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Abstract

Hierarchical learning models such as layered neural networks have

singular Fisher metrics, since their parameters are not identifiable.

These are called non-regular learning models. The stochastic com-

plexities of non-regular learning models in Bayesian estimation are

asymptotically obtained by using poles of their zeta functions which

are the integrals of their Kullback distances and their priori proba-

bility density functions [1, 2, 3]. However, for several examples, up-

per bounds of the main terms in asymptotic forms of the stochastic

complexities were obtained but not the exact values, because of their

computational complexities. In this paper, we show a computational

way for obtaining the exact value of the layered neural network and

we give the asymptotic form of its stochastic complexity explicitly.
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1 Introduction

Learning models such as a layered neural network, a normal mixture and a

Boltzmann machine have their singular Fisher matrix functions I(w). Their

parameters w are not identifiable. For example, I(w0) of a three layered neu-

ral network is singular (detI(w0) = 0), when w0 represents a small model with

less hidden units than those of the three layered neural network. The subset

which consists of the parameters representing the small model is an analytic

variety in all parameter space. Such a learning model is called a non-regular

model. Theories of regular statistical models, for example, model selection

theories AIC[4], TIC[5], HQ[6], NIC[7], BIC[8], MDL[9] cannot be applied to

analyzing such non-regular models. So rapid construction of mathematical

theories is necessary, since non-regular models have been applied practically

to many information technology fields.

Recently, a close connection between the Bayesian stochastic complexi-

ties of non-regular learning models and resolution of singularities has been

revealed in [1, 2, 3] as follows. Let n be the number of training samples

of a non-regular learning model. Its average stochastic complexity (Its free

energy) F (n) is asymptotically equal to

F (n) = λ log n− (`− 1) log log n + O(1),

where λ is a positive rational number, ` is a natural number and O(1) is a

bounded function of n. Its Bayesian generalization error G(n) is the average
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Kullback distance of the inference of the non-regular learning model from its

true distribution. Since it has been known that G(n) = F (n + 1) − F (n) if

it has an asymptotic expansion, we have

G(n) ∼= λ

n
− `− 1

n log n
.

The values λ and ` are obtained by using the poles of the learning model’s zeta

function, based on a resolution method of its singularities. The zeta function

is defined by the integral of the Kullback distance and the a priori probability

density function of the learning model. For regular models, λ = d/2 and

` = 1, where d is the dimension of their parameter space. Non-regular

models have smaller value λ than d/2, so they are more effective learning

models than regular ones in the Bayesian estimation.

In spite of those mathematical foundations, the values λ were not ob-

tained since it was difficult to calculate them. Only their upper bounds were

obtained in the case of the three layered neural network [11] and the reduced

rank regression [12] in the past. To overcome this difficulty, the paper [10]

proposed a probabilistic calculation method for λ, but the method could not

obtain the exact values λ, also.

In fact, poles of zeta functions have been investigated well only in special

cases, for example in the prehomogeneous spaces, but Kullback distances

do not occur in the prehomogeneous spaces. So, to investigate the poles of

Kullback distances is a new problem even in mathematics.

Moreover, by Hironaka’s Theorem [13], it is known that desingularization

of an arbitrary polynomial can be obtained by using a blowing-up process.

However desingularization of any polynomial in general, although it is known

3



as a finite process, is very difficult. Furthermore, Kullback distances are not

simple polynomials, i.e., they have parameters, for example p which is the

number of hidden units of the three layered neural networks in Eq.(3).

In this paper, we propose a new method for obtaining the exact asymp-

totic form of the stochastic complexity and its main term λ for hieratical

learning models. Our method uses a recursive blowing-up, which yields a

complete desingularization.

By applying it to the three layered neural network, we show the effective-

ness of the method.

Our method in this paper first clarifies the asymptotic behavior of the

stochastic complexity in Bayesian estimation for the three layered neural

network. So, we can compare asymptotic behaviors of regular models and

non-regular models.

One of applications of our result in view of the learning theory is as

follows.

By the MCMC method, estimated values of marginal likelihoods were

calculated for hyper-parameter estimations and model selection methods of

non-regular learning models, but theoretical values were not known. The

theoretical values of the marginal likelihoods are given in this paper. This

enables us to construct a mathematical foundation for analyzing and devel-

oping the precision of the MCMC method.

We explain Bayesian learning theory in section 2 and resolution of singu-

larities in section 3. The main term λ and its order ` for the three layered

neural network are obtained in section 4.
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2 Bayesian learning theory

In this section, we give a framework of Bayesian learning obtained in [1, 2, 3].

Let RN be an input-output space and W ⊂ Rd a parameter space. Take

x ∈ RN and w ∈ W . Let p(x|w) be a learning model and ψ(w) an a priori

probability density function. Assume that its true probability distribution

p(x|w0) is included in the learning model. Let Xn = (X1, X2, ..., Xn) be arbi-

trary n training samples. Xi’s are randomly selected from the true probabil-

ity distribution p(x|w0). Then, its a posteriori probability density function

p(w|Xn) is written by

p(w|Xn) =
1

Zn

ψ(w)
n∏

i=1

p(Xi|w),

where

Zn =

∫

W

ψ(w)
n∏

i=1

p(Xi|w)dw.

So the average inference p(x|Xn) of its Bayesian distribution is given by

p(x|Xn) =

∫
p(x|w)p(w|Xn)dw.

Then, its generalization error G(n) is written as

G(n) = En{
∫

p(x|w0) log
p(x|w0)

p(x|Xn)
dx}, (1)

where En{·} is the expectation value.

Let

Kn(w) = 1/n
n∑

i=1

log(p(Xi|w0)/p(Xi|w)).

Its average stochastic complexity (the free energy )

F (n) = −En{log

∫
exp(−nKn(w))ψ(w)dw}, (2)
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satisfies

G(n) = F (n + 1)− F (n),

if it has an asymptotic expansion.

Define the zeta function J(z) of the learning model by

J(z) =

∫
K(w)zψ(w)dw,

where K(w) is the Kullback distance of the learning model:

K(w) =

∫
p(x|w0) log

p(x|w0)

p(x|w)
dx.

Then, for the maximum pole −λ of J(z) and its order `, we have

F (n) = λ log n− (`− 1) log log n + O(1),

and

G(n) ∼= λ

n
− `− 1

n log n
,

where O(1) is a bounded function of n.

The values λ and ` can be calculated by using a blowing-up process.

3 Resolution of singularities

In this section, we introduce resolution of singularities. A blowing-up process

is a main tool in resolution of singularities of algebraic varieties.

The following theorem is the analytic version of Hironaka’s theorem[13]

used by Atiyah[14].

Theorem 1

Let f(x) be a real analytic function in a neighborhood of 0 ∈ Rn. There

exist an open set V 3 0, a real analytic manifold U and a proper analytic
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map µ (proper means that µ’s inverse images of compact sets are compact)

from U to V such that

(1) µ : U \ E → V \ f−1(0) is an isomorphism, where E = µ−1(f−1(0)),

(2) for each u ∈ U , there is a local analytic coordinate (u1, · · · , un) such

that f(µ(u)) = ±us1
1 us2

2 · · ·usn
n , where s1, · · · , sn are non-negative integers.

Applying Hironaka’s theorem to the Kullback distance K(w) for each

w ∈ K−1(0)∩W , we have a proper analytic map µw from an analytic manifold

Uw to a neighborhood Vw of w satisfying Theorem 1 (1) and (2). Then the

local integration on Vw of the zeta function J(z) of the learning model is

Jw(z) =

∫

Vw

K(w)zψ(w)dw

=

∫

Uw

|us1
1 us2

2 · · ·usn
n |zψ(µw(u))|µ′w(u)|du.

Therefore, we can obtain the value Jw(z). For each w ∈ W \K−1(0), there

exists a neighborhood Vw such that K(w′) 6= 0 for all w′ ∈ Vw. So Jw(z) =
∫

Vw
K(w)zψ(w)dw has no poles. Since the parameter set W is compact, the

poles and their orders of J(z) are computable.

Next we explain construction of the blowing-up along a manifold used in

this paper.

Define the manifold M by gluing k open sets Ui
∼= Rn, i = 1, 2, · · · , k

(n ≥ k) as follows. Denote the coordinate of Ui by (ξ1i, · · · , ξni).

Set the equivalence relation

(ξ1i, ξ2i, · · · , ξni) ∼ (ξ1j, ξ2j, · · · , ξnj)
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at ξji 6= 0 and ξij 6= 0, by

ξij = 1/ξji, ξjj = ξiiξji,
ξhj = ξhi/ξji, 1 ≤ h ≤ k, h 6= i, j,
ξlj = ξli, k + 1 ≤ ` ≤ n.

Put M =
∐k

i=1 Ui/ ∼.

Then the blowing map π : M → Rn is defined by

(ξ1i, · · · , ξni) 7→ (ξiiξ1i, · · · , ξiiξi−1i, ξii, ξiiξi+1i, · · · , ξiiξki, ξk+1i, · · · , ξni),

for each (ξ1i, · · · , ξni) ∈ Ui.

This map is well-defined and is called the blowing-up along

N = {(x1, · · · , xk, xk+1, · · · , xn) ∈ Rn | x1 = · · · = xk = 0},
The blowing map satisfies

(1) π : M → Rn is proper,

(2) π : M \ π−1(N) → Rn \N is an isomorphism.

4 The learning curve of a three layered neural

network

In this section, we obtain the maximum pole of the zeta function of a three

layered neural network, by using a blowing-up process.

Consider the three layered neural network of one input unit, p hidden

units and one output unit. Denote an input value by x, and an output

values by y.

Let

f(x,w) =

p∑
m=1

am tanh(bmx),

where w = {am, bm|m = 1, · · · , p} is the parameter vector.
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Consider the statistical model

p(y|x,w) =
1√
2π

exp(−1

2
(y − f(x,w))2).

Assume that the probability density function q(x) of the input x is the

uniform distribution on the interval [−1, 1] and that the a priori probability

density function ψ(w) of w is a C∞− function with compact support W ,

satisfying ψ(0) > 0.

Let the true distribution be p(y|x,w0) = 1√
2π

exp(−1
2
y2). That is, the

true parameter set which gives the true distribution contains the case of

a1 = · · · = ap = b1 = · · · = bp = 0.

Then the Kullback distance is

K(w) =
1

2

∫ 1

−1

f(x,w)2dx.

By using Taylor expansion of K(w), the maximum pole λ and its order `

of
∫

W
K(w)zψdw are equal to those of

∫

W

{
p∑

n=1

(

p∑
m=1

amb2n−1
m )2}z

p∏
m=1

damdbm. (3)

In the paper [15], it is shown that

p∑
m=1

1

4m− 2
≤ λ ≤

√
p

2
.

Let Ψ be the differential form such as

Ψ = {
p∑

n=1

(

p∑
m=1

amb2n−1
m )2}z

p∏
m=1

damdbm.

Main Theorem

We have

λ =
p + i2 + i

4i + 2
, ` =

{
2, i2 = p,
1, i2 < p,
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where i is the maximum integer satisfying i2 ≤ p.

We prove Main Theorem by using a blowing-up process of Ψ.

Before the proof of Main Theorem, let us give some notation.

Since we often change variables by using a blowing-up process, it is more

convenient for us to use the same symbols bm rather than b′m, b′′m, · · · , etc,

for the sake of simplicity. For instance,

“Let b1 = v1, bm = v1bm,

instead of

“Let b1 = v1, bm = v1b
′
m.

We divide the proof into two parts. One part is for obtaining desingular-

ization and the other is for comparing the absolute values of poles.

Proof of Main Theorem: Part 1

Construct the blowing-up along the submanifold {b1 = 0, · · · , bp = 0}.
Let M be the manifold M =

∐p
i=1 Ui/ ∼. Set the coordinate on U1

by (a1, · · · , ap, v1, b2, · · · , bp). After the blowing-up by the transform {b1 =

v1, bm = v1bm, m = 2, · · · , p} on U1, we have

Ψ = {
p∑

n=1

v4n−2
1 (a1 +

p∑
m=2

amb2n−1
m )2}zvp−1

1

da1dv1

p∏
m=2

damdbm.

By the symmetry of b1, . . ., bp, this setting is considered as the general

case {bi = vi, bm = vibm, m = 1, 2, · · · , p, m 6= i}.
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Let d1 = a1 +
∑p

m=2 ambm. Then we have

Ψ = {v2
1(d

2
1 +

p∑
n=2

v4n−4
1

(d1 −
p∑

m=2

ambm +

p∑
m=2

amb2n−1
m )2)}z

vp−1
1 dd1dv1

p∏
m=2

damdbm.

Put the auxiliary function fn,l by

fn,l(x) =
n−l∑

j2+···+jl=0

b2j2
2 · · · b2jl−1

l−1 x2jl = 1 + · · · ≥ 1.

This function satisfies

fn,l(bm)− fn,l(bl) = (b2
m − b2

l )fn,l+1(bm).

Set

c2 =

p∑
m=i

ambm(b2
m − 1),

and

ci =

p∑
m=i

ambm(b2
m − 1)(b2

m − b2
2) · · · (b2

m − b2
i−1),

for i ≥ 3. By using fn,l, we have

Ψ = {v2
1(d

2
1 +

p∑
n=2

v4n−4
1 (d1 + fn,2(b2)c2 + · · ·

+fn,i(bi)ci + · · ·+ fn,n(bn)cn)2)}z

vp−1
1 dd1dv1

p∏
m=2

damdbm. (4)

We have the condition d2
1 +

∑p
n=2 v4n−4

1 (d1 + fn,2(b2)c2 + · · ·+ fn,i(bi)ci +

· · ·+ fn,n(bn)cn)2 = 0 if and only if d1 = c2 = · · · = cp = 0.

For the sake of simplicity, we use an abbreviation fn,i instead of fn,i(bi).
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Eq.(5), k, K, α.

@
@

@@R

Transformation (i)

Poles − q1+K
t1+2

, − ql+1
tl

, 1 ≤ l ≤ k − 1.

(ii)

?

Eq.(7)Step 2



 @

@
@@R

(iii)

− q1+2(K−1)+1
t1+4

, − ql+1
tl

, 1 ≤ l ≤ k − 1.?

(iv)

Eq.(9)

¡
¡

¡¡ª

Case 1

Eq.(5)
k, K + 1, α.

Step 3





@
@

@@R

Case 2, (v)

−
P

l∈A(α) ql+K−1+#A(α)+#C(α)

P
l∈A(α) tl+2

,

− ql+1
tl

, 1 ≤ l ≤ k − 1.
?

¡
¡

¡¡ª
Case 2, (vi)

Eq.(9), k,K, α + 1.

@
@

@@R
Case 2, (vii)

(A) Eq.(9), k + 1, K, α + 1.

(B) Eq.(5), k + 1, K + 1, α + 1.

Figure 1: The flow chart of the Main Theorem’s proof.

Take J (α) or J ∈ Rα. Denote J (α) = (J (α′), ∗) and α ≥ α′ by J (α) > J (α′).

Also denote J (α) = (0, · · · , 0) by J (α) = 0(α) or J (α) = 0.

We need the following inductive statements of k, K, α for calculating poles

by using a blowing-up process.

Figure 1 is the flow chart of the Main Theorem’s proof.

Inductive statements

Set s(J) = #{m; k ≤ m ≤ p, J
(α)
m = J},

s(i, J) = #{m; k ≤ m ≤ i− 1, J
(α)
m = J}

for any J ∈ Rα, where # implies the number of elements.

(a) K ≥ k,
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(b)

Ψ = {vt1
1 vt2

2 vt3
3 · · · vtk−1

k−1

(
d2

1 + (d1v
2
1 + d2)

2

+ · · ·+ (d1v
2K−4
1 + d2v

2K−6
1 fK−1,2 + · · ·

+dK−1fK−1,K−1)
2 +

p∑
n=K

v4n−4K+4
1 (d1v

2K−4
1

+d2v
2K−6
1 fn,2 + · · ·+ dK−1fn,K−1

+

p∑
i=K

fn,ici)
2
)
}z

k−1∏
m=1

vqm
m

K−1∏
m=1

ddm

p∏
m=K

dam

k−1∏
m=1

dvm

p∏

m=k

dbm. (5)

Here, tl, qm ∈ Z+. Also, there exist RJ (α) ⊂ Rα, t(i, J, l) ∈ Z+, and

functions g(i,m) 6= 0, (K ≤ i ≤ p, 2 ≤ l ≤ k − 1, i ≤ m ≤ p) such that

ci = v
t(i,0,2)
2 v

t(i,0,3)
3 · · · vt(i,0,k−1)

k−1

∑
i≤m≤p

J
(α)
m =0

g(i,m)ambm

∏
k≤i′<i

J
(α)

i′ =0

(b2
m − b2

i′)

+
∑

J∈RJ(α)

v
t(i,J,2)
2 v

t(i,J,3)
3 · · · vt(i,J,k−1)

k−1

∑
i≤m≤p

J
(α)
m =J

g(i,m)ambm

∏
k≤i′<i

J
(α)

i′ =J

(bm − bi′)

+
∑

J 6∈RJ(α),J 6=0

v
t(i,J,2)
2 v

t(i,J,3)
3 · · · vt(i,J,k−1)

k−1

∑
i≤m≤p

J
(α)
m =J

g(i,m)am

∏
k≤i′<i

J
(α)

i′ =J

(bm − bi′).

(c) J
(α)
i′ 6= J

(α)
i for k ≤ i′ < i < K. J

(α)
i 6∈ RJ (α) ∪ {0} for k ≤ i < K.
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(d) For J ∈ Rα, K ≤ i ≤ p, 2 ≤ l ≤ k − 1, set t̃(i, J, l) = tl/2 + t(i, J, l).

There exist DJ(µ),l ∈ Z+ such that

t̃(i, J, l) =
∑

J>0(µ)

D0(µ),l(2s(i, 0
(µ)) + 1)

+
∑

J>J(µ)

J(µ)∈RJ(µ)

DJ(µ),l(s(i, J
(µ)) + 1)

+
∑

J>J(µ)

J(µ) 6∈RJ(µ),J(µ) 6=0

DJ(µ),ls(i, J
(µ)).

(e) There exist gl ≥ 0, η
(ξ)
k′,l ≥ 0 for 2 ≤ k′ ≤ K−1, 1 ≤ ξ ≤ gl, 2 ≤ l ≤ k−1,

such that

tl
2

=

gl∑

ξ=1

(1 + η
(ξ)
2,l + · · ·+ η

(ξ)
K−1,l),

0 ≤ η
(ξ)
2,l ≤ 2, 0 ≤ η

(ξ)
2,l + η

(ξ)
3,l ≤ 4,

...

0 ≤ η
(ξ)
2,l + η

(ξ)
3,l + · · ·+ η

(ξ)
K−1,l ≤ 2(K − 2).

(f) Set ϕ
(ξ)
l = p + 2η

(ξ)
2,l + · · · + (K − 1)η

(ξ)
K−1,l. There exist φl ∈ Z+ for

2 ≤ l ≤ k − 1, such that gl ≤
∑

J
(α)
m >J(µ) DJ(µ),l and

ql + 1 =

gl∑

ξ=1

ϕ
(ξ)
l + φl

+

p∑

m=k

(−gl +
∑

J
(α)
m >J(µ)

DJ(µ),l).

The end of inductive statements

Statements (d), (e) and (f) are needed to compare poles. The definitions

of all variables will be given later on in the proof.

If J
(α)
m = 0 for all m and α, we have α = k − 1 and the followings:
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(a’) k = K.

(b’)

ci = v
t(i,0,2)
2 v

t(i,0,3)
3 · · · vt(i,0,k−1)

k−1

∑
i≤m≤p

ambm

∏

k≤i′<i

(b2
m − b2

i′).

(d’) D0(l−1),l = 1 and the others DJ,l are 0.

t̃(i, 0(k−1), l) = D0(l−1),l(2(i− l) + 1)

= 2(i− l) + 1.

(e’) tl
2

= 1 + η
(1)
2,l + · · ·+ η

(1)
k−1,l,

η
(1)
2,l = 0, . . . , η

(1)
l−1,l = 0,

η
(1)
l,l = 2, . . . , η

(1)
k−2,l = 2,

0 ≤ η
(1)
k−1,l ≤ 2, t(k, 0(k−1), l) + η

(1)
k−1,l = 2.

(f’) Set ϕ
(1)
l = p + 2η

(1)
2,l + · · ·+ (k − 1)η

(1)
k−1,l. Then ql + 1 = ϕ

(1)
l .

4.1 Step 1

Set k = K = 2. For any numbers j
(1)
2 , · · · , j

(1)
p ∈ R, take a neighborhood V of

d1 = 0, bm = j
(1)
m ,m = 2, · · · , p such that we have |bm| 6= |bm′| if |j(1)

m | 6= |j(1)
m′ |

and we have |bm| 6= 0, 1, if |j(1)
m | 6= 0, 1.

Assume that d1, bm ∈ V . Then we have

ci =
∑

i≤m≤p,

j
(1)
m =0

g(i,m)ambm

∏
2≤i′<i,

j
(1)

i′ =0

(b2
m − b2

i′)
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+
∑

i≤m≤p,

|j(1)m |=1

g(i,m)ambm

∏
2≤i′<i,

|j(1)
i′ |=1

(bm − bi′)

+
∑

i≤m≤p,

|j(1)m |6=0,1

g(i,m)am

∏
2≤i′<i,

|j(1)
i′ |=|j

(1)
m |

(bm − bi′),

with the functions g(i,m) 6= 0.

Let





α = 1, J
(1)
m = ((j

(1)
m )2),

t1 = 2, q1 = p− 1,

RJ (1) = {J = ((j
(1)
m )2); |j(1)

m | = 1}.
RJ (1) is the set of J as

∑
i≤m≤p

J
(1)
m =J

g(i,m)ambm

∏
2≤i′<i

J
(1)

i′ =J

(bm − bi′),

in the formulas ci.

Those new parameters defined in Step 1 satisfy Statements (a)∼(c)

Set the other parameters such as t(i, J, l) and ql by 0, since these param-

eters do not appear.

Then we have Statements (d)∼(f).

4.2 Step 2

We assume the case k, K.

Construct the blowing-up of (5) along the submanifold {v1 = d1 = · · · =
dK−1 = 0}.

(i) Let {d1 = u1, dl = u1dl, 2 ≤ l ≤ K − 1, v1 = u1v1} in (5). Then we

have the poles

−q1 + K

t1 + 2
,

−ql + 1

tl
, 1 ≤ l ≤ k − 1. (6)
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Another blowing-up is not necessary in this neighborhood, anymore.

(ii) Let {dl = uldl, 1 ≤ l ≤ K − 1, v1 = v1} in (5) and we have

Ψ = {vt1+2
1 vt2

2 vt3
3 · · · vtk−1

k−1

(
d2

1 + (d1v
2
1 + d2)

2

+ · · ·+ (d1v
2K−4
1 + d2v

2K−6
1 fK−1,2 + · · ·

+dK−1fK−1,K−1)
2 +

p∑
n=K

v4n−4K+2
1 (d1v

2K−3
1

+d2v
2K−5
1 fn,2 + · · ·+ dK−1fn,K−1

+

p∑
i=K

fn,ici)
2
)
}zvq1+K−1

1

k−1∏
m=1

vqm
m

K−1∏
m=1

ddm

p∏
m=K

dam

k−1∏
m=1

dvm

p∏

m=k

dbm. (7)

In addition, let us construct the blowing-up of (7) along the submanifold

{v1 = d1 = · · · = dK−1 = 0}.
(iii) Let {d1 = u1, dl = uldl, 2 ≤ l ≤ K − 1, v1 = u1v1} in (7). Then we

have the poles

−q1 + 2(K − 1) + 1

t1 + 4
,

−ql + 1

tl
, 1 ≤ l ≤ k − 1. (8)

(iv) Let {dl = uldl, 1 ≤ l ≤ K − 1, v1 = v1} in (7) and we have

Ψ = {vt1+4
1 vt2

2 vt3
3 · · · vtk−1

k−1

(
d2

1 + (d1v
2
1 + d2)

2 + · · ·

+(d1v
2K−4
1 + d2v

2K−6
1 fK−1,2 + · · ·+ dK−1)

2

+

p∑
n=K

v4n−4K
1 (d1v

2K−2
1 + d2v

2K−4
1 fn,2 + · · ·+

dK−1v
2
1fn,K−1 +

p∑
i=K

fn,ici)
2
)
}zv

q1+2(K−1)
1

k−1∏
m=1

vqm
m

K−1∏
m=1

ddm

p∏
m=K

dam

k−1∏
m=1

dvm

p∏

m=k

dbm. (9)
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4.3 Step 3

Let us concentrate on cK . Put

JB(α) = {J ∈ Rα;∃l, t(K, J, l) > 0},

Ω = {A′ ⊂ {2 ≤ l ≤ k − 1}; ∀J ∈ JB(α),

∃l ∈ A′ s.t. t(K, J, l) > 0}

C(α) = {m ≥ k; t(K, J (α)
m , l) = 0 for all l},

JC(α) = {J ∈ Rα; t(K, J, l) = 0 for all l}.

Fix A(α) ∈ Ω whose number of elements is minimum in Ω:

#A(α) = min
A∈Ω

#A.

Let

Ti,J =





∑
l∈A(α) t(i, J, l) + 2s(i, J),
if J = 0, J ∈ JC(α),∑

l∈A(α) t(i, J, l) + s(i, J),
if J ∈ RJ (α) ∩ JC(α),∑

l∈A(α) t(i, J, l) + s(i, J)− 1,
if J ∈ JC(α) \ (RJ (α) ∪ {0}),∑

l∈A(α) t(i, J, l)− 1,
otherwise,

(10)

T =
∑

l∈A(α)

tl + 2, (11)

Q =
∑

l∈A(α)

ql (12)

+K − 1 + #A(α) + #C(α) − 1.

In addition, let C
(α)
∗ = {m ∈ C(α) | J

(α)
m 6∈ RJ (α), J

(α)
m 6= 0, J

(α)
m 6=

J
(α)
i′ for all k ≤ i′ < K}.

Case 1 C
(α)
∗ 6= φ.
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4.3.1 Transformation in Case 1

We can assume that J
(α)
K 6∈ RJ (α), J

(α)
K 6= 0 and K ∈ C(α). Then we obtain

cK = aKg(K, K) + · · · . Change the variable from aK to dK by dK = cK .

Set

K → K + 1, t1 → t1 + 4, q1 → q1 + 2(K − 1),

and we have the inductive statements of K → K + 1.

If all J
(α)
m = 0, Case 1 does not appear.

Case 2 C
(α)
∗ = φ.

Construct the blowing-up of (9) along the submanifold {d1 = · · · =

dK−1 = vk” = bm = 0, k” ∈ A(α),m ∈ C(α)}.

4.3.2 Transformation(v)

(v) Let {d1 = u1, dl = uldl, 2 ≤ l ≤ K − 1, vk” = u1vk”, k” ∈ A(α), bm =

u1bm,m ∈ C(α)} in (9). Then we have the poles

−
∑

l∈A(α) ql + K − 1 + #A(α) + #C(α)

∑
l∈A(α) tl + 2

, (13)

−ql + 1

tl
, 1 ≤ l ≤ k − 1. (14)

If all J
(α)
m = 0, then we have #A(α) 6= φ and the poles

−qk” + k

tk” + 2
,−ql + 1

tl
, 1 ≤ l ≤ k − 1,

are obtained, since #A(α) = 1 and #C(α) = 0.

4.3.3 Transformation(vi)

Fix k′ ∈ A(α).
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(vi) Let {dl = vk′dl, 1 ≤ l ≤ K − 1, vk′ = vk′ , vk” = vk′vk”, k” ∈ A(α) −
{k′}, bm = vk′bm,m ∈ C(α)} in (9).

By using Eq.(10), (11), (12), set

tk′ → T, t(i, J, k′) → Ti,J , qk′ → Q, ci → ci/vk′ .

Then, tk′/2 = (
∑

l∈A(α) tl+2)/2 =
∑

l∈A(α)

∑gl

ξ=1(1+η
(ξ)
2,l +· · ·+η

(ξ)
K−1,l)+1,

and

qk′ + 1 =
∑

l∈A(α)

(ql + 1) + K − 1 + #C(α)

=
∑

l∈A(α)

{
gl∑

ξ=1

ϕ
(ξ)
l +

p∑

m=k

(−gl+

∑

J
(α)
m >J(µ)

DJ(µ),l) + φl



 + K − 1

+
∑

J
(α)
m ∈JC(α)

1

=
∑

l∈A(α)

gl∑

ξ=1

ϕ
(ξ)
l +

p∑
m=k

J
(α)
m 6∈JC(α)

(−
∑

l∈A(α)

gl

+
∑

J
(α)
m >J(µ)

∑

l∈A(α)

DJ(µ),l) +

p∑
m=k

J
(α)
m ∈JC(α)

(−
∑

l∈A(α)

gl + (
∑

J
(α)
m >J(µ)

∑

l∈A(α)

DJ(µ),l) + 1)

+
∑

l∈A(α)

φl + K − 1.

(I) Assume that there exist l′ ∈ A(α) and ξ′ such that 0 ≤ η
(ξ′)
2,l′ + η

(ξ′)
3,l′ + · · ·+

η
(ξ′)
K−1,l′ < 2(K − 2). Let

gk′ →
∑

l∈A(α)

gl, φk′ →
∑

l∈A(α)

φl,
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DJ(α),k′ →
∑

l∈A(α)

DJ(α),l + 1 if J (α) ∈ JC(α),

DJ(µ),k′ →
∑

l∈A(α)

DJ(µ),l if J (µ) 6∈ JC(α).

Let

ϕ
(1)
k′ , · · · , ϕ

(gk′ )
k′

be ϕ
(ξ)
l , l ∈ A(α), ξ = 1 · · · , gl and

η
(1)
`,k′ , · · · , η

(gk′ )
`,k′

be η
(ξ)
`,l , l ∈ A(α), ξ = 1 · · · , gl by numbering in the same order for any `.

Then we have

tk′/2 =

gk′∑

ξ=1

(1 + η
(ξ)
2,k′ + · · ·+ η

(ξ)
K−1,k′) + 1,

qk′ + 1 =

gk′∑

ξ=1

ϕ
(ξ)
k′ + K − 1

+

p∑

m=k

(−gk′ +
∑

J
(α)
m >J(µ)

DJ(µ),k′) + φk′ .

By the assumption (I), there exists ξ′ such that 0 ≤ η
(ξ′)
2,k′ + η

(ξ′)
3,k′ + · · · +

η
(ξ′)
K−1,k′ < 2(K − 2). Therefore, by putting

ϕ
(ξ′)
k′ → p + 2η

(ξ′)
2,k′ + · · ·+ (K − 1)(η

(ξ′)
K−1,k′ + 1),

η
(ξ′)
K−1,k′ → η

(ξ′)
K−1,k′ + 1,

we have Statements (d), (f). The end of (I)

(II) Assume 0 ≤ η
(ξ)
2,l + η

(ξ)
3,l + · · ·+ η

(ξ)
K−1,l = 2(K − 2) for all l ∈ A(α) and ξ.
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By the assumption (d), for any J ∈ Rα, we have

tl
2

=

gl∑

ξ=1

(1 + η
(ξ)
2,l + · · ·+ η

(ξ)
K−1,l)

= gl(1 + 2(K − 2))

≤
∑

J>0(µ)

D0(µ),l(2s(i, 0
(µ)) + 1)

+
∑

J>J(µ)

J(µ)∈RJ(µ)

DJ(µ),l(s(i, J
(µ)) + 1)

+
∑

J>J(µ)

J(µ) 6∈RJ(µ),J(µ) 6=0

DJ(µ),ls(i, J
(µ)).

In particular, if some J (µ) are not equal to 0 then s(K, J (µ)) ≤ K − 2.

Therefore we have

gl <
∑

J>J(µ)

DJ(µ),l . (15)

Let

DJ(α),k′ →
∑

l∈A(α)

DJ(α),l + 1 if J (α) ∈ JC(α),

DJ(µ),k′ →
∑

l∈A(α)

DJ(µ),l if J (µ) 6∈ JC(α),

gk′ →
∑

l∈A(α)

gl + 1, φk′ →
∑

l∈A(α)

φl + K − k,

and ϕ
(gk′ )
k′ = p. In addition, let

ϕ
(1)
k′ , · · · , ϕ

(gk′−1)
k′

be ϕ
(ξ)
l , l ∈ A(α), ξ = 1 · · · , gl, and

η
(1)
`,k′ , · · · , η

(gk′−1)
`,k′
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be η
(ξ)
`,l , l ∈ A(α), ξ = 1 · · · , gl by numbering in the same order for any `. Put

η
(gk′ )
`,k′ = 0 for ` ≥ 1. Then we have

qk′ + 1 =
∑

l∈A(α)

gl∑

ξ=1

ϕ
(ξ)
l + p +

p∑

m=k

(−
∑

l∈A(α)

gl

−1 +
∑

J
(α)
m >J(µ)

∑

l∈A(α)

DJ(µ),l)

+
∑

l∈A(α)

φl + p− k + 1− p + K − 1 + #C(α)

=

gk′∑

ξ=1

ϕ
(ξ)
k′ +

p∑

m=k

(−gk′ +
∑

J
(α)
m >J(µ)

DJ(µ),k′) + φk′ .

By Eq.(15) we have gk′ ≤
∑

J
(α)
m >J(µ) DJ(µ),k′ .

The end of (II)

In particular, assume that all J
(α)
m = 0. Let

tk′ → tk′ + 2, t(i, 0, k′) → t(i, 0, k′)− 1,

qk′ → qk′ + k − 1, ci → ci/vk′ .

Then tk′/2 = 1 + η
(1)
2,k′ + · · ·+ η

(1)
k−1,k′ + 1. By putting

η
(1)
k−1,k′ → η

(1)
k−1,k′ + 1,

we have

(d′) t̃(i, 0(k−1), k′) = D0(k′−1),k′(2(i− k′) + 1),

(e′) t(k, 0(k−1), k′) + η
(1)
k−1,k′ = 2,

(f ′) qk′ + 1 = ϕ
(1)
k′

= p + 2η
(1)
2,k′ + · · ·+ (k − 1)η

(1)
k−1,k′ .

If JC(α)is not empty, we need the following Step(∗).
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Step(∗)
Let j

(α+1)
m be any real number for each m with J

(α)
m ∈ JC(α). For m

with J
(α)
m 6∈ JC(α), let j

(α+1)
m = j

(α)
m where J

(α)
m = (J ′, j(α)

m ), J ′ ∈ Rα−1 and

j
(α)
m ∈ R. Consider a sufficiently small neighborhood of bm = j

(α+1)
m and fix

it. Put

J (α+1)
m =

{
(J

(α)
m , j

(α+1)
m

2
) if J

(α)
m = 0,

(J
(α)
m , j

(α+1)
m ) if J

(α)
m 6= 0.

Let t(i, J, (l, τ)) = t(i, J ′, (l, τ)) for J = (J ′, ∗) ∈ Rα+1, where J ′ ∈ Rα.

Change g(i,m) 6= 0 and bm properly, taking into account that the neighbor-

hood of bm = j
(α+1)
m . Let RJ (α+1) be the set of J satisfying

∑
i≤m≤p

J
(α+1)
m =J

g(i,m)ambm

∏
k+1≤i′<i

J
(α+1)

i′ =J

(bm − bi′),

in the formulas ci. That is,

RJ (α+1) = {J ∈ Rα+1 | J = (J ′, 0), J ′ ∈ RJ (α)}.

Let α → α + 1. The end of Step(∗)
Those new parameters defined in Step 2 satisfy Statements (a)∼(f) with

Eq.(9) instead of Eq.(5), since K does not increase.

4.3.4 Transformation(vii)

Assume that C(α) 6= φ. Fix k′ ∈ C(α). (vii) Let {dl = vkdl, 1 ≤ l ≤
K − 1, bk′ = vk, vk” = vkvk”, k” ∈ A(α), bm = vkbm,m ∈ C(α) − {k′}} in

Eq.(9).

(A) If k < k′ ≤ K, then we can assume k′ = k + 1. For k ≤ i ≤ p, let

tk → T, t(i, J, k) → Ti,J , qk → Q, ci → ci/vk,
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by using Eq.(10), (11), (12).

(III) If A(α) 6= φ, do the same procedure (I) or (II) by substituting k′ into k.

Adding it, set φl → (−gl +
∑

J
(α)
k >J(µ) DJ(µ),l)+φl for all l, since k is replaced

by k + 1 later.

If A(α) = φ, then we have all J
(α)
m ∈ JC(α). Therefore, #C = p− (k− 1),

qk + 1 = p + K − k, tk = 2. Put

D
J

(α)
m ,k

= 1, D
J

(α)
m ,l

= 0(l 6= k),

η
(1)
`,k = 0, ϕ

(1)
k = p, φk = K − k.

The end of (III)

Do the procedure Step(∗) and let k → k + 1.

Those new parameters satisfy Statements (a)∼(f) with Eq.(9) instead of

Eq.(5). If we have all J
(α)
m = 0, the above case does not appear.

(B)

Next consider the case K ≤ k′ < p. We can assume k′ = K. If J
(α)
K 6∈

RJ (α), J
(α)
K 6= 0 then there exists i′ < K such that J

(α)
i′ = J

(α)
K because of the

Case 2 assumption. So the case results in (A).

Consider the case J̃ := J
(α)
K ∈ RJ or J̃ := J

(α)
K = 0. By the trans-

formation (vii), we have cK = vk(aKg(K, K) + · · · ). Now, there is no aK

in the formulas ci, i ≥ K + 1. So, change the variable from aK to dK by

dK = aKg(K, K) + · · · : cK = vkdK . Since aK , bK have disappeared in all

formulas ci, we change the variables from bk, · · · , bK−1 to bk+1, · · · , bK . Also

we change J
(α)
i and RJ (α), properly.

Let

tk → T, t(i, J, k) → Ti,J , qk → Q, ci → ci/vk,
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for K + 1 ≤ i ≤ p, by using Eq.(10), (11), (12).

Proceed Step (III) and Step(∗). Let

k → k + 1, K → K + 1,

t1 → t1 + 4, q1 → q1 + 2(K − 1),

and we have Statements (a)∼(f).

Assume that all J
(α)
m are 0. Then we have A(k) = φ. Let

tk = 2, t(i, 0(k−1), k) = 2(i− k), qk = p− 1,

ci → ci/vk, D0(k−1),k = 1, D0(k−1),l = 0(l 6= k),

η
(1)
`,k = 0, ϕ

(1)
k = p.

By t(k, 0(k−1), l) = 0(2 ≤ l ≤ k − 1) and (e’), we have η
(1)
k−1,l = 2. Also we

obtain t(k + 1, 0(k−1), l) = t̃(k + 1, 0(k−1), l)− tl/2 = 2, by using (d’) and (e’).

Therefore before Step(∗), we have

(d′) t̃(i, 0(k−1), k) = D0(k−1),k(2(i− k) + 1)

= 2(i− k) + 1,

(e′) t(k + 1, 0(k−1), l) + η
(1)
k,k = 2 + 0,

(2 ≤ l ≤ k),

(f ′) qk + 1 = ϕ
(1)
k = p

= p + 2η
(1)
2,k + · · ·+ (k − 1)η

(1)
k−1,k.

After Step(∗), we have t̃(i, 0(k−1), k) = t̃(i, 0(k), k) and t(i, 0(k−1), k) =

t(i, 0(k), k). Let

k → k + 1, K → K + 1,

t1 → t1 + 4, q1 → q1 + 2(K − 1).
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Those new parameters satisfy Statements (a’)∼(f’).

By repeating Step 3, the conditions Case 2 (vi) and (vii)(A) disappear,

whose transformations (vi) and (vii)(A) in Case 2 satisfy Eq.(5) instead of

Eq.(9). So, K is increased with these finite steps. K = p + 1 completes the

blowing-up process.

Proof of Main Theorem: Part 2

To obtain the maximum pole and its order, we prepare the following four

lemmas.

Lemma 1

If all J
(α)
m = 0, then for each 1 ≤ k ≤ p, we have the poles,

−p
2
,

−p+k
4

,−p+2k
6

,

−p+2k+k+1
8

,−p+2k+2(k+1)
10

,
...

−p+(i−1)(2k−2+i)+k+i−1
4i

,

−p+(i−1)(2k−2+i)+2(k+i−1)
4i+2

,
...

− (p−k−1)(k−2+p)+p−1
4(p−k)

,

−p+(p−k−1)(k−2+p)+2(p−2)
4(p−k)+2

.

which are related to vk.

Proof The proof is obtained by Statements (a’)∼(f’) in Part 1. Q.E.D.

Lemma 2 If am, bm > 0, m = 1, · · · , M , then we have
PM

m=1 amPM
m=1 bm

≥ min{am

bm
|m =

1, . . . , M}.

Lemma 3

Let K ∈ N. Assume that ηk′ ∈ Z+, 2 ≤ k′ ≤ K − 1 satisfy 0 ≤ η2 ≤ 2,

· · · , 0 ≤ η2 + η3 + · · ·+ ηK−1 ≤ 2(K − 2). Let

t := 1 + η2 + · · ·+ ηK−1,
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ϕ := p + 2η2 + · · ·+ (K − 1)ηK−1,

and

t = 2i + m, i ∈ N, m = 0 or 1.

Then we have

ϕ

2t
>

p + i2 + im

4i + 2m
=

p + 1 + 1 + 2 + 2 + · · ·+ (i− 1) + (i− 1) + i + im

2t

Proof It is necessary only to compare those numerators. Q.E.D.

Remark The poles

−p + i2 + im

4i + 2m

in Lemma 3 are equal to those for v1 (k = 1) in Lemma 1.

Lemma 4 If some J
(α)
m are not equal to 0, then the poles of (6), (8), (13)

and (14) are smaller than one of those in Lemma 1.

Proof We use the same notations in Part 1 of the Main Theorem’s

proof.

By using Statements (e) and (f), we have

ql + 1

tl
≥

∑gl

ξ=1 ϕ
(ξ)
l

2
∑gl

ξ=1(1 + η
(ξ)
2,l + · · ·+ η

(ξ)
K−1,l)

,

where ql+1
tl

is in Eq.(6), Eq.(8) or Eq.(14) for 2 ≤ l ≤ k − 1. By Lemma 2,

we have

ql + 1

tl
≥ min

1≤ξ≤gl

{ ϕ
(ξ)
l

2(1 + η
(ξ)
2,l + · · ·+ η

(ξ)
K−1,l)

}.

Therefore, by Lemma 3, one of the poles for v1 in Lemma 1 is greater than

− ql+1
tl

.
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Next consider the poles in Eq.(13).

(I’) Assume that there exist l′ ∈ A(α) and ξ′ such that 0 ≤ η
(ξ′)
2,l′ + η

(ξ′)
3,l′ +

· · ·+ η
(ξ′)
K−1,l′ < 2(K − 2). Then

∑
l∈A(α) ql + K − 1 + #A(α) + #C(α)

∑
l∈A(α) tl + 2

≥
∑

l∈A(α)(ql + 1) + K − 1∑
l∈A(α) tl + 2

≥
∑

l∈A(α),l 6=l′(ql + 1) + (ql′ + 1) + K − 1∑
l∈A(α),l 6=l′ tl + tl′ + 2

≥ min{ql + 1

tl
,
ql′ + 1 + K − 1

tl′ + 2
| l ∈ A(α), l 6= l′}

≥ min{
∑

ξ ϕ
(ξ)
l

tl
,

∑
ξ ϕ

(ξ)
l′ + K − 1

tl′ + 2
| l ∈ A(α), l 6= l′}

≥ min{ min
l∈A(α),l 6=l′,ξ

ϕ
(ξ)
l

2(1 + η
(ξ)
2,l + · · ·+ η

(ξ)
K−1,l)

,

min
ξ 6=ξ′

ϕ
(ξ)
l′

2(1 + η
(ξ)
2,l′ + · · ·+ η

(ξ)
K−1,l′)

,

ϕ
(ξ′)
l′ + K − 1

2(1 + η
(ξ′)
2,l′ + · · ·+ (η

(ξ′)
K−1,l′ + 1))

}.

Therefore, by Lemma 3, we have the poles which are related to v1 in Lemma

1 and are greater than the pole in Eq.(13).

(II’) Assume that for all l ∈ A(α) and ξ, we have 0 ≤ η
(ξ)
2,l + η

(ξ)
3,l + · · · +

η
(ξ)
K−1,l = 2(K − 2) and some J (µ) are not equal to 0.

Then gl <
∑

J>J(µ) DJ(µ),l and

∑
l∈A(α) ql + K − 1 + #A(α) + #C(α)

∑
l∈A(α) tl + 2

≥
∑

l∈A(α)(ql + 1) + K − 1∑
l∈A(α) tl + 2
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≥ min
l∈A(α)

{
∑

ξ ϕ
(ξ)
l

tl
,

∑
ξ ϕ

(ξ)
l + p− k + 1 + K − 1

tl + 2
}

≥ min
l∈A(α)

{
∑

ξ ϕ
(ξ)
l

tl
,
p

2
}.

So by Lemma 3, we have a greater pole with respect to v1 in Lemma 1

than −
P

l∈A(α) ql+K−1+#A(α)+#C(α)

P
l∈A(α) tl+2

in Eq.(13).

Q.E.D.

Therefore the maximum pole is chosen from the followings:

−p

2
,−p + 1

4
,−p + 2

6
,

−p + 4

8
,−p + 6

10
,

...

−p + i2

4i
,−p + i2 + i

4i + 2
,

...

−p + (p− 1)2

4(p− 1)
,−p + (p− 1)2 + (p− 1)

4(p− 1) + 2
.

Some computations show that

p + i2 + 2

4i + 2
,

where i = max{j ∈ N | j2 ≤ p} is the maximum pole. If i2 = p then we have

−p+i2

4i
= −p+i2+i

4i+2
. So the order of the maximum pole is

{
2 if i2 = p,
1 if i2 6= p.

The end of proof of Main Theorem
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5 Conclusion

In this paper, we introduce our inductive method for obtaining the poles

of the zeta function for the three layered neural network. The blowing-up

process of the method enables us to obtain the stochastic complexity of the

three layered neural network asymptotically. So, we show that this algebraic

method can be effectively used to solve our problem in the learning theory.

Also, the purpose of obtaining the maximum poles of zeta functions for

the leaning theory may be considered as a new problem in mathematics,

since most of Kullback functions’ singularities have not been investigated,

yet. The method in this paper would be useful for calculating asymptotic

forms for not only the layered neural network model but also other cases.

Our aim is to develop the mathematical methods in that context.

Finally, we remark that λ in Main Theorem 1 becomes the same value as

the upper bound
√

p

2
in the paper [15], if p = i2.
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