⎟⎟⎠
and s̃ =

⎛

⎜⎜⎜⎜⎝

∏
i�=1

∏N
j=2 sij∏

i�=2

∏N
j=2 sij

...∏
i�=H

∏N
j=2 sij

⎞

⎟⎟⎟⎟⎠
.

Since (det S)S−1

⎛

⎜⎜⎝

∏N
j=2 s1j −∏N

j=2 s0j

...∏N
j=2 sH,j −∏N

j=2 s0j

⎞

⎟⎟⎠ =
∑H

i2=0

∏
i�=i2

∏N
j=2 sij1 − 2M−1s̃, we

have

(detS)D′−1S−1D′−12M−1B̃N = (detS)B̃1 −
H∑

i2=0

∏

i�=i2

N∏

j=2

sij1 − 2M−1D′−1s̃

= (detS)B̃1 −
H∑

i2=0

∏

i�=i2

N∏

j=2

sij1 − (D′ − 11t)̃s

= (detS)B̃1 −
∏

i�=0

N∏

j=2

sij1 − D′s̃ = (detS)B̃1 − (1 D′)s,

by using (3) 2M−1D′−1 = D′ − 11t. ��

Theorem 4. The average stochastic complexity F (n) in (1) and the general-
ization error G(n) in (2) are given by using the following maximum pole −λ of
J(z) and its order θ.

(Case 1): If N = 1 then λ = M/4 and θ =
{

2, if M = 2,
1, if M ≥ 3.

(Case 2): If M = 2 then λ = 1/2 and θ =
{

2, if N = 1,
1, if N ≥ 2.

(Case 3): If M = 3 then λ =
{

3/4, if N = 1,
3/2, if N ≥ 2, and θ =

⎧
⎨

⎩

1, if N = 1,
3, if N = 2,
1, if N ≥ 3.

(Case 4): If M = 4 then λ =
{

1, if N = 1,
2, if N = 2, and θ = 1, if N = 1, 2.
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Proof. By Theorem 3 (4) and Lemma 1, we only need to consider the maximum

pole of J(z) =
∫ ||Ψ ′||2zdb, where Ψ ′ = (detS)B̃1 − (1 D′)

⎛

⎜⎜⎜⎜⎝

∏
i�=0

∏N
j=2 sij∏

i�=1

∏N
j=2 sij

...∏
i�=H

∏N
j=2 sij

⎞

⎟⎟⎟⎟⎠
.

(Case 1): Since BI
1 =

∏
j∈I b1j, we have the poles −M

4
and −M − 1

2
.

(Case 2): The fact B11 =
∑N

k=1 b1kb2k(1 + · · · ) yields Case 2.
(Case 3): Assume that M = 3.

Let N ≥ 2. We have D′ =

⎛

⎝
1 −1 −1
−1 1 −1
−1 −1 1

⎞

⎠,

⎧
⎪⎪⎨

⎪⎪⎩

s0j = 1 + b1jb2j + b1jb3j + b2jb3j ,
s1j = 1 + b1jb2j − b1jb3j − b2jb3j ,
s2j = 1 − b1jb2j + b1jb3j − b2jb3j ,
s3j = 1 − b1jb2j − b1jb3j + b2jb3j ,

and Ψ ′ = (detS)

⎛

⎝
b11b21
b11b31
b21b31

⎞

⎠− (1, D′)

⎛

⎜⎜⎜⎝

∏
i�=0

∏N
j=2 sij∏

i�=1

∏N
j=2 sij∏

i�=2

∏N
j=2 sij∏

i�=3

∏N
j=2 sij

⎞

⎟⎟⎟⎠.

Construct blowing up of Ψ ′ along the submanifold {bij = 0, 1 ≤ i ≤ M, 1 ≤
j ≤ N}.

Let b11 = u, bij = ub′ij for (i, j) �= (1, 1).

Remark. By setting the general case as bi0j0 = b′i0j0 , bij = b′i0j0b
′
ij for

(i, j) �= (i0, j0), we have a manifold M by gluing MN open sets Ui0j0

with a coordinate system (b′11, b
′
12, · · · , b′MN ) (cf. Section 3). We don’t

need to consider all cases since we obtain the same poles in Ui0j0 as those
in U11.

We have Ψ ′′ = u2(detS)

⎛

⎝
b′21
b′31
b′21b

′
31

⎞

⎠ + 4u2

⎛

⎜⎝

∑N
k=2 b

′
1kb

′
2k + u2f1∑N

k=2 b
′
1kb

′
3k + u2f2∑N

k=2 b
′
2kb

′
3k + u2f3

⎞

⎟⎠, where f1,

f2 and f3 are polynomials of b′ij with at least two degree.

By putting
(
b′′21
b′′31

)
=
(
b′21
b′31

)
+ 4

(∑N
k=2 b

′
1kb

′
2k + u2f1∑N

k=2 b
′
1kb

′
3k + u2f2

)
/(detS), we have

Ψ ′′ =
u2

detS

×
⎛

⎝
(detS)2b′′21
(detS)2b′′31

(b′′21 detS − 4
∑N

k=2 b
′
1kb

′
2k − 4u2f1)(b′′31 detS − 4

∑N
k=2 b

′
1kb

′
3k − 4u2f2)

⎞

⎠

+u2

⎛

⎝
0
0

4
∑N

k=2 b
′
2kb

′
3k + 4u2f3

⎞

⎠.
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By using Lemma 1 again, the maximum pole of
∫ ||Ψ ′′||2zu3Ndb is that of

J(z) =
∫ ||Ψ ′′′||2zu3Ndb, where Ψ ′′′ = u2

⎛

⎝
b′′21
b′′31
g1

⎞

⎠, and

g1 = (
∑N

k=2 b
′
1kb

′
2k + u2f1)(

∑N
k=2 b

′
1kb

′
3k + u2f2) + detS

4 (
∑N

k=2 b
′
2kb

′
3k + u2f3).

Construct blowing up of Ψ ′′′ along the submanifold {b′′21 = 0, b′′31 = 0, b′3k =
0, 2 ≤ k ≤ N}. Then we have (I), (II) cases.
(I) Let b′32 = v, b′′21 = vb′′′21, b′′31 = vb′′′21, b′3k = vb′′3k, for 3 ≤ k ≤ N . Then Ψ ′′′ =

u2v

⎛

⎝
b′′′21

b′′′31

g′1

⎞

⎠, where g′1 = (
∑N

k=2 b
′
1kb

′
2k + u2f1)(b′12 +

∑N
k=3 b

′
1kb

′′
3k + u2f2/v) +

detS
4 (b′22 +

∑N
k=3 b

′
2kb

′′
3k + u2f3/v).

By Theorem 3 (5), we can set f2 = vf ′
2 and f3 = vf ′

3, where f ′
2 and f ′

3 are
polynomials.

We have (
∑N

k=2 b
′
1kb

′
2k)(b′12 +

∑N
k=3 b

′
1kb

′′
3k) + detS

4 (b′22 +
∑N

k=3 b
′
2kb

′′
3k)

= (b′2,2, b
′
2,3, · · · , b′2,N)

⎛

⎜⎜⎜⎝

⎛

⎜⎜⎜⎝

b′1,2

b′1,3
...

b′1,N

⎞

⎟⎟⎟⎠ (b′1,2, b
′
1,3, · · · , b′1,N) +

detS
4

E

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1
b′′3,3
...

b′′3,N

⎞

⎟⎟⎟⎠ .

Since

⎛

⎜⎜⎜⎝

b′1,2

b′1,3
...

b′1,N

⎞

⎟⎟⎟⎠ (b′1,2, b
′
1,3, · · · , b′1,N ) + detS

4 E is regular, we can change vari-

ables from (b′2,2, b
′
2,3, · · · , b′2,N) to (b′′2,2, b

′′
2,3, · · · , b′′2,N) by (b′′2,2, b

′′
2,3, · · · , b′′2,N ) =

(b′2,2, b
′
2,3, · · · , b′2,N)

⎛

⎜⎜⎜⎝

⎛

⎜⎜⎜⎝

b′1,2

b′1,3
...

b′1,N

⎞

⎟⎟⎟⎠ (b′1,2, b
′
1,3, · · · , b′1,N) + detS

4 E

⎞

⎟⎟⎟⎠. Moreover, let

b′′′22 = b′′2,2 + b′′2,3b
′′
3,3 + · · · + b′′2,Nb

′′
3,N .

Then, we have

Ψ ′′′ = u2v

⎛

⎝
b′′′21

b′′′31

b′′′22 + u2f4

⎞

⎠,

where f4 is a polynomial. Therefore, we have the poles −3N
4
,−N + 1

2
,−3

2
.

(II) Let b′′21 = v, b′′31 = vb′′′21, b
′
3k = vb′′3k, for 2 ≤ k ≤ N . Then we have the poles

−3N
4
,−N + 1

2
.
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(Case 4): Let M = 4. We have D′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 1 1 1 −1
−1 1 1 −1 −1 1 −1
−1 1 −1 −1 1 −1 1
1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 −1
1 1 −1 1 −1 −1 −1
−1 −1 1 1 −1 −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

s0j = 1 + b1jb2j + b1jb3j + b1jb4j + b2jb3j + b2jb4j + b3jb4j + b1jb2jb3jb4j ,

s1j = 1 + b2jb3j + b2jb4j + b3jb4j − b1j(b2j + b3j + b4j + b2jb3jb4j),
s2j = 1 + b1jb3j + b1jb4j + b3jb4j − b2j(b1j + b3j + b4j + b1jb3jb4j),
s3j = 1 + b1jb3j + b2jb4j + b1jb2jb3jb4j − (b1j + b3j)(b2j + b4j),
s4j = 1 + b1jb2j + b3jb4j + b1jb2jb3jb4j − (b1j + b2j)(b3j + b4j),
s5j = 1 + b1jb2j + b1jb4j + b2jb4j − b3j(b1j + b2j + b4j + b1jb2jb4j),
s6j = 1 + b1jb2j + b1jb3j + b2jb3j − b4j(b1j + b2j + b3j + b1jb2jb3j),
s7j = 1 + b1jb4j + b2jb3j + b1jb2jb3jb4j − (b1j + b4j)(b2j + b3j).

Let M = 4 and N = 2. Then we have

Ψ ′ = detS

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11b21
b11b31
b11b41
b21b31
b21b41
b31b41

b11b21b31b41

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b12b22(8 + f1)
−b12b32(8 + f2)
−b12b42(8 + f3)
−b22b32(8 + f4)
−b22b42(8 + f5)
−b32b42(8 + f6)

b12b22b32b42(40 + f7)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where fi’s are polynomials of bij with at least two degree. As space is limited,

we will omit the proof in detail, but we have the poles −8
4
,−6

2
,−5

2
,−9

4
. ��

5 Conclusion

In this paper, we obtain the main term of the average stochastic complexity
for certain complete bipartite graph-type spin models in Bayesian estimation
(Theorem 4). We use a new method of eigenvalue analysis and a recursive blowing
up method in algebraic geometry and show that these are effective for solving
the problems in the artificial intelligence. Our future purpose is to improve our
methods and apply them to more general cases. Since eigenvalue analysis can be
applied to general cases, we seem to formulate a new direction for solving the
behavior of the spin model’s stochastic complexity.

The applications of our results are as follows. The explicit values of generaliza-
tion errors have been used to construct mathematical foundation for analyzing
and developing the precision of the MCMC method [16]. Moreover, these val-
ues have been compared to such as the generalization error of localized Bayes
estimation [17].
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