微分積分学 A 中間試験問題

2015年6月4日 第1時限施行 担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず. 解答用紙のみを提出し、問題用紙は持ち帰ること.

問題 1 は全員が答えよ. 問題 2 以降については, 2 題以上を選択して答えよ. なお, 必要におうじて $x>0, n\in\mathbb{N}$ に対して,

(*)
$$(1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{6}x^3$$

を用いてよい.

問題 1.

次の各問いに答えよ. ただし、答えのみを書くこと.

- (1) 実数の部分集合 $A \subset \mathbb{R}$ について、次の問いに答えよ.
 - (a) Aが有界であることの定義を答えよ.
 - (b) $a \in \mathbb{R}$ が A の下限であること、つまり $a = \inf A$ であることの「論理記号を用いた」定義を答えよ。
- (2) 実数列 $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ について, 次の問いに答えよ.
 - (a) $\{a_n\}_{n=1}^{\infty}$ が $a \in \mathbb{R}$ に収束すること, すなわち, $\lim_{n \to \infty} a_n = a$ の ε -N 論法による定義を答えよ.
 - (b) $\{a_n\}_{n=1}^{\infty}$ が $-\infty$ に発散すること、すなわち、 $\lim_{n\to\infty}a_n=-\infty$ の ε -N 論法による定義を答えよ.
 - (c) $\{a_n\}_{n=1}^{\infty}$ が (広義) 単調増加であることの定義を答えよ.
 - (d) $\{a_n\}_{n=1}^{\infty}$ が Cauchy 列であることの ε -N 論法による定義を答えよ
- (3) 有理数と実数の違いに関係する次の定理の主張をそれぞれ答えよ.
 - (a) 実数の連続性
 - (b) Borzano-Weierstrass の定理
 - (c) 実数の完備性
 - (d) アルキメデスの原理
- (4) 次の集合の上限を求めよ. なお, 答えのみを書くこと.
 - (a) $\{(-1)^n : n \in \mathbb{N}\}$
 - (b) $\left\{2 \frac{1}{n} : n \in \mathbb{N}\right\}$
 - (c) $\{x \in \mathbb{Q} : x^2 \ge 0 \text{ biso} x \le 0\}$
 - (d) $\{x \in \mathbb{Q} : x^2 < x + 1\}$

- (5) 次の性質 (A), (B) をみたす数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ の例をあげよ.
 - (A) すべての $n \in \mathbb{N}$ について $a_n < b_n$
 - (B) $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ はどちらも 1 に収束する.
- (6) 次の極限を求めよ. なお, 答えのみを書くこと.
 - (a) $\lim_{n \to \infty} (\sqrt{n^2 + 3n} n)$
 - (b) $\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3}$
 - (c) $\lim_{n\to\infty} \frac{a^n-b^n}{a^n+b^n}$, ただし, a,b>0 は定数
 - (d) $\lim_{n \to \infty} \left(\frac{2n}{2n+3} \right)^n$
 - (e) $\lim_{n \to \infty} \frac{n^2}{e^n}$

以下余白 計算用紙として使ってよい.

問題 2.

 $\sup(-2,3)$ を求め、その証明を与えよ.

問題 3.

自然数 n に対して $a_n=\frac{3n+5}{2n-3}$ とおく. $\lim_{n\to\infty}a_n$ を求め, ε -N 論法による証明を与えよ.

問題 4.

数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ は, それぞれ $a,b\in\mathbb{R}$ に収束するとする. このとき, 数列 $\{a_n+b_n\}_{n=1}^{\infty}$ は a+b に収束することを ε -N 論法を用いて示せ.

問題 5.

数列 $\{a_n\}_{n=1}^{\infty}$ は, $a \in \mathbb{R}$ に収束するとする. このとき, $k \in \mathbb{R}$ に対して数列 $\{ka_n\}_{n=1}^{\infty}$ は ka に収束することを ε -N 論法を用いて示せ.

以下余白 計算用紙として使ってよい.

微分糖浴A 中間试驗 解您何川

- [] (1) [a) =M>O S.t. ∀a∈A に対して |a|≤M

 - (2) (a) YE >0 1=対して 3No EIN S.t. YN EIN1-対して
 NZNo => 1an-a1<E
 - (b) YK>Oに対してPNOEN St. YneINに対して nzNo=> an<-K
 - (C) YneINIEXTUR an Eantl
 - (d) ¥ E>01=対17 = No EN S.t. Yn,m EN1文17 No m = No
 - (3) (a) 空でない有界な部分集合ACRには 上門良 supAが存在する。
 - (b) 数列「angual が有界列ならば、 収末な部分列(angla)が存在する。
 - (c) 数引 fanher が収ま引であることと Cauchy引であることは回値である。
 - (d) 4870 12村CT 3NOEN S.t. ENO>1

(4) (a) 1 (b) 2 (c) 0 (d)
$$\frac{1+\sqrt{5}}{2}$$

(5)
$$a_n = 1 - \frac{1}{n}$$
, $b_n = 1 + \frac{1}{n}$

(6)
$$(a) \frac{3}{5} (b) \frac{1}{3} (c) \frac{1}{-1} (a>b)$$

 $(a) e^{-\frac{3}{2}} (e) 0$

d

2