| 第1章 実数と数列の極限                                                   |          |
|----------------------------------------------------------------|----------|
|                                                                |          |
| 定義1.1 (円周率)<br>すべての円について、円周率元を<br>円周の長さ<br>直径                  |          |
| て実める。                                                          |          |
| 注意 1.1<br>どの円についても 直径 は答し                                      | ۱۱. 🛭    |
| 注意1.2<br>A=Bは「AとBが写い、」と<br>「AもBで定ぬ」の2つの意味がで<br>この違いを明確におため、この謎 | 胡。       |
| では、<br>A=B AとBが等しい<br>A:=B AをBで定める<br>と書きわけることにする。             |          |
| 70024110 C (- 40.                                              | <u> </u> |

| 半径1の円の円周の長立を求めて,2で                                                           |
|------------------------------------------------------------------------------|
| われば、 Tは彰記はず                                                                  |
| へーどうけ、て円周の長さを求めるか?                                                           |
| (Archimedes (PILXTZ) OP17P)                                                  |
|                                                                              |
|                                                                              |
| S, S,                                                                        |
| 0. XX21 00. 44 72- (AN - E-E+                                                |
| 5: 半径1の円に内接する正6角形の周の長さ<br>5: 外接な                                             |
|                                                                              |
| ⇒ SI S ZT S SI S E E E E E E E E E E E E E E E E                             |
| でがは」の意味 円目の長さ                                                                |
| 1. Si E \$ \$ \$ \$ 3.                                                       |
| 大図よ),一旦の長さは                                                                  |
| $2 \times 1 \times \sin(\frac{2\pi}{6 \times 2}) = 2 \sin \frac{\pi}{6} = 1$ |
|                                                                              |
| 三角形の神像 円の報子 海市三等分類                                                           |
| となる。よって 51=6×1=6 となる。                                                        |
| 2. 5、を非める。                                                                   |
| 左回より、一世の長さは                                                                  |
|                                                                              |
| $\frac{2\pi}{2\pi} = \frac{2\pi}{4\pi} = \frac{2\pi}{6} = \frac{2\pi}{3}$    |
| 6                                                                            |
| となる。よって Si=6×等=43となる。                                                        |
|                                                                              |

| 3.                                                                                                 |             |
|----------------------------------------------------------------------------------------------------|-------------|
| Sz: 半径1の円に内接移正12角                                                                                  | 形の周の長さ      |
| S2: 外梅醇                                                                                            |             |
| $\Rightarrow$ $S_2 \leq 2\pi \leq S_2$                                                             |             |
| Sa: 半径10円に内接打至24年                                                                                  | 形の周の長さ      |
| Sa: 从 外接 33                                                                                        | N.          |
| $\Rightarrow$ $s_3 \leq 2\pi \leq S_3$                                                             |             |
| この操作を続けると、自然影                                                                                      | スカに対して      |
| Sn: 半径1の円に内持移正6×2                                                                                  | い一角形の月の昼せ   |
| Snow 外接する                                                                                          | Mr.         |
| 二 証明できる主張で重要なも                                                                                     | ก           |
| 定理1.1 (Archimedes)                                                                                 |             |
| すべての自然教のに対して                                                                                       |             |
| 2 _ 1 , 1                                                                                          | (I. N       |
| $\frac{2}{S_{n+1}} = \frac{1}{S_n} + \frac{1}{S_n}$                                                | (1)         |
| Smil = Snti Sn                                                                                     | (2)         |
| が成り立つ。                                                                                             | <b>(3</b> ) |
| <b>管正日</b> 月                                                                                       |             |
| 1. Sh Eticks, 内接移正6x2                                                                              | 2"- 角形の     |
| 一辺の長さは、右回に)                                                                                        |             |
| $2 \times 1 \times \sin\left(\frac{\pi}{6 \times 2^{n-1}}\right)$ 1                                |             |
| 1012                                                                                               | 7           |
| 2 to 302                                                                                           | 1 27        |
| $s_n = 6 \times 2^{n-1} \times 2 \sin\left(\frac{\pi}{6 \times 2^{n-1}}\right) = 6 \times 2^{n-1}$ | 6x2h-1      |
| (6k2m-1) - 0 k2                                                                                    | SIN (3x2h)  |
| となる。 しの数 へしゅんさ                                                                                     |             |
|                                                                                                    |             |

| 2. Sn Exxx3. 外接限正6x2 <sup>n-1</sup> 角形の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 一世の長さは、右図より                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2x1xtan ( The standard )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24302° (x24-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $S_n = 6 \times 2^{n-1} \times 2 + an \left( \frac{\pi}{6 \times 2^{n-1}} \right) = 6 \times 2^n + an \left( \frac{\pi}{3 \times 2^n} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5月の教 ~上の長さ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| となる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3. (1) を示す、俗角の公式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\cos\left(\frac{\pi}{3\chi 2^{n}}\right) = 2\cos^{2}\left(\frac{\pi}{3\chi 2^{n+1}}\right) - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\sin\left(\frac{\pi}{3\chi 2^n}\right) = 2\sin\left(\frac{\pi}{3\chi 2^{n+1}}\right)\cos\left(\frac{\pi}{3\chi 2^{n+1}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 尹)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1,1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\frac{1}{\sin \frac{1}{\sin \frac{1}{\cos $ |
| $\frac{\cos\left(\frac{\pi}{3x^{2n}}\right)+1}{\cos\left(\frac{\pi}{3x^{2n}}\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $6 \times 2^n \sin \left( \frac{\pi}{3 \times 2^n} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $=2\cos^2\left(\frac{\pi}{3\times 2^{n+1}}\right)$ /:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\frac{2 \cos^2\left(\frac{\pi}{3 \times 2^{n+1}}\right)}{6 \times 2^{n+1} \sin\left(\frac{\pi}{3 \times 2^{n+1}}\right) \cos\left(\frac{\pi}{3 \times 2^{n+1}}\right)} (常的)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 2 - 2<br>- 6X2mti tan (元<br>3x2mti) - 5mti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| かる書いれる                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7 11 1 4 2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|   | 4. (2)を示す、信角の公式より                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|   | $S_{M1}S_{n} = \left(6 \times 2^{nH} + an \left(\frac{\pi}{8 \times 2^{nH}}\right)\right) \left(6 \times 2^{nH} + an \left(\frac{\pi}{8 \times 2^{nH}}\right)\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2^n \sin\left(\frac{\pi}{3\kappa 2^n}\right)$     |
|   | $= \left(6 \times 2^{\text{MH}} \frac{\sin\left(\frac{\pi}{3 \times 2^{\text{MH}}}\right)}{\cos\left(\frac{\pi}{3 \times 2^{\text{MH}}}\right)}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$ |
|   | $\times \left(6 \times 2^{\frac{1}{1}} \right) \sin \left(\frac{7c}{3 \times 2^{\frac{1}{1}}}\right) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05 (3 x2 ht)                                       |
|   | (二倍)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4公式)                                               |
|   | $= \left(6 \times 2^{N+1} \sin \left(\frac{\pi}{3 \times 2^{N+1}}\right)\right)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = S <sub>N+1</sub>                                 |
|   | が得られる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ď                                                  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 在明经了0倍味                                            |
|   | 定理 1.1 岁)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |
|   | 2/5mm = /sn + /sm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |
|   | $\frac{ 2/S_{n+1} }{ S_{n+1} } = \frac{ S_{n+1} }{ $ |                                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
|   | た"から、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |
|   | $\int_{N+1}^{\infty} = \frac{2}{1/\sin + 1/\sin x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
| - | $S_{n+1} = \sqrt{S_{n+1} S_n}$ ,<br>$S_1 = 6$ , $S_1 = 4\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |
| - | ( Si=6, Si=4/3<br>~43.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |
| - | C 49.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |

| 例1.                          |                       |           |                       |  |
|------------------------------|-----------------------|-----------|-----------------------|--|
| n=2のとき、52と52を主める。            |                       |           |                       |  |
| 3                            | $=\frac{2}{\sqrt{s}}$ |           | 2                     |  |
|                              | 3,+                   | /s,       | 43 + 1/6              |  |
|                              | =2+(1+                | 43+(+6)   | ~ 6.4310              |  |
|                              |                       |           | 近似。                   |  |
|                              |                       | ~√6.43lox | 6 2 6.2117            |  |
| ٤                            | \$3.                  |           |                       |  |
| n                            | Sn                    | 3n        | ての評価                  |  |
|                              | 6.0000                | 6.9282    | 6.0000 € 2 ₹ ≤ 6 9282 |  |
| 3                            | 6.2117                | 6.4310    | 6.211752R = 6.4310    |  |
| 3                            | 6. 2654               | 6.3197    | 6.2654521 € 6.3197    |  |
| 4                            | 6. 2789               | 6.2926    | 6.2789 527 € 6.2926   |  |
| 5                            | 6 2830                | 6.2873    | 6.2830 ≤ 27 € 6.2873  |  |
|                              |                       |           |                       |  |
|                              |                       |           | 1436 もから              |  |
| _ て ≏                        | 3.19がわ                | かる。       |                       |  |
| 4.00                         | m7.                   |           |                       |  |
| 〈問題点〉                        |                       |           |                       |  |
| ● fsnfner, fsnfnerは円周率の2倍に   |                       |           |                       |  |
| 近づいているのか?                    |                       |           |                       |  |
| 1. s= lim sn S= lim Snが存在すれば |                       |           |                       |  |
| 定理1.1のは1でN→のとして              |                       |           |                       |  |
| $s^{\lambda} = S_{S}$        |                       |           |                       |  |
| だから(stoを示せば) s=らがわかる。        |                       |           |                       |  |

しかし。この存在する」はどうちて示すのか?

2. そそそも円周の長さのような曲線の長さはどうちって定めるのか?

(窓:極限と積分)

3. では. 極限とは何か? (答:実数)

4. 実数とは何か? 有理数とはどこが違うのか?

〈微分積分学ABの目標〉

●高校で学人だ教学(教工)を厳密にくみたて 直す。

の実数とは何か?からはじめて、微分積分

 $\int_{0}^{1} x^{2} dx = \int_{0}^{1} \left(\frac{1}{3}x^{3}\right)' dx = \left[\frac{1}{3}x^{3}\right]_{0}^{1}$ 

で面積となど関係的の改建さ、

がなぜ正しいか?を眺める(すべてを厳密に示すのはとても大変なので、まずは雰囲気をつかむこと)
の高校までできんだ計算チ法は、するが出来ることが前提である。自信のない学生は、西己布の補助資料等でよく復習ないと、なか、格数量・特別試験では、主に大学入試標準問題相当の問題がでると思、てよい、高校教学の数判者例題がいの問題は、何もみなくても自信を持て説明で記ようになることが望ましい。

| 31                     | .2 5                                           | と数の                   | 構成  |                                           |             |
|------------------------|------------------------------------------------|-----------------------|-----|-------------------------------------------|-------------|
|                        | +                                              | -                     | X   | ÷ (08年9)                                  | 不等号         |
| 创数                     | 0                                              | ×                     | 0   | X                                         | 0           |
| 整數                     | 0                                              | 0                     | 0   | ×                                         | 0           |
| 有理數                    | 0                                              | 0                     | 9   | Q                                         | 0           |
| 实教                     | 0                                              | 0                     | 0   | 0                                         | 0           |
| 複素数                    | 0                                              | 0                     | 0   | Q                                         | X           |
| 思理<br>の 実<br>で<br>く De | 数:<br>和 No | · 有的<br>· = ,<br>· of | 教かり | サ無理数でないもの<br>は無理数<br>と考えが等<br>ドア〉<br>てみる。 | .?<br>₩\$3. |
|                        |                                                | 1/2                   |     | √2 有                                      | →<br>理數直統   |
| 3:                     | J47.3                                          | }                     | 3.  | つかうない                                     |             |
|                        | レ                                              |                       |     | しからない                                     |             |
|                        | 甜                                              | 弘                     | ħ   | 黑理数.                                      |             |
| int                    | どのお                                            | かに背                   | 好の  | 言葉でいない                                    | ぎょいかっ       |

〈集合論の基本費〉 ものの集制を集合といい、そのもの一つ 一つを要素、元という。 例1.2 N:自然数全体の集合 ℤ:整數全体の集合 Q: 有理数全体の集合 R: 実数全体の集合 ○:複素数全体の集合 中: 動元がつつもない集合(空輪という) aが集合Aの事業、元であとき、Q∈Aとかく。 例 1.3 -3 EZ, -3 &N, 7 EQ, 13 &Q. 集合は、るいうしいしと中かっこを用いて 者にとが多い。 13/1.4 a, beR is対して (a,b):= {x = R : a < x < b } 元が何か?をかく 条件をかく. [a,b]:= {文eR: asxsb} とかく。(a,b)を開立間、[a,b]を 閉区間という。 0

集会Aが集会Xの部分集合であるとは、 すべてのQeAに対してQeX」が成り立つ ことをいう。このとき、ACX とかく。 例1.5 NCZ, ZCQ 集会Xの部分集会 A,B に文字して 和集会AUB と共通部分AOBを AUB = {xeX: xeA # to to xeB AnB := {xex: xeA to xeB} と定める. AAB AUB (Dedekind ntn 1897) 定義12 (在理数の切断) Qの部分集をA.Bが有理教の切断 1. AUB= Q Esser) 3. ATTORAGA, DEBISHIZA Y D TENSO. 4. Aに最大値はない。すなわち、すべての a eAbottl Ta'eAt 存在LT a < a'. このとき、〈A,B〉とかにとにする。

例1.6 A1 := {a = Q: a < 1} B, := {be@: b= 1} とすると、〈A、B、〉は有理数の切断に taloこのとき、Biに最小値立がある。 そこで〈A,B,>=主とみなすことにする 例1.7 B = {aea : a>0 50 02>2} とおと〈Az, Bs〉は有理数の切断に なる。このは、Baに最小値はなく、 AzとBo境目は区になている。 A2 IN B2 えニで(A、B)=12とみなすことに移。 四 (AIB) を有理数の切断としたとき、 Bに最い値があい有理数直線を切ったときに ぶつかる (有理教) Bに最小値がない:有理数直線を切ったときに るいかない (無理教)

定義1.3 (実教) 有理数の切断を実験という。 次に有理教の切断を用いて、実教の四則造質 絶対値を定義しなければいけない、このことは 小平 邦彦,「解析入門」」岩波書座、2003 を終醒せま 定義1.4 (順序 関係) X, yelkを有理数の切断を用いて x=(A,B), }=(A',B') EAC. x=4 (ACA' +> A'CA) x=4 (ACA' Xくり (素、Xがかの火キリ. と定義 好。 定理1.2(有理数の細密性) すべてのス.yeRに対してなくなからば、 ある そのが存在して 2くをくなとできる。 面 証明は、Webの講義トトを参照せよ、 1371.8 x:= 12, 4:= 13 2 t3 2 t. 8:= 1.6 EQ とすればなくなくなとできる。定理1.2は、 この場合ではよが「こより少しでも大きければ、 いつでも メくなくなとなる まとの きみつける ことができることを主張している

§1.3 実数の性質と上限,下限 §1.2で実数とは何か?を考えた。実数と 有理敬は何がちがうか?を考える。 〈上限〉  $(0,1)=\{x\in\mathbb{R}:0<x<1\}$ には最大値はないが、1が電大値に 似た性質」を持っている。このことをどうだって 教学の言葉で表現するか?、と考える。 〈論理哆遊〉〈husia教教門A 焦白A に対し ∀a∈A:すべての(任意の) aeAに対して ∃ a EA: ある a EA が存在して Et <. VIt foralls, for any an AEUCO) 近したもの、3は「exit」のEをいくり近したもの である。 定義1.5 (有界) A CIRに対して、Aが上に有界であるとは TazMERが存在して、すべてのaeAb対して USMが成りつことさいけ、これを =MER s.t. VaeA 1=X+LZ a ≤M とかく、このときのMをAの上界という。 Aが下に有界であるとは、「あるMERが存在 して、すべてのae Al文はして Qzmが成位つ」 ことをいう。これを FIMER s.t. FACA ICHICT QZM

| とかく。このと生のかをみの下界という。            |          |
|--------------------------------|----------|
| Aが有界であるとは、「あるM>Oが存在            | 17       |
| すべてのQEAに対して lalsMが成り立つ」:       | 35       |
| をいう。これを                        |          |
| ■M70 s.t. YaeA に対して lalsM      |          |
| とかく。                           | <b>1</b> |
| 1311.9                         |          |
| A:=(0.1) は有界である                | 70       |
| REIS                           | Stand    |
| M=2 >0 とおく、すると ae(0.1)に        | 対な       |
| て IQISISM が成り立つ。               |          |
| 1311.10                        |          |
| B:=(0.00)は上に有界ではない             | 120      |
| 何1.11                          | QL3      |
| C:=(-00,3)は下に有果ではない            | 122      |
| 定義 1.6                         |          |
| ACRE対して、Aの上界の集合Au              | ٤        |
| 下界の集合 Aleをそれごれ                 |          |
| Au := {MER: VaeA1= xx+LZ as M} |          |
| Ae := IMER: YaeA 1= XXXII azmi |          |
| と定める.                          | 122      |
| 漨.1.3                          | 1000     |
| 定義1.6の記号は一般的ではないので             | ₹.       |
| 使うときは上界の集合、下界の集合と              | - 10     |
| 明章2730℃                        |          |
|                                |          |
|                                | -        |

| 何儿2                                    |
|----------------------------------------|
| A:=[0.1)となどき、Aの上界の集をAu,                |
| 下界の集合Aeは                               |
| Au := {M ∈ R : Ya∈[o.1) 1= x=12 a≤M}   |
| =[1, \infty]                           |
| Ae = {m =  R: \ae[0.1) 10 total 2 azm} |
| $=(-\infty,0]$                         |
| 243. W                                 |
| 定義 1.7 (最大·最小)                         |
| ACRに対して、Aの一番だい数と                       |
| 一番かさい勢をそれぞれAの最大値、最か値                   |
| Elll, MaxA, minA Est.                  |
| 何1.13                                  |
| A:=[01] 1つ対して、max Aは存在しない。             |
| min A=0 2 723.                         |
| 定套1.8 (上限,下限)                          |
| AOR は文字して、Aの上限 sup A, 下限infA           |
| き、Aの上界の集合Au,下界の集合AuをAniで               |
| sup A := min Au                        |
| inf A := max Ae                        |
| (二十)定義 招。                              |
| ● Sup Aは「Aよりも大きい数で最も小ない数」              |
| ということである。                              |
|                                        |
|                                        |
|                                        |

〈論理記号と上限,下限〉 ACRIC女(て、 X := SUPA を論理記号で かくと 1. taeAに対けて asd (XはAの上界である) 2. ¥8>01=\$\$L7. = Q. € A s.t. a-E. C.Q. (みよ)少してもかさいと、人の上界になうない)となる。 べーをのこと 定理1.3 (実数の連続性) 上に有界な空でない実数の部分集合 ACR は、実数の上限SupAが存在する。 谜(4 定理1.3の実数を有理数」にかないとは できない(反例: 2000:202~2()つまり 定理1.3は実験と有理数の置いは表している面 実数の連続性から、次の重要な定理が得られる。 定理 1.4 (Archimedes の原理) YEZO 1-女+ CT, 3No EN s.t. ENO>1 が成り立つ。すなわち、(どんなりはな)すべての 正の字数 を>のに対しても、(けかなる) 自然教 No EINをうまく決めれば EN071 とできる. 10 定理1.3,14の証明は講義1一トさ 為四せよ。

## 何114 A:= Co.1) に対すして、SupA=1となる。 証明 1. Yae Aに対して、 asiを示す。 A=[0.1) \$1) 0=a<1 2 73 55 ひらし も成り立つ。 2. \$ 870 1=\$\$1(7 300 CA s.t. 1-8<90 を示す。つまりをかを先によれて、 1- E < Q。となる Q。EAを探す 右图より 0 1-2 1 $Q_0 := \max \left\{ \frac{1}{2}, 1 - \frac{\varepsilon}{2} \right\}$ となくとすらのくしだから、CoEAとなり 1-E < 1- = = a0 となるので、一とくなっか成り立つ。 1. 2. より supA=1となることが示された。 注意(5 存在を示すということは一成りなっちのもつける」 と同じことである。例に14の証明では、 1- E<a。となるのとみをみつけれずまい。 QoEAという条件から、OSQoCIをみもに 1-2<んのとかるのをみつければより

| 注意1.6 1311.14の就的で、Qo=1-至とすると、 とつのが大きいときに、1-至くのとなって しまうことがある。すると Qo 各 A となって しまうので、これをP方ぐために、 Qo:=max {1/2, 1-至{2} としてもる。 |
|--------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |

多1.4 数列の核眼 く数列の極限、EN論法) 数列「anliedが a∈Rに収束なとは 「lan-al がいを大きくするとのに近づくこと」 であった。このりを大きくそのに近づく をどう厳窓に表現すればよいか?

定義 1.9 (教列の極限, E-N論法) 数列 fantienが aERに収束なとは、 「任意の正の数をつのはけて、ある金数 No EINが存在して、がこのnENに対して nzNoなるば lan-al <をが成功つ」 ことをいう。これを論理記号でかくと ¥E>Oに対して、3NoEN S.t. MENINETUR nz No => 1an-a1< 8 となる。このとき、lim an=acか、 an + a (n+00) En<. 12

〈院養19の意味〉 |ロハー の | かの しばかく (とはいらけてはない

先にと>0を仕境に対して、nを大きくしたとき 1Qn-Q1<81=tx3ようにできる。

EFI)後にえらぶ、No EIN より失の T Transin.

Eに対応してNoを決めればよい、

○皮義をいくう者いても、これはわかりにくい (定義した人が天才なのだから、わかなくつ当然) 例を財産的て 感覚をつかもう 例1.15 lim 1=0 が成り立つ 0 註四月 上 定義のNo €IN をみつけるために、その0 に対して、No EN をあとできめることにする。 YneNi対して、NZNoを仮定すると 11-01= 1= No 243. No < E 2 63 No ENE えるべば が成性つ、病<EE Noについて解いてみると、No>亡となる。 2、 YE >0 に対すして、 No:= [+]+1 EN とかく、ただし〔一〕はよび成えない 最大の整数であり が成り立つことに注意しておく。弱と、 ¥neNに対い、nzNoな引ぎ  $\left|\frac{1}{n}-0\right| = \frac{1}{n} \leq \frac{1}{N0} \quad \left(:: n \geq N_0\right)$   $< \frac{1}{\sqrt{\epsilon}} \quad \left(:: |V_0| \geq \frac{1}{\epsilon}\right)$ となるのではいかこのが成り立つ。

| lim 2n = 2 が成1位つ. 面 部1                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                        |
| होस्विन                                                                                                                |
|                                                                                                                        |
| 1、定義のNo EINE>かけなために、VE>OIS                                                                                             |
| 対して、No EN をあとで決めることにする。                                                                                                |
| 女n ∈INに対して、NZNoを仮定すると                                                                                                  |
| $\left  \frac{2n}{n+1} - 2 \right  = \left  \frac{2(n+1)-2}{n+1} - 2 \right $                                          |
| $\left  \frac{2n}{n+1} - 2 \right  = \left  \frac{2(n+1)-2}{n+1} - 2 \right $ $= \left  2 - \frac{2}{n+1} - 2 \right $ |
| $=\frac{2}{N+1}\leq \frac{2}{N-1}$                                                                                     |
| Eti3. Noti < E) CTIS NO EN EZ3                                                                                         |
| 1°(±"                                                                                                                  |
| $ \frac{2n}{n+1}-2  \leq \frac{2}{N_0+1} < \varepsilon$<br>が成功力。 $\frac{2}{N_0+1} < \varepsilon \in N_0 = 2$ いて        |
| 100-1                                                                                                                  |
| とくと Noフェーー となる。                                                                                                        |
| 2. ∀e>01===== (=)+1 AN                                                                                                 |
| となく。このとき、                                                                                                              |
| No>き>を-1<br>となることに注意する。 YneNi対し、                                                                                       |
| nzNoを仮定すると                                                                                                             |
| $\frac{2\eta}{2} = \frac{2(h+1)-2}{2}$                                                                                 |
| _ 2                                                                                                                    |
| $\leq \frac{N+1}{N_0+1}$ (: $N \geq N_0$ )                                                                             |
| < 2/2 (-! No > 2/2 - 1:)                                                                                               |
| . = £                                                                                                                  |
| となるので 1im 2n =2が成1座つ。ロ                                                                                                 |

注意1.17 1311.15, 1.16 の証明中のNoeNの 条件を記べる計算は実は証明でかかなく てもよい。しかし、彼女分種分学や解析学におけ る「評価弱」という観点では非常に季 である。 例1.15,1.16の証明論法を 8-1部法 という。 15111.17 教列 fanla in対し lim an=a なるは lim ait -- + an = a tox 1/2? これは、E-N論法を用いないと、証明が 困難である 証明は構義 トートにまかす [基1.10 (教列の発散) UR末しない数列 fange は変散なという。 Y又末しない数列 Jangのかでの)無限たに楽散 おとは、「VMERに対して、 NOEN s.t. \*nen に対して nzNo => an>M が成り立つ」ことをいう、このとき、 lim an=00 km an +00 (n-100) kmc.

Uxましない教列 fanhonが負の無限力に発散 するとは、「VmeIR に文文して、NoENs.t. YneNに対して nzNo => an <-m が成り立つ」ことをいう。このとき lim an=-00 20 an -- 00 (mo) 200 选1.8 定義1.10のMER, MERIS M>0, M>OIS 本立かえてもよい 定理1.5 数到 自りにより、しかいに、に対して、次が成り立つ、 (1) lim an=a liman=b => a=b (2) fan(か以末な > =M>O s.t +new = x+cz lan | ≤ M (3) thein into an ≤ bn, a=liman b := lim bn => a < b 京田司 (1)講義1一十多昭 (2) a:= liman Ell, 8=170 E13. おと、ヨNoENが存在して、YneNi対し N2No ならば | an-a | < 8=1が成治し 三角下雪式 |an|-|a| < |an-a| 10 う境で、NZNoならば lant = lan-altial = Itial (\*) が成り立つ。そこで

| M == max {   a,  ,,   a,   +   a   }                                        |    |
|-----------------------------------------------------------------------------|----|
| となく。サnelNに女くして                                                              |    |
| ISN< No oretit Ian SM                                                       |    |
| NZNO AK=13(*) H)   an   5   + 19  5 M                                       |    |
| となるので「anlをMが成り立つ、                                                           |    |
| (3) 沓理法で示す。Q>bと仮定する。                                                        |    |
| E = 1 (a - b) ctr <, lim an=a,                                              |    |
| lim bn=b より、ヨN, NzEMが存在して                                                   |    |
| ¥neNに対して.                                                                   |    |
| $n=N_1 \Rightarrow  \alpha_n-\alpha  < \varepsilon = \frac{1}{2}(\alpha-b)$ |    |
| $N=N_2 \Rightarrow  b_n-b  < \epsilon = \frac{1}{2}(a-b)$                   |    |
| が成り立つ、そこで No:=maxfN, N2                                                     | -  |
| とおくと, No> N, より                                                             |    |
| 1 ano- al < 1 (a-b)                                                         |    |
| だから ano-a > - = (a-b) より                                                    |    |
| ano > 1 (a+b) - (*)                                                         |    |
| が成り立つ、他方 NozNz より                                                           |    |
| bno-bl < 1 (a-b)                                                            |    |
| だから bno-b < 1(a-b) もり                                                       |    |
| bNo < = (a+b) - (K*)                                                        |    |
| が成り立つ、従って、(*)と(**)より                                                        |    |
| bNo < 1 (a+b) < ano                                                         |    |
| となり「それられ」対してansbyに矛盾な。「                                                     | ۵. |
| 達1.9                                                                        |    |
| 定理1.5(3)の不嘗式"≤" も"< "に                                                      |    |
| か込ことはできない。                                                                  |    |

| 定理 1.6                                                        |
|---------------------------------------------------------------|
| 数列fanling, I buling, o.beRicht                                |
| an → a (n+m)                                                  |
| bn→b (n→∞)                                                    |
| をみたすとき、次が成り立つ。                                                |
| (1) antbn - atb (n+00)                                        |
| (2) an-bn → a-b (n→∞)                                         |
| (3) anbn → ab (n→∞)                                           |
| (4) Nell 10 10 bn + 0, b + 0                                  |
| $\Rightarrow \frac{a_n}{b_n} \to \frac{a}{b}  (n \to \infty)$ |
| DN D CTT                                                      |
| ROJE                                                          |
| (1) 1. ¥€>0 1=\$\$+17, an+a, bn+b                             |
| (n+00) 243=245, VE1, E2>0 15                                  |
| 対い、PN, N2EIN st. YneIN                                        |
| (८ देव (                                                      |
| $n=N_1 \Rightarrow  a_n-a  < \epsilon_i$                      |
| N2 N2 ⇒  bn-b  < €2                                           |
| とできる。ここで と、とと はあとで                                            |
| 32003=21=C. No=max (N, N2)                                    |
| とおと、YnelNに対し、NZNoな対                                           |
| 1(antbn) - (a+b) = 1(an-a) + (bn-b) 1                         |
| $\leq  a_n-a + b_n-b $                                        |
| (ご言角不等式)                                                      |
| < E1 + E2                                                     |
| (=: N=No=N, N=No=Nb)                                          |
|                                                               |

| となるから、 ミナモンショ であれば                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1(antbn)-(a+b)   < E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| となる.   ミューミュ を仮定して、 ミュニハロマ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AFくて (E1≤量) となる この推論                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ともとに言語をかく、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2. ∀E>O 1= \$=1. an + a, bn +b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (n→∞) ≠1), ∃N1, N2 €/N s.t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Yn∈IN 1= total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $n \ge N_1 \Rightarrow  q_n - q  < \frac{\varepsilon}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N2N2 ⇒ 1bn-b1< €                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 22=3. No:=max [N, N2] E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| と3と、 YneN に女し NNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 在3年"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (antbn)-(a+b)=(an-a)+(bn-b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\leq  a_n-a + b_n-b $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (江三角不等式)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| < \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ("nzNo=N, n=No=N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = 8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7tsht 1(autbn)-(atb) 1 < 8 & to2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (2) 名自考之よ。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (3).1 4€>0 1=\$=1. an=a, bn=b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (N-100) &1). AEI (5220 15#1("                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PNINZEN S.t. YNENEXAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $n =  Q_1  \Rightarrow  Q_2  =  Q_1  = $ |
| NZ N2 => 16n-61 < 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11/2 -> 101 - 101 - 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

とできるここでを、いたつのはなどできない = Ye 12 98 No := MOXINU No Y YL. Then iskte nano tisti lanbn-abl = \ an(bn-b) + (an-a) bl ≤ |an | |bn-b| + |an-a| 161 (ご三解害式) < Ezlant E, lb1 (" n= No=N, n=No=N2) 4th. == = 8219ml+8, 16/ < 8 4(ton) が まがりが残れいるので かを取いずに と、、とこをまためるように、次のことを行う。 京理1.5の(2)より. 3M70 s.t. FNEN 10 HCZ lan1≤M であた。従って |anbn-ab| < Ez lan + Eilb| < 2 M+ E; (161+1) = E, (M+161+1) (ミニミンと作定) LTIBOT E, CM+161+1) < E | E みたすように と、を決めればよい。 この推論をもてに証明をかく、 2. ∀を>0 に対すし、10の(10の が収報はり) 3M>0 s.t. YNGNISKIL LanISM vite3 ori, an→a, bn→b (n→∞) 51) BN, N2 EN S.t. FNEN に対けて

## 谁。1.10

定理1.6の証明の1.の議論は悪く ※専のない引分であるこのため、教経 にもかいていない。しかし、自分でかおよう に打には、この1.の部分を理解する必要 がおり、教料書を自分で読むと生には、 この1.の部分を考えるとより深く勉強 できる。

| 定理1.り (はさみうちの原理)                                         |
|----------------------------------------------------------|
| 報列 faulus, 1 bulus, 1 Culus, が theiN                     |
| 1= XXICZ an s Cn s bn Extravas.                          |
| 〈仮定〉                                                     |
| anln=1, fbnln=1 は収束して                                    |
| d:= lim an = lim bn                                      |
| 〈名言論〉                                                    |
| 1 Culiner to UR# LZ lim ca=d 2 to 3 10                   |
| FIRE                                                     |
| YE>O1=X+C, an →d (n→0) F), =N, EN                        |
| S.t Ynein 1= to (2                                       |
| NZN, => d= an≤1d-an1< €                                  |
| とできる、シタにbn→d(n→m)より3N2 EN                                |
| s.t. YneN に対すして                                          |
| $N \ge N_2 \implies b_n - d \le  b_n - d  < \varepsilon$ |
| (2 ±3, 5,7 No == max fN1, N2/2                           |
| とれば、 ¥nelN に女は、nzNo                                      |
| な3は 9n = (n = bn より)                                     |
| - E < an- d (-: n= N. = N.)                              |
| S Cn-d                                                   |
| ≤ bn-d                                                   |
| < & , (": nzNozNz)                                       |
| 14ht.   cn- x1 < E x to 3                                |
|                                                          |
|                                                          |

〈漢調 数到〉 定數1.11 (英調增加,至調料小) 数到了のいでが(広義) 準調増加 Q. Yn∈IN 15対して an ≤ ant 1 教到 (のたらかで太美) 単調減少 京 YneN 10女ナレて anzanti 定理1.8 教列 fanlis か有果かつ単調増かい => 1 an line it a == sup an 1=42+73. Tim an = Supan tto FREDA {an(not か上に有界だから、a:= supan < 00 となる(定理1.3)。上院の定義から YNENに対けて Quisa となることに注意 732 |an-a1 = a-an 2/23. さて、サモンロロ女は、上中見の定事から、 PNOEIN s.t Q-E < QNO とできる、 Yn EIN に対し NZNO ならば 1anlan が単液性かより a-E<anosan となるので 1an-a1 = a -an < € つまり lan-alceとなる。

| 例1.18 (自然対數の值)                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| 数列(けかりからかりは以来する。                                                                                                                             |
| e:= lim (1+力)かとあき自然対数の症                                                                                                                      |
| ۷115 Ø                                                                                                                                       |
| (Ae)                                                                                                                                         |
| an== (H+)" Exc.                                                                                                                              |
| 1. そのにに、が季調増加でもことを示す                                                                                                                         |
| Ynelly 1= X=1 CZ                                                                                                                             |
| $a_n = \sum_{k=0}^{n} n C_k \left(\frac{1}{n}\right)^k \left(-:= \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \right)$                    |
| $= \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \left(\frac{1}{n}\right)^{k}$                                                                          |
| = = n 1 n(n-1) (n-1) (n) k                                                                                                                   |
| $= \sum_{k=1}^{N} \frac{1}{k!} 1 \times \left(1 - \frac{1}{N}\right) \left(1 - \frac{2}{N}\right) \cdots \left(1 - \frac{2}{N}\right) - (k)$ |
| 5 = 0 k! 1x(1-1/n+1)(1-2/n+1) (1-1/n+1)                                                                                                      |
| $\left(\begin{array}{c} \frac{1}{N} \geq \frac{1}{N+1}\right)$                                                                               |
| = 1 nti Ca (1) k = (H nti) nti = Quti となるので、 { an line は 単記 地方で                                                                              |
| となるので、くないには単意同様かって                                                                                                                           |
| \$3.                                                                                                                                         |
|                                                                                                                                              |
|                                                                                                                                              |
|                                                                                                                                              |

| 2. 「anlies が有界であることを示す。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yn EIN に対し、(*) より                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $0 \le \alpha_n \le \frac{n}{\beta} \frac{1}{\beta!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| =1+\frac{5}{821}\frac{1}{81}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| < / the state of t |
| $= 1 + \frac{1 - \left(\frac{1}{2}\right)^{M+1}}{1 - \frac{1}{2}} < 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| となるので(anlianは有界である。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1. 2.と定理しるより「an(いこ)は4次末する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 〈コンハ・クト小生定理〉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 定義1.12 (部分列)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 数すいfange,からい原番をかえずに一部を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 抜きだに表列 { angleの を f angles の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 部分可以以以, Jang (C) C fan (10) とかく                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (31) 1. 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| neかに対し、an:=(-1)nとかく。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| このとき                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| faznin=1 = faz, a4, a6, a8, }=[1, 1, 1,}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>†</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [a2n-1 (no) = fa, a, a, = f-1,-1,-1,}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| はいいいの部分がである。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

上記の何1.19の数列(a、l為は必ましないが 有界である、つま)、定理 1.5の「収末⇒有別 の臣「有界⇒以末」は成り立たない。

定理1.9 (Borzano-Weierstrass) 数別「9~1~10~1が有界 一 ある部分が「6melsan Columnen が

存在して「Challes は収集了 面定理」、9は下上の有果集合は本政サコムルがり、と主張している、詳しくは教堂入門CDでする。

証明の根明

1 aulia が有果なので

PMフロs.t. YnelNitter lanl=M, すなわち-MSansMとできる。

- 1. [-M.o]と [o.M]の少なぐと一方には 無限個の anがあ、無限値もおうの 区間をI、となく(両方知場会は どろうをとってもよい)
- 2. I、を半分にした2つの区間を考入まとどすらかの区間には無限個の如が弱。 無限個なる方をIンとかく、

4. an eI, an eI, an eI, として 歌かり Caston Eths. Ipが ピベビムルエCが (区間の幅は M) ことから、familionはある実数 a EIR に収束することがわかる。 〈集積点と上極限,下極限(難)〉 定義 1.13 (集積点) 数到 lank 1次れ aeRが 佳積点 = 31 anglas Cfaulus s.t. lim ang = a m 定義 1.14 (上梅限,下梅限) 教列 (anho) 1文付し (anlon の上極限 limsup an と下極限 liming an Ezhzin limsup an = lim (sup ar), liminf an = lim (inf ar) で定義する D 定理 1.10 (上極限,下極限上集積点) 歌河 (an(no 10女人 limsupan, liminfan はるれぞれ最大、最小の集積点になる M

| 定理しいよりたかれかる。                               |
|--------------------------------------------|
| 定理1.11                                     |
| A THE PARTY                                |
| 数有11 19m1 10000000000000000000000000000000 |
| lim sup an = liminf an                     |
| n-no n-no                                  |
| ならは、そのにいは 収車列である                           |
| ゆうは かいいき はんまかりである 図                        |
|                                            |
| 極限は存在するか否からかないが、上程限                        |
| 下極限は第二存在するので、(専門的な)                        |
|                                            |
| 本動限の言義論を行うときによく用いられる。                      |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |

(Cauchy がして実備性) をきでの話は、「収末な実験のERがわかっ ている」が前提にあった。ろうでないと lan-alを計覧できない。収ま先がわかな いときに、収束はどうだって示せばよいか? 定義1.15 ( Cauchy 到1) 勢多り {an {non か Caudny る) (=) YEDO 1= XALL 3NO EN S.T. Ynim ENIC 炮暴 ねして n, m z No => lan-am / < & が成り立つ E) @ Candry 3111 感觉的1017 Ian-anl-0 (n,m-00) と同じてある。 定理1.12 (客敷の完備性) 数引 30の1のこ 12対して Qualingが収末引(=) langingがCoudy到 10 定理したにより、数列が収まるかどうかは Couchy ずりになるかどうかを意同べればよい。

| 定理1.12の証明                                                                 |
|---------------------------------------------------------------------------|
| (ラ) (こうろけできるようになって公かしい)                                                   |
| fanting がaeRに収束すると何定して                                                    |
| Janines to Couchy Tile to = ZE F. 7.                                      |
| ¥ € >0 (= \$ = 1 ) lim an = a = 1)                                        |
| 3N°EN S.t. ANEWICKACS                                                     |
| $n \ge N_o \Rightarrow  \alpha_n - \alpha  < \frac{\varepsilon}{2} - (*)$ |
| とできる. ま、2 ¥n,m EIN にますして                                                  |
| n, m2 No tag12"                                                           |
| an-am =  (an-a)-(am-a)                                                    |
| ≤ lan-al+lam-al                                                           |
| (::=為不等式)                                                                 |
| < = + = (:'n, m2No 'c(*))                                                 |
| = 8                                                                       |
| 25302 1an (n=, 17 Couchy 517 to 3.                                        |
| (一) (こちらは難しい)                                                             |
| 1. 10~(のか有思であることを示す。                                                      |
| anlas It Condy 51( F1) = No FN s.t.                                       |
| YNEIN 102+C7                                                              |
| n=No =>   an-ano   </td                                                   |
| とてきる。よって                                                                  |
| 1an1 =  an-anol+ anol ≤ 1+ anol                                           |
| ~ tist's M = mex {  a,1,  a,1,,  a,6-1],                                  |
| Itlanoll & tick. YNEN ICHTLE                                              |
| an  ミ州が成り立つ。                                                              |
|                                                                           |



| 2. Boreano-Weierstross n定理(定理1.9)       |
|-----------------------------------------|
| H) 部分引 1 ang 180 Cfam 100 が在本17         |
| lim an = a & z=3. == 2"   an   100 10"  |
|                                         |
| 4520 1= \$2762. 10m (no. 15" Couchy 3") |
| だがら、 BNIEN St. FNIMEINISTACS            |
| n, m=N, =>  an-an <= - +1               |
| とできる - 次に ane- a (b-100) b1).           |
| PNZEN St. FREN 15 X+C7                  |
| 12 N2 => 1 ane- a1 <= -(++)             |
| とごきる. そ=で たo EN を Ro Z N2               |
| かっ かんこと ひにをみたすようにとると                    |
| YNEW I X+LZ NZNES TOSIE                 |
| (an-a1 ≤ 1an-ana)+ (ana-a)              |
| くきゃを                                    |
| < ½ + 2                                 |
| (-: n=Ng, ZN, E(*)                      |
| NZNRO, ROZNZ Z(*F)                      |
| = C                                     |
| とてよるので (い)の (い)の)かではりまつ                 |
|                                         |
|                                         |
| > 1.11                                  |
| Borzano-Weierstrass の定理は                |
| 実数の完備)生(定理1.12)を用いずに                    |
| 示すことができる。                               |
|                                         |

| 達1.12                                         |
|-----------------------------------------------|
| 注電1.4にきあるように、実数の連続はは                          |
| 実数と有理数の違いを表している。実は、                           |
| 字数と有理数の査いは次の4つの性質で                            |
| あり、さろにろれらそつのは楚はすべて同値で                         |
| ある。すなわち、どれを実数と有理数の違い                          |
| としてもよいことが矢のられている。                             |
| (1) 定理1.3(実数の連続性)                             |
| (2)定理1.8 (単限数列の収束性)                           |
| (3)定理1.9 (Borzano-Weierstrass の定理)            |
| (チ)定理1.12と定理1.4                               |
| (実勢の完備1生と Archimedes の原理)                     |
|                                               |
| 〈連介化式と本本限〉                                    |
| 1311,20                                       |
| 渐化式                                           |
| 2 - 1 + 1                                     |
| July 3n Sh                                    |
| Snoc = V Snow Sn                              |
| $S_1 = 6$ , $S_1 = 4\sqrt{3}$                 |
| Si=6, Si=4J3<br>でをかられる数引   Sniner,   Sniner は |
| 收末13.                                         |
|                                               |
| FIRE                                          |
| NEIN 10 \$4L7, USS, 5525-55 missn 55          |
| る Sn-1 ミー・ころっころ、となることを得到地流です                  |
|                                               |



| 1. N=10K= 0<8,=6=4[355,21)                             |
|--------------------------------------------------------|
| 成门之了。                                                  |
| 2. 0 55,5 5 Sn 5 Sn 5 Sn = 5 5 5,                      |
| を仮定して Su Sunti Sunti SSh をす.す.                         |
| 3-9"                                                   |
| $S_{n+1} = \frac{2}{n}$                                |
| $S_{n+1} = \frac{2}{\sqrt{S_n + \sqrt{S_n}}} > 0$      |
| 7-1                                                    |
| Suti = Suti Su >0                                      |
| がわかる。一次に帰納法の「験 sussh                                   |
| 71)                                                    |
|                                                        |
| $S_{n+1} \leq \frac{1}{S_n} = S_n$                     |
| 5 - 3 - 4                                              |
| Sux 2 2 = Su                                           |
| がわかる。よっと                                               |
|                                                        |
| $S_{n+1} = \sqrt{S_{n+1}} S_n \geq \sqrt{S_n^2} = S_n$ |
| Sur = VSun Su \ Sur = Sut                              |
| となりの。 とこことがるこれでここ ここ                                   |
| が示さんた。                                                 |
| 3. fs.(no) 体革章图·楚加之有界                                  |
| おんに 伊華風域少で有界                                           |
| となるかり定理 1.8 より収まる ロ                                    |
| 造1.13                                                  |
| し欠末失が、円周率に等しいこと Eデオのは、                                 |
| 別の(難しい)問題である。                                          |
| 77                                                     |



| 11.21  1.2, xeR, x + ±1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| (米)   Qnn = ran+ g. Qo = 2 で定められる。   Qan   Man   は O 5   上   < 1 のとき いなする。    公文   Q =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 何1,21                                 |
| できめられる。「Quanting は O S I E   <   のとき   いまする。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hg,xeR,上も土1に対すし                       |
| できめられる。「Quanting は O S I E   <   のとき   いまする。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (w) I any = rant 8.                   |
| (*) z : Q := ling an が存在すれば ハラのとし?  Q = 上 a + 字 となる。 収まなかどうかを意思へる。  Qu+1 - an = 上 ( an - an - 1 )  (こ注意 すると    an - an   = 上     an - an - 1   - (**)  が 得 3 か 1 . 次の 経 い 子像の原理工の いと    上   < 1 ⇒   an   n = 1 は 収まず    が 出かる。  定理 1. 13 ( 経 小子像の原理)  教子     an   n = は 0 ≤ 3 L < 1 s + * N ∈ N      文字 して    an - an   ≤ L   an - an - 1    を またす とする。 このとき   cu   n = 1 は 収まか    を 1 1. 21 の 方法は、も、と 複雑な ( 非緑形 門 )    an - an   = チ ( an )    二対して 一般及 のか よのうれなくても、 「な   n = 1 に    な 1 に カース ・ の な の か ま か られなくても、 「な   n = 1 に    な 1 に カース ・ の か ま の ら な に く ま ら な に に な に し な に し に    な 1 に カース ・ の か ま の ら な に し な に に し な に に し な に に し に に に に し に に に に |                                       |
| (*) z : Q := ling an が存在すれば ハラのとし?  Q = 上 a + 字 となる。 収まなかどうかを意思へる。  Qu+1 - an = 上 ( an - an - 1 )  (こ注意 すると    an - an   = 上     an - an - 1   - (**)  が 得 3 か 1 . 次の 経 い 子像の原理工の いと    上   < 1 ⇒   an   n = 1 は 収まず    が 出かる。  定理 1. 13 ( 経 小子像の原理)  教子     an   n = は 0 ≤ 3 L < 1 s + * N ∈ N      文字 して    an - an   ≤ L   an - an - 1    を またす とする。 このとき   cu   n = 1 は 収まか    を 1 1. 21 の 方法は、も、と 複雑な ( 非緑形 門 )    an - an   = チ ( an )    二対して 一般及 のか よのうれなくても、 「な   n = 1 に    な 1 に カース ・ の な の か ま か られなくても、 「な   n = 1 に    な 1 に カース ・ の か ま の ら な に く ま ら な に に な に し な に し に    な 1 に カース ・ の か ま の ら な に し な に に し な に に し な に に し に に に に し に に に に | で定めるれる。 anling は osle 1 くしのとき         |
| (*) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Und व द                               |
| Q=上Q+分となる。収ますかとうかと言問へる。 Qn+1-Qn=上(Qn-Qn-1) (二注意すると  Qn-Qn-1 -(**) が得るかる。次の解か 宇傷への原理工用には  上(<1 ⇒)  Qu(n=1 は収束すり があかる。   ではしる ( *** ・ 宇傷の原理)   かずして                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Q=上Q+分となる。収ますかとうかと言問へる。 Qn+1-Qn=上(Qn-Qn-1) (二注意すると  Qn-Qn-1 -(**) が得るかる。次の解か 宇傷への原理工用には  上(<1 ⇒)  Qu(n=1 は収束すり があかる。   ではしる ( *** ・ 宇傷の原理)   かずして                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (*) 2" Q == lim an or Attalus" hanker |
| Qu+1 - Qn = E(Qn - Qn-1) 1 注意 すると                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| 「注意 すると                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| が得了れる。次の縮小子像の原理工のには<br>1上/<1 ⇒   Qualing は以来到<br>が出かる。<br>定理には (縮小子像の原理)<br>数到   Qualing は 0 ≤ 3 L < 1 s.t. を N ENN<br>1 文 + L 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| が得了れる。次の縮小子像の原理工のには<br>1上/<1 ⇒   Qualing は以来到<br>が出かる。<br>定理には (縮小子像の原理)<br>数到   Qualing は 0 ≤ 3 L < 1 s.t. を N ENN<br>1 文 + L 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | an -an = Lr   an -an - (**)           |
| 1上/<1 ⇒   au(ne) は収まず」 がわかる。 定理には (縮小字像の原理) 数ずい   au(ne) は 0 ≤ 3 L < 1 s.t. を N ∈ N 1文はして                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | が得了か了。次の経い字像の原理工のいまと                  |
| がられる。 定理には (橋小字像の原理)  数引 ( 1 au lu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| 数す 1 (an line) は 0 5 1 (1 st. * h eN 1 ) 1 2 1 (2 n - an - 1 ) 1 2 1 2 1 2 1 3 2 1 3 2 1 3 2 1 2 1 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 451 452                               |
| 数す 1 (an line) は 0 5 1 (1 st. * h eN 1 ) 1 2 1 (2 n - an - 1 ) 1 2 1 2 1 2 1 3 2 1 3 2 1 3 2 1 2 1 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 定理1.13(縮小字像の原理)                       |
| 12年17<br>12mm-anl ミレ (an-an-1)<br>を対して とする。このとき、 {an line は 収定する。<br>12度、1.19<br>121の方法は、も、と複雑な(非緑形門町)<br>Anti = fran)<br>1-女サレフー般項のがずめられなくても、「an line」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| Ext たすとする。このとき、{Cum line は収ます。   注意: 1.19   151/1.21の方法は、も、と複雑な(非緑形問題)   Cuti = f(an)   二大サレフー般項: anが 本められなくても、「an line」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| きませまとする。このとき、{Culing は収ます。<br>  注意:1.19<br>15:1.21のおはは、も、と複雑な(非緑形問題)<br>Cuti = f(an)<br>  二対して一般項: aがずめられなくても、「an」に、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1ann-9n1 ≤ L (an-an-1)                |
| 三支して 一般項のかずめられなくても、「anlies」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| 何1.21の方法は、も、と複雑な(非線形問題)  Quel = f(an) 1-女+して一般項·Qがずめられなくても、「an」のこれがする                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| 何1.21の方法は、も、と複雑な(非線形問題)  Quel = f(an) 1-女+して一般項·Qがずめられなくても、「an」 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Quei = fian)<br>1-女+して一般項のが事められなくても、「の」のこ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| に対して一般項のがずめられなくても、「の」に、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | anti = fran)                          |
| かりかまないこのかっていたかいよう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| 2 - 1 - 2 - 2 - 1 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | が収束なかを固べることができる。                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |

| 第2章 関数と極限                     |
|-------------------------------|
| §2.1 い3い3な関数                  |
| 〈関数とは何か?〉                     |
| 定義2.) (関数)                    |
| 集会Xに対して、子がX上の関数であるとは          |
| 「Vx eXに対して実教fx) ERが定ま規則」      |
| のことをいう。このとき f: X→ R とがく。 Ø    |
|                               |
| 例2.1 (指數園數)                   |
| R上の関数 exp: R→REXER1=対して       |
| $\exp(x) := e^x$              |
| で定める。                         |
|                               |
| 何(2.2 (三角関数) sinx             |
| sin, cos (+REO                |
| 関製である.                        |
| 右国のように単位Aを                    |
| 用いて XelPに対して                  |
| sinx, cusx を定ぬのであった。          |
| また ton: R \ はき, ±まれ, ± 示, → R |
| と文を限しは立、ままれ、ままれ、・・・~ 10女化     |
|                               |
| tan x := sin x                |
| と定めるのであった。                    |
|                               |
|                               |

| (1)                                                                                      |
|------------------------------------------------------------------------------------------|
| 注意2.1                                                                                    |
| 1312.1,2.2 は厳密な定義ではない の                                                                  |
|                                                                                          |
| 〈逆 関教〉                                                                                   |
| *yeRに対し y=exp(x) となる x ER は存在                                                            |
| おとはり起うない(かり: チュートに女子し、                                                                   |
| -1= exp(x)= ex 443 x + R (+ to 1.).                                                      |
| また. by eRic対して、 y= sinx となる                                                              |
| スERはたけんなり(イツ: 4=0に女すして、                                                                  |
| $O = \sin(x) \times t \cup x \in \mathbb{R} \mid \exists x = 0, \pm x, \pm 2\pi, \dots)$ |
|                                                                                          |
| 定義2.2 (像人)                                                                               |
| 集成Xとf:X→Rに対し、fの像f(X)を                                                                    |
| $f(X) := \{f(x) : x \in X\}$                                                             |
| _*'rb`* th                                                                               |
| C 产款 95.                                                                                 |
| 注意-22                                                                                    |
|                                                                                          |
| f: X→ Rの像f(x)はなら、ほぐいれば                                                                   |
| y=fox)とにたときのyの範囲のこと 面                                                                    |
|                                                                                          |
| 定義2.3 (単新)                                                                               |
| 集会X上の関数十:X→Rが単射                                                                          |
| は サダレスIEXIE対して                                                                           |
| $f(x) = f(x) \Rightarrow x_1 = x_2$                                                      |
|                                                                                          |
|                                                                                          |



|                      | <b>注</b> 2.3                                  |
|----------------------|-----------------------------------------------|
|                      | f:X→Rが単新というのは対像をとれば、                          |
|                      | $x_1 + x_2 \Rightarrow f(x_1) + f(x_2)$       |
|                      | だかり、異なる2点の行生生は草にちがうということの                     |
|                      |                                               |
|                      | 集会X上の関数子:X一Rが革射であるとき                          |
| ここの f(A) は f(X) の間違い | fの逆関数 f-1: f(A)→ X は                          |
|                      | 4ef(A) 1= x+1(7 f-1(4) e X &                  |
|                      | f(-(1)) = 4                                   |
|                      | をみたすものとして定義すれたができる。                           |
|                      | coupy to concept after a cas                  |
|                      | 12112 2 (trutte bate)                         |
|                      | 例2.3 (対數関數)                                   |
|                      | exp: R→Rは革動される                                |
|                      | $\exp(R) = \{e^{x} : x \in R\} = (0, \infty)$ |
|                      | だから、expの逆関数は(o.00)上で定義                        |
|                      | できる。これを対数関数といい、                               |
|                      | log: (0.00) → R corat, to                     |
|                      | $\log(\exp x) = x$ $(x \in \mathbb{R})$       |
|                      | exp (log y) = y (y \( (\dold \) (\dold \)     |
|                      | exp (logy)=y (ye(0.60))<br>となることに注意せま、 四      |
|                      |                                               |
|                      | 例2.4 (逆海関數)                                   |
|                      | Sin はR上で単純でないため、正関数                           |
|                      | を作るためには(定義域に)制限でかける                           |
|                      | <b>头栗がある</b>                                  |
|                      |                                               |
|                      |                                               |
|                      |                                               |



| sinは[-子 到で再射な関数にな)。                                                                                                              |    |
|----------------------------------------------------------------------------------------------------------------------------------|----|
| Sin ([-=, =]) =   sin x : x ∈ [-=, =] } = [-1, 1                                                                                 |    |
| となるで、Sin の 園教は[-1,1]上で                                                                                                           | ** |
| 定義できる。これを並正弦関数といい、                                                                                                               |    |
| arcsin: [-1,1]→ [-* *) とかく。                                                                                                      |    |
| $\operatorname{arcsin}\left(\operatorname{sin}x\right) = x \qquad \left(x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$ | )  |
| sin (are siny) = y (y = [-1.1]                                                                                                   | ŕ  |
| <b>だが</b>                                                                                                                        | _  |
| $arcsin(sinx) \neq x$ $(x \in \mathbb{R})$                                                                                       |    |
| となることに注意すること、同様にして                                                                                                               |    |
| 匠余弦関数 drccos:[-1,1]→[0,下]                                                                                                        |    |
| <b>単正接関数 arctan: R→ (-3,5)</b>                                                                                                   | -  |
|                                                                                                                                  | P) |
| C 7 7 C C C C C C C C C C C C C C C C C                                                                                          | 2) |
| (指數法則)                                                                                                                           |    |
| 定理2.1 (指數法則.)                                                                                                                    |    |
| 次の指数法則が成り立つ                                                                                                                      |    |
| (1) Hx, y elk 1= x + 1 = ex + 8                                                                                                  |    |
| (2) \x, y GR 1= t2 (ex) y = exy                                                                                                  | _  |
| <b>2</b>                                                                                                                         | 'n |
| 系2.)                                                                                                                             | -  |
| Yab>o, YaeRis対して (ab)x=axbx                                                                                                      | (  |
|                                                                                                                                  |    |
|                                                                                                                                  | 7  |
|                                                                                                                                  |    |
|                                                                                                                                  |    |
|                                                                                                                                  |    |
|                                                                                                                                  |    |



| 〈複素関戦への拡張〉                                                                             |
|----------------------------------------------------------------------------------------|
| 指數法則(1),(2)を企上に拡強しても                                                                   |
| 成1位つとしよう、つまり                                                                           |
| ¥2, w ∈ € 1-2412 e2.ew = e2+w                                                          |
| A5'MEC (=\$4(5 (65)M = 68M                                                             |
| が成り立つとする。                                                                              |
| 定理2.2 (Eulerの公式)                                                                       |
| YxeR に対して                                                                              |
| $e^{ix} = \cos x + i \sin x$                                                           |
| が成り立つ                                                                                  |
| 10 11K 12 7                                                                            |
| XERに対してeixが行か?はといあえず無利                                                                 |
| すると                                                                                    |
| $e^{ix} = \cos x + i \sin x$                                                           |
| $e^{-ix} = \cos(-x) + i \sin(-x)$                                                      |
| $= \cos \alpha - i \sin \alpha$                                                        |
|                                                                                        |
| まり、cosoc、sinスについて解くと                                                                   |
| $\cos x = \frac{e^{ix} + e^{-ix}}{2} \sin x = \frac{e^{ix} - e^{-ix}}{2i}$             |
|                                                                                        |
| が得られる。                                                                                 |
|                                                                                        |
| <u>\$2.2</u>                                                                           |
| Axeric X+CZ                                                                            |
| $\cos x = e^{cx} + e^{-cx} = \sin x = e^{cx} - e^{-cx}$                                |
| 2 , 20                                                                                 |
| 第2.2<br>$\forall x \in \mathbb{R}$ に 文 $\forall c$ $c$ $c$ $c$ $c$ $c$ $c$ $c$ $c$ $c$ |
|                                                                                        |

| これにより、主意数関数がわかれば、三角関数<br>もよくわかることになる。<br>定理2-3 (力の法定理)<br>サス、タモルになすして<br>cos(x+y) = cosx cosy - sinx sin y<br>sin(x+y) = sinx cosy + cosx sin y<br>sin(x+y) = sinx cosy + cosx sin y<br>$e^{ix} + e^{-ix} e^{ix} + e^{ix} - e^{-ix} e^{ix} - e^{-ix}$<br>$e^{ix} + e^{-ix} e^{ix} + e^{-ix} + e^{-i(x+y)} + e^{-i(x+y)} + e^{-i(x+y)} + e^{-i(x+y)} + e^{-i(x+y)}$<br>$= \frac{1}{2} (e^{i(x+y)} + e^{i(x-y)}) = cos(x+y)$<br>$x = \frac{1}{2} (e^{i(x+y)} + e^{-i(x+y)}) = cos(x+y)$<br>$x = \frac{1}{2} (e^{i(x+y)} + e^{-i(x+y)}) = cos(x+y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 定理2-3 (加速定理) $\forall x, y \in \mathbb{R} \mapsto \forall 1$ $\cos(x+y) = \cos x \cos y - \sin x \sin y$ $\sin(x+y) = \sin x \cos y + \cos x \sin y$ $\cos x \cos y - \sin x \sin y$ $e^{ix} + e^{-ix} e^{ix} + e^{-ix} e^{-ix} e^{-ix} + e^{-ix}$ $= \frac{1}{4} \left( e^{i(x+y)} + e^{i(x-y)} + e^{-i(x-y)} + e^{-i(x+y)} + e^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \frac{\forall x, y \in \mathbb{R} \text{ in } x \neq 1?}{\cos(x+y) = \cos x \cos y - \sin x \sin y} $ $ \sin(x+y) = \sin x \cos y + \cos x \sin y $ $ \frac{\partial x}{\partial x} \cos y - \sin x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \cos y - \sin x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \cos y - \sin x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \cos y - \sin x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \sin y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos x \cos y $ $ \frac{\partial x}{\partial y} = \cos $ |
| $\cos(x+y) = \cos x \cos y - \sin x \sin y$ $\sin(x+y) = \sin x \cos y + \cos x \sin y$ $\cos x \cos y - \sin x \sin y$ $e^{ix} + e^{-ix} e^{iy} + e^{ix} - e^{-ix} e^{iy} - e^{-ix}$ $= \frac{1}{4} \left( e^{i(x+y)} + e^{i(x-y)} + e^{-i(x-y)} + e^{-i(x+y)} + e^{-i(x+y)} \right)$ $= \frac{1}{4} \left( e^{i(x+y)} + e^{i(x-y)} + e^{-i(x+y)} + e^{-i(x+y)} \right)$ $= \frac{1}{4} \left( e^{i(x+y)} + e^{i(x+y)} + e^{-i(x+y)} \right) = \cos(x+y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\cos(x+y) = \cos x \cos y - \sin x \sin y$ $\sin(x+y) = \sin x \cos y + \cos x \sin y$ $\cos x \cos y - \sin x \sin y$ $e^{ix} + e^{-ix} e^{iy} + e^{ix} - e^{-ix} e^{iy} - e^{-ix}$ $= \frac{1}{4} (e^{i(x+y)} + e^{i(x-y)} + e^{-i(x-y)} + e^{-i(x+y)}$ $+ e^{i(x+y)} - e^{i(x-y)} - e^{-i(x-y)} + e^{-i(x+y)}$ $= \frac{1}{4} (e^{i(x+y)} + e^{i(x-y)} - e^{-i(x+y)}) = \cos(x+y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $sin (x+y) = sin x cos y + cos x sin y.$ $= cos x cos y - sin x sin y$ $= e^{ix} + e^{-ix} e^{iy} + e^{ix} - e^{-ix} e^{iy} - e^{-ix}$ $= \frac{1}{4} \left( e^{i(x+y)} + e^{i(x-y)} + e^{-i(x-y)} + e^{-i(x+y)} + e^{-i(x+y)} \right)$ $= \frac{1}{2} \left( e^{i(x+y)} + e^{i(x-y)} - e^{-i(x+y)} + e^{-i(x+y)} \right)$ $= \frac{1}{2} \left( e^{i(x+y)} + e^{-i(x+y)} \right) = cos (x+y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \frac{e^{ix} + e^{-ix} e^{ix} + e^{-ix} e^{ix} - e^{-ix} e^{ix} - e^{-ix}}{2i} = \frac{2i}{4} (e^{i(x+y)} + e^{i(x-y)} + e^{-i(x+y)} + e^{-i(x+y)}) $ $ = \frac{1}{2} (e^{i(x+y)} + e^{-i(x+y)}) = \cos(x+y) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \frac{e^{ix} + e^{-ix} e^{ix} + e^{-ix} e^{ix} - e^{-ix} e^{ix} - e^{-ix}}{2i} = \frac{2i}{4} (e^{i(x+y)} + e^{i(x-y)} + e^{-i(x+y)} + e^{-i(x+y)}) $ $ = \frac{1}{2} (e^{i(x+y)} + e^{-i(x+y)}) = \cos(x+y) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $= \frac{1}{2} \left( e^{i(x+y)} + e^{-i(x+y)} \right) = \cos(x+y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $= \frac{1}{2} \left( e^{i(x+y)} + e^{-i(x+y)} \right) = \cos(x+y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $= \frac{1}{2} \left( e^{i(x+y)} + e^{-i(x+y)} \right) = \cos(x+y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| = 1 (ec(x+4) + e-c(x+4)) = cos(x+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| = 1 (ec(x+4) + e-c(x+4)) = cos(x+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| となる。Sin(xty)についても日本である。[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| D 100 100                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| § 2.2 関数の極限                                                                                                                                                   |
| $\lim_{\chi \to 2} \frac{\chi^2 - 4}{\chi - 2} = \lim_{\chi \to 2} \frac{(\chi + 1)(\chi - 1)}{\chi - 2} = \lim_{\chi \to 2} \frac{(\chi + 1)}{\chi - 2} = 4$ |
| であた。                                                                                                                                                          |
| の x1-4 は x=2で(分の)=0 となる.                                                                                                                                      |
| X=2で定義できない。                                                                                                                                                   |
| の「近からは毒気学でどういえばよいか?                                                                                                                                           |
| E / 1/4 / 2/4 - 1                                                                                                                                             |
| 定義2.4 (関数の極限)                                                                                                                                                 |
| $I=(a.b) \subset \mathbb{R}$ , $x_0 \in (a.b)$ , $f:I \setminus \{x_0\} \rightarrow \mathbb{R}$                                                               |
| の fがx→xuのときに AeRに収束する.                                                                                                                                        |
| (>) ∀E>0 1=\$412 35>0 S.t. 4x€I 1/20 1=\$412                                                                                                                  |
| 3> A-(x-1<5=)  fx)-A < €                                                                                                                                      |
| = art lim f(x) = Art f(x) - A (x -> x0)                                                                                                                       |
| とかて。                                                                                                                                                          |
| のチがスコス。のときにの(一の)に楽散形。                                                                                                                                         |
| (=> ¥K>01=\$#1. 36>05.7. 4x€INfx(1=\$#17                                                                                                                      |
| 羅 O< x-x0 < f⇒ f∞)>k                                                                                                                                          |
|                                                                                                                                                               |
| $ \begin{array}{ccc} (fx) < -K \\ \hline                                   $                                                                                  |
| $\forall h' fac) \rightarrow \infty (x \rightarrow x_0) (fac) \rightarrow -\infty (x \rightarrow x_0)$                                                        |
| とかく。                                                                                                                                                          |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |
|                                                                                                                                                               |

| lim z sin = | = 0                                              |                                         |
|-------------|--------------------------------------------------|-----------------------------------------|
|             |                                                  |                                         |
| TITE PA     |                                                  |                                         |
| 1. 1570年第   | して、定義のよう                                         | >0 E2+71+3 to                           |
|             |                                                  | CERNIO 12-41                            |
| 0< x-0 <    |                                                  |                                         |
| 20 別人之一     | 0 = 1x     siv                                   |                                         |
|             |                                                  | (1   sin =   = 1)                       |
| 1.40 1.0 1  | THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. | (5 /x1 <2)                              |
| K \$3 82    |                                                  | ania"                                   |
| xsin ≥      |                                                  | - 10-44                                 |
| となり、このき     |                                                  |                                         |
| 2. 48>01=x= | 100 9:=8                                         | 50 ET.                                  |
| 4x = 18/10  | (1-94 (र ०                                       | ck-0108                                 |
| 17.212      | - 0[=[x] s                                       | 11                                      |
| (X 210 \$   | - 01 - [X] [S                                    | (m) |
|             | 2 20                                             | (=  xin =   <                           |
|             | 10                                               | (- 1210                                 |
| Tatuba los  | 3-10-6                                           | 2 4 7 2 07"                             |
| 1647 5 1X   | ツレン トナン                                          | ことなるので                                  |
| 7C-90       | -0 543                                           |                                         |
|             |                                                  |                                         |
|             |                                                  |                                         |
|             |                                                  |                                         |
|             |                                                  |                                         |
|             |                                                  |                                         |

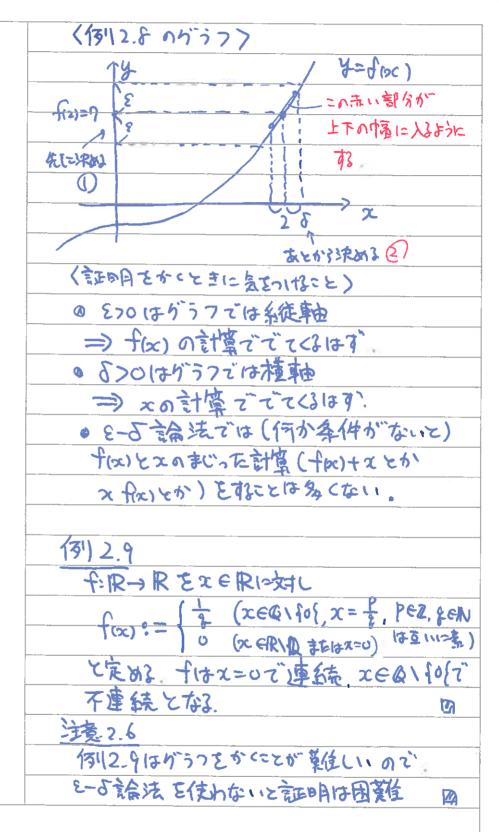
| $\frac{131/2.6}{100}$ $\frac{131/2.6}{200}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lim 22= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FEBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1. ♥をつのに対して、定義のようのをみりけなな                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| にあとてきれることにする、YXER111に対し                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0<1x-11<5を仮定力と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ x^2 - 1  =  (x-1)(x+1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| = x-1  x-1+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ≤ x-1 ( x-1 +2) (~= 解電()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <5(6+2) (= 1x-11<6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| となる。 (5 三) を作定するとる(5+2) =36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 81) 35=8 2 ANIX 12-11< E SES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| この考察をもとに征の行をかく、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2. 4E>O(= \$ + LT, 5 := min ( = , 1 > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| となって、るろしかっちょうとなる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4x∈R1911=2+1, 0<100-11<8 tisti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ x^2-1  =  (x-1)(x+1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ≤  x-1 ( x-1 +2)("= 許響式)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| < \( \int (\int +2) \) (\( \tau \) (\( \int -1 \) < \( \int \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{ccc} & & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ |
| 1 that les 1 < 8 × 702 or 1 mg 1 × 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| また。 (できる)<br>すなわす   x²-1  < をなるので   im x²= 1 となる<br>なると   ここのではなる   このではなる   ここのではなる   こ                                                                                                                                                                                                                                                                                                                                                       |
| 上記の議論をとる論法という。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The Car Carlotter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| 定理2.4                                                       |
|-------------------------------------------------------------|
| I=(a.b) CR, xo∈(a.b), f: I\(x_0) → R.                       |
| lim fox = A                                                 |
| (2) 4 1xn 1 non CI 1 1x0 1 1= x41                           |
| 同値 2n→2(o (n→∞)                                             |
| $\Rightarrow$ $f(x_n) \rightarrow A (n \rightarrow \infty)$ |
|                                                             |
| FEBA A                                                      |
| (ラ) サイスのいこころの(に対してカースの(いつの)                                 |
| を仮定する、サモンの1つ女+し lim fox)=Aより                                |
| 38>0 s.t. 4x€I1126/10x4CZ                                   |
| 0<×-x01<5=> 1+60)-A1<€-(*)                                  |
| が放けて、エーコンの(n→の)より3NoEN s.t.                                 |
| ANEIN ICATICS                                               |
| N2No => 12m-x0/ <2 -(xx)                                    |
| となるので、 (キャ) と(*)より N2No なうは                                 |
| fexu)-A  < をが成り立つ、後,て                                       |
| f(xn) -> A (mo) or Axitz).                                  |
| (今) 背理法で示す。                                                 |
| 3 €0 >0 S.t. \$5 >0 (0\$\$1, 3x5€I\{X0}                     |
| 5.t. 0< x5-x0 <5+10 f(x5)-A ≥€0                             |
| を仮定する. ∀neIN 1つ女はして 5= 計と                                   |
| 2335 ℃ = xn ∈ I \ {xo{ 3. T.                                |
| xn-x0  < 1 50  f(xn)-A  > 80                                |
| となる。                                                        |
|                                                             |

| 1 つのとすると     xn-xo  < n が                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| fxm)-A  > E。 よ) f(xm) → A (n→∞) となない。  これは最年のの人成定、 *   xm   n   C   N   xm   c   c   c   c   c   c   c   c   c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | カラのとすると                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| これは最本のの仮定、*   x_(n=1 C I \   x o   1 = 対 c   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o   x o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | xn-x0/< 1 +1) xn+x0 (n+00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| ストラマの (ハラの) =>: fan)=A (ハラの)   1=3億す]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1focm)-A1 ≥ €0 &) f(ocm)-1 A (n+00) & Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 241 |
| ストラマの (ハラの) =>: fan)=A (ハラの)   1=3億す]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | これは最初の何定 * 12~(からて)いないしま                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 176 |
| 「二角度す」  「定理2.4を用いると、数すりが基件をと同じことは 「まとんど、そのまま成いたり、 「=(a,b) CR, X, EI, f: I\ (x_6) → R,  g: I\ (x_0) → R, lim fax=A, lim g(x)=B とおとったががたり  (1) lim (fax) g(x)) = A+B  (2) lim (fax) g(x)) = AB m  定理2.6 (Cauchyの料定条件)  I=(a,b) CR, X, EI, f: I\ (x_6) → R,  [im fax) が、存在  (ウ) そこっに対けて、うちっの、たが、次(をI\ (x_6) ーを対して  のくしなー x_6(< を, のくしなー x_6) ーをがり   <を  1   f(x) - f(x')   <を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Xn-1xo (n-100) => fan)-A (n-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | o)  |
| まとんど、そのまま成いはつ。   定理2.5   I = (a.b) CR, x. EI, f: I\(x_0 \rightarrow R, g: I\(x_0 \rightarrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5   |
| まとんど、そのまま成いはつ。   定理2.5   I = (a.b) CR, x. EI, f: I\(x_0 \rightarrow R, g: I\(x_0 \rightarrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 注理2.5   I = (a.b) CR, x. ∈ I, f: I\ (x.o) → R,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 定理2.4を用いると、教列の極限と同じことは                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| I=(a,b) CR, x <sub>6</sub> ∈ I, f: I\fx <sub>6</sub> {→ R,  g: I\fx <sub>6</sub> [→ R, lim f(x)=A, lim g(x)=B  とおとったが前はっ  (1) lim (f(x)+g(x)) = A+B  (2) lim (f(x) g(x)) = AB  (2) lim (f(x) g(x)) = AB  (3) lim (f(x) g(x)) = AB  (4) lim (f(x) g(x)) = AB  (5) lim (f(x) g(x)) = AB  (6) lim (f(x) g(x)) = AB  (7) lim (f(x) g(x)) = AB  (8) lim (f(x) g(x)) = AB  (9) lim (f(x) g(x)) = AB  (1) lim (f(x) g(x)) = AB  (2) lim (f(x) g(x)) = AB  (3) lim (f(x) g(x)) = AB  (4) lim (f(x) g(x)) = AB  (5) lim (f(x) g(x)) = AB  (6) lim (f(x) g(x)) = AB  (7) lim (f(x) g(x)) = AB  (8) lim (f(x) g(x)) = AB  (9) lim (f(x) g(x)) = AB  (1) lim (f(x) g(x)) = AB  (2) lim (f(x) g(x)) = AB  (3) lim (f(x) g(x)) = AB  (4) lim (f(x) g(x)) = AB  (5) lim (f(x) g(x)) = AB  (6) lim (f(x) g(x)) = AB  (7) lim (f(x) g(x)) = AB  (8) lim (f(x) g(x)) = AB  (9) lim (f(x) g(x)) = AB  (9) lim (f(x) g(x)) = AB  (1) lim (f(x) g(x)) = AB  (2) lim (f(x) g(x)) = AB  (3) lim (f(x) g(x)) = AB  (4) lim (f(x) g(x)) = AB  (5) lim (f(x) g(x)) = AB  (6) lim (f(x) g(x)) = AB  (7) lim (f(x) g(x)) = AB  (8) lim (f(x) g(x)) = AB  (9) lim (f(x) g(x)) = AB  (9) lim (f(x) g(x)) = AB  (9) lim (f(x) g(x)) = AB  (1) lim (f(x) g(x)) = AB  (2) lim (f(x) g(x)) = AB  (3) lim (f(x) g(x)) = AB  (4) lim (f(x) g(x)) = AB  (6) lim (f(x) g(x)) = AB  (7) lim (f(x) g(x)) = AB  (8) lim (f(x) g(x)) = AB  (9) lim (f(x) g(x)) = AB  (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ほとんど、そのままないたつ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| g: I\ fxol→R, lime fox>A, lime gtx)=B とおと>をががけっ  (1) lime (fox) + g(x)) = A+B  (2) lime (fox) g(x)) = AB  (2) lime (fox) g(x)) = AB  (3) lime (fox) g(x)) = AB  (4) Lime (fox) g(x) = AB  (5) Lime (fox) g(x) = AB  (6) Lime (fox) g(x) = AB  (7) Lime (fox) g(x) = AB  (8) Lime (fox) g(x) = AB  (9) Lime (fox) g(x) = AB  (9) Lime (fox) g(x) = AB  (1) Lime (fox) g(x) = AB  (2) lime (fox) g(x) = AB  (3) Lime (fox) g(x) = AB  (4) Lime (fox) g(x) = AB  (5) Lime (fox) g(x) = AB  (6) Lime (fox) g(x) = AB  (7) Lime (fox) g(x) = AB  (8) Lime (fox) g(x) = AB  (9) Lime (fox) g(x) = AB  (1) Lime (fox) g(x) = AB  (2) Lime (fox) g(x) = AB  (3) Lime (fox) g(x) = AB  (4) Lime (fox) g(x) = AB  (5) Lime (fox) g(x) = AB  (6) Lime (fox) g(x) = AB  (7) Lime (fox) g(x) = AB  (8) Lime (fox) g(x) = AB  (9) Lime (fox) g(x) = AB  (9) Lime (fox) g(x) = AB  (9) Lime (fox) g(x) = AB  (1) Lime (fox) g(x) = AB  (2) Lime (fox) g(x) = AB  (3) Lime (fox) g(x) = AB  (4) Lime (fox) g(x) = AB  (6) Lime (fox) g(x) = AB  (7) Lime (fox) g(x) = AB  (8) Lime (fox) g(x) = AB  (9) Lime (f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 定理2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| とするとったががほう  (1) 元((x)+分(x)) = A+B  (2) lim (f(x)+分(x)) = AB  (2) lim (f(x)分(x)) = AB  (3) lim (f(x)分(x)) = AB  (4) にないの料(定条件)  [im fox)が 存在  (4) とこっに対けて、うちっのいた。 マスペ(で) ない。  (5) に対けて  (5) に対けて  (5) に対けて  (5) に対けて  (5) に対けて  (6) に対けて  (7) に対けて  (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $I = (a.b) \subset \mathbb{R}, x \in I, f: I \setminus \{x_0\} \rightarrow \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| (1) zlmx(f(x)+分(x)) = A+B (2) lim (f(x)分(x)) = AB 面 定理2.6 (Cauchyの料定条件)  I=(a.b)CR, x。eI, f:I\(x)→R,  lim f(x)が存在 (ラ) とこっに対して、うち>0 s.t. をx,x'をI\(x)  同値 に対して  0<(x-x)(<を, o<(x'-x)(<を )  一分(2.り)  lim sinx = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3   |
| (2) lim (fix) g(x)) = AB 面 定理2.6 (Cenchyの料度条件)  I=(a,b)CR, x,eI, f:I\fx,f→R,  [im fox)が 存在 (今) そこっに対けて、35>0 s.t. が、次でI\fx,f  [im fox)が 存在 (つくはへx。1<5、0<1x-x。1<5  ->  f(x)-f(x') <8  [im sinx - 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 定理2.6 (Cauchyの判定条件) $I = (a,b) \subset \mathbb{R}, x_0 \in I, f : I \setminus \{x_0\} \rightarrow \mathbb{R},$ $\lim_{x \to \infty} f(x_0) \text{ が 存在}$ $(a) \forall \epsilon > 0    \text{ foc}) \text{ が 存在}$ $(a) \forall \epsilon > 0    \text{ foc}) \text{ が 存在}$ $(a) \forall \epsilon > 0    \text{ foc})    \text{ foc})    \text{ foc})    \text{ foc})    \text{ foc})    \text{ foc})$ $  \text{ foc}   \text{ foc}   \text{ foc}   \text{ foc})    \text{ foc}   \text{ foc})    \text{ foc}   \text{ foc})    \text{ foc}   \text{ foc})    \text{ foc}   \text{ foc}  $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| I=(a,b)CR, $x_0 \in I$ , $f:I\setminus\{x_0\} \rightarrow R$ , $\lim_{n \to \infty} f(x_n) \neq f(x_n$                                                                                | (2) lim (fix) g(x)) = AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20  |
| $\lim_{x \to \infty} f(x) = \frac{1}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The state of the s |     |
| (a) $\forall \epsilon > 0 = \pm 1/2$ . $\Rightarrow \delta > 0 \text{ s.t.} \forall x, x' \in I \setminus \{x_0\}$ (b) $\forall \epsilon > 0 = \pm 1/2$ . $\Rightarrow 0 <  x - x_0  < \delta$ (c) $\Rightarrow  f(x) - f(x')  < \epsilon$ .  (d) $\Rightarrow  f(x) - f(x')  < \epsilon$ .  (e) $\Rightarrow  f(x) - f(x')  < \epsilon$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| $0 <  x - x_0  < \delta,  0 <  x' - x_0  < \delta$ $\Rightarrow  f(x) - f(x')  < \epsilon.$ $ f(x)  = 1$ $ f(x)  = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lim foc)が存在                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| $0 <  x - x_0  < \varepsilon,  0 <  x' - x_0  < \delta$ $\Rightarrow  f(x) - f(x')  < \varepsilon.$ $ 3  2.1 $ $\lim_{x \to \infty} \sin x = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2) AE20 1= #415. 220 24. AXX, EI/ 1X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6   |
| $= \int  f(x) - f(x')  < \epsilon.$ $\sqrt{3}(2.7)$ $\lim_{x \to \infty} \sin x = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| $\frac{1312.7}{\lim \sin x} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 1312.7<br>lim sinx - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| lim sinx - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| $\lim_{x\to 0} \frac{\sin x}{x} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 7.70 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lim sinx - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |

| 1 | 正明の方針                                                                                                                                                                                                  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | を図より O· <x(音, <="" b="" td=""></x(音,>                                                                                                                                                                  |
|   | 1=4-113                                                                                                                                                                                                |
|   | AB = AB = AT                                                                                                                                                                                           |
|   | てあり                                                                                                                                                                                                    |
|   | AB = V2-2 cosx (*:余弦定理)                                                                                                                                                                                |
|   | = 2-2(1-2sin²至) (二倍角公式)                                                                                                                                                                                |
|   | $= 2 \sin \frac{x}{2}$                                                                                                                                                                                 |
|   | AB = x (::ラニアンの性質)                                                                                                                                                                                     |
|   | AT = ton x                                                                                                                                                                                             |
|   | 71)                                                                                                                                                                                                    |
|   | tenx 5 x 5 2 sing                                                                                                                                                                                      |
|   | だかう                                                                                                                                                                                                    |
|   | $\frac{\sin x}{\tan x} \leq \frac{\sin x}{x} \leq \frac{\sin x}{2\sin \frac{x}{2}}$                                                                                                                    |
|   | $tanx = x = 2sin\frac{x}{2}$                                                                                                                                                                           |
|   | となる。後、て信角公式より                                                                                                                                                                                          |
|   | $\cos x \leq \frac{\sin x}{x} \leq \cos \frac{x}{2} \qquad (*)$                                                                                                                                        |
|   | が得られ、同様に一至くなくひのと                                                                                                                                                                                       |
|   | きはりが得られるのでスつのとすると、                                                                                                                                                                                     |
|   | $\cos x \rightarrow 1$ , $\cos \frac{x}{2} \rightarrow 1$ $\Rightarrow 1 \Rightarrow $ |
|   | の原理より                                                                                                                                                                                                  |
|   | Im sinx =   Etij                                                                                                                                                                                       |
|   | 200 x 2 2 5 3 [                                                                                                                                                                                        |

| 〈片側 極限〉 ×→xo をもからかつけるか? ーから近づけるか? でまたがかめることがあった、どう定式化なか? 定義2.5 (片側 本動化) I=(a.b) C R, xo e I, f=I \ (xo) → R, の fが x → xo + o (またはx ↓ xo) のとき。 A ∈ R に 収束する。 (声) と>0 に対けて る>0 s.t. をE \ (xo) 定義 に対けて のく x - xo < る ⇒ (f(x) - A) (< を このとき xim to f(x) = Aとが fa) → A (x → xo + o) とか ( x → xo + o のかわりに x ↓ xo とかいてきょい) の fが x → xo - o (まをは x ↑ xo) のとき。 A ∈ R に 収束する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| できたがかわることがあった。どう定式化なか?  定義2.5 (片倒川福隆)  I=(a.b)CR, x。 eI, f:I\(x_1 → R,  の f が x → x。 + o (またはx ↓ x。) のとき.  A eR に 以来する。  (二) * を>o (= 女はいできる>o s.t. * x eI\(x_6) を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 定義2.5 (片倒り極慢) $I=(a.b) \subset \mathbb{R}, x_0 \in I, f:I \setminus \{x_0\} \to \mathbb{R},$ の f が $x \to x_0 + 0$ (または $x \downarrow x_0$ ) のとき. A $\in \mathbb{R}$ 1: $\forall x \neq T_3$ . (=) $\forall \xi > 0$ (= $\forall x \downarrow 1 \cdot 1^{-3} \delta > 0$ s.t. $\forall x \in I \setminus \{x_0\}$ ) 定義 1: $\forall x \in I \setminus \{x_0\}$ で義 1: $\forall x \in I \setminus \{x_0\}$ で表 1: $\forall x \in I \setminus \{x_0\}$ で表 1: $\forall x \in I \setminus \{x_0\}$ である。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| I=(a.b)CR, x。 EI, f:I\[x_6] → R,  の f が x → x。 + o (または x ↓ x。) のとき.  A ∈ R 1= 以来する.  (=) ∀ を>o 1=女はて 3 5 > o s.t. ∀x ∈ I\[x_6]  定義 1=女はて  O < x - x。 < る ⇒  f(x) - A   < を  このとき、 lim f(x) = A とが fa) → A (x → x + o)  とか (x → x + o のか か) に x ↓ x。 とかいてもよい)  の f が x → x。 - o (まをは x ↑ x。) のとき.  A ∈ R に 以来する.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| I=(a.b)CR, x。 EI, f:I\[x_6] → R,  の f が x → x。 + o (または x ↓ x。) のとき.  A ∈ R 1= 以来する.  (=) ∀ を>o 1= 対はて 3 5 > o s.t. ∀x ∈ I\[x_6]  定義 1= 対して  O < x - x。 < る ⇒  f(x) - A   < を  このとき. lim f(x) = A とが fa) → A (x → x + o)  とか (x → x + o のか か) に x ↓ x。 とかいてもよい)  の f が x → x。 - o (まをは x ↑ x。) のとき.  A ∈ R に 以来する.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $A \in \mathbb{R} = 42 = 73$ .<br>(二) $\forall \xi > 0 = 2 \neq 1 = 2 \neq 1 = 3 \neq 0 = 3 \neq 1 = 2 \neq 1 = 3 \neq 1$ |
| $A \in \mathbb{R}$ 12 以来する。<br>(二) $\forall \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 定義 1-女(て<br>O < x-xo < る => (f(x)-: A ) (< を)<br>このとき lim f(x)= A とがf(x)→A (x→xo+o)<br>とか((x→xo+o のかわりに x し xo とかいてもよい)<br>の fが x → xo-o (まをは x 个xo) のとき<br>AERに 収束する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 定義 1-女(て<br>O < x-xo < る => (f(x)-: A ) (< を)<br>このとき lim f(x)= A とがf(x)→A (x→xo+o)<br>とか((x→xo+o のかわりに x し xo とかいてもよい)<br>の 千が x → xo-o (まをは x 个xo) のとき<br>AERに 収率する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| このとき xing f(x)= Aとがfx)→A (x->x+++) とかく(x->x+++ のかかりに x しxoとかいてもよい) の fが x-> x。- の (まをは x 个x。) のとき AERにりまする。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| このとき xing f(x)= Aとがfx)→A (x->x+++) とかく(x->x+++ のかかりに x しxoとかいてもよい) の fが x-> x。- の (まをは x 个x。) のとき AERにりまする。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| とかく(スーメのもののかわりに又しなっとかいてもよい)の 千がスーンス。-の (まをはスイス。)のとき<br>AERに収集する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AERIC 収束する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AERIC 収束する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| E) You what 230 With 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| たとうのに対してるらって、ナンダモIr (xo)に対すい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| このとき、lim fox)=Aとかfox)-A (スース。-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| とかく(メース。一〇のかわりに次个々。とかいてもよい)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 〈無限大での核學と〉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 流をかんたんにするために。f:R→R=7117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| のみをひっ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |


| 定義2.6(智限大での程限)                                      |
|-----------------------------------------------------|
| f: R→ R とする.                                        |
| のfがス→のでAERに収まする。                                    |
| (ラ) りを20 はないでは、K20 S.t. boceR1はないて                  |
| 職 x>K ⇒ Ifox)-A   < E.                              |
| = 1 = lim f(x) = A x to f(x) + A (x+00)             |
| \th\c.                                              |
| offix→-∞でAERに収束する                                   |
| 今)がE2013対けるK205.t. YxeRis対けて                        |
| 障截 α <- k ⇒ lf(α)-A1<€.                             |
| = 1 lim f(x) = A Eff(x) -> A (x -> -∞)              |
| とかく。                                                |
| > 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1             |
| 無限大に発散的場合の定義も同様に                                    |
| できる。名自考えよの                                          |
|                                                     |
| §2.3 連続関散                                           |
| 関数が連続であるとは、感覚的には.                                   |
| グラフがつながらていることであった。これを                               |
| じう定式化机はよいか考しる。                                      |
|                                                     |
| 定義2.7 (関数の連続性)                                      |
| ICR, f:I→R.                                         |
| のfがx。∈Iで連続                                          |
| (⇒ ∀€>01=\$412 =35>0 5.1. ∀x €I 1=\$412             |
| $ x-x_0 <\delta \Rightarrow  f(x)-f(x_0) <\epsilon$ |

| € 千が、工上連続                                     |          |
|-----------------------------------------------|----------|
| (⇒) ∀xo∈I 1⇒対にてfはxoで連続                        |          |
| (R.A.)                                        | 77       |
| 今題2.1                                         |          |
| I=(a.b) CR, f: I-> R, x. EI                   |          |
|                                               |          |
| fがxoで連続 ( lim f(x) =frxo)                     |          |
|                                               | <u>n</u> |
| FERRIC Web 11-1                               |          |
| 何2.8                                          |          |
| f=R→RをXER 1=女(f(x):=x3-1                      |          |
| で定義する。このとき、fはx=2で連続となる                        |          |
|                                               |          |
| 高正 B 月                                        | •1       |
| 1. 4を201=女にて、定義のよ20をみつける                      |          |
| ためにあとでシャのる。YouelRに対して                         |          |
|                                               |          |
| 1x-21 ~ を1を変なと                                |          |
| $ f_{00}-f_{02} = (x^3-1)-(2^3-1) $           |          |
| $= \chi^3-8 $                                 |          |
| $= (x-2)(x^2+2x+4) $                          |          |
| $= x-2 (x-2)^2+6x $                           |          |
| $=  x-2  (x-2)^{\frac{2}{7}} 6(x-2) +  2 $    |          |
| $\leq  \chi-2  ( \chi-2 ^2 + 6 \chi-2  + 12)$ |          |
| (~:=)杯字式)                                     |          |
|                                               | c 1      |
| < 5(5765+12) ("  x-2  <                       |          |
| 55(H6+12) ([5≤] 246                           | 走        |
| =198                                          |          |



| 2\$3. 198≤E) tanti                                     |
|--------------------------------------------------------|
| If(x)-f(2) 1 < 196 5 8                                 |
| となる。1955をもちについて角にと                                     |
| おと、声となる。この考察をもとに                                       |
| 强产的月至为°C.                                              |
| 2. 46>0 1>女は 5:=min (を 11>0 と                          |
| まく、 る三島、 る三1となることに注意な                                  |
| YzeRに対して、 1x-21くるならば、                                  |
| $ f_{6c}  - f_{(2)}  =  x-2  (x-2)^{2} + 6(x-2) +  2 $ |
| $\leq  x-2 ( x-2 ^2+6 x-2 + 2)$                        |
| (兰》解学式 )                                               |
| < 8(8768+12) (-1/x-2)<                                 |
| ≤ 195 (2:8≤1                                           |
| (3) 28:3 \(\frac{3}{2}\) \(\frac{3}{2}\)               |
| となるので午は火ニンで堕発となる                                       |
| 0.4001C [[FX=2 C B 4R C 143                            |
| >接2.5                                                  |
| 意画を行ったけなら上の2.のみでよいが                                    |
| かをどうたってとったかがわかるよう121. も                                |
| # + 3 10° 1 121 14+1 1                                 |
| 看いたろか。hかりですい 面                                         |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |







| くE-N論法やE-S論法: 感覚と厳密)      |
|---------------------------|
| (lim fix)=Aの度量)           |
| スがス。に近づくとfa)がAに近づく。       |
| <b>承3</b> こと              |
| 「近づく」は人によっておまてな感覚         |
| (lim fal=Aの厳密な取り扱い)       |
| 「fx)はAに近つ、<」              |
| → 誤差  fx)-A   が E>O より    |
| 小さくなるように先による。             |
| 「文がて。に近づく」                |
| -> 0< x-x0 1 < 5 ts > + 0 |
| (誤差) <と となるように            |
| ようのを あとから決める。             |
|                           |
|                           |
|                           |
|                           |
|                           |
|                           |
|                           |
|                           |
|                           |
|                           |
|                           |
|                           |
|                           |



| く連続関数の性質>                           |
|-------------------------------------|
| 定義28 (関勢の和, スカラー倍)                  |
| ICR, f: I > R, g: I - R, A = R 12   |
| 文中しか「十月: エーカア、スカラー信入子: エートア         |
| 積fg: I→REをれるれてEIIc女は                |
| (f+g)(x) := f(x) + g(x)             |
| $(\lambda f)(x) := \lambda f(x)$    |
| (fg)(x) := f(x)g(x)                 |
| で定義な。                               |
|                                     |
| 定義 2.9 (関数の合成)                      |
| f:R→R, g:R→Rに対し、関数の                 |
| 合成 gof: R→Rを XERIC大さし               |
| $3 \circ f(\infty) := 2(f(\infty))$ |
| 7"定義羽。                              |
|                                     |
| 定理2.7                               |
| (簡単のため) f: R→R, g: R→Rとする。          |
| (1) f, g が xo eR で 連続               |
| => A CIRICATU, ftg, Af, fg &        |
| 2) f, gがR上連続                        |
| (2) f, gがR上連続                       |
| => すってもR上連続                         |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |

| 証明 (1)は演習 (2) と示す。                         |
|--------------------------------------------|
| YxoeR に対し、gofがxoで連続と                       |
| なることを示す、そとついく文寸し、まかで                       |
| y。=fox。)で連続なので                             |
| 35, >0 s.t. Atekickt                       |
| 14-fmo)/<5, =>  g(y)-g(fmo))/<8            |
| とできる。これに、このかつのはは、千かい                       |
| x。で連続なので 35 >0 s.t.                        |
| YXER ISX+L                                 |
| 1x-x0/<5=> 1fix)-fix0/<5,                  |
| とできる。よって、上のよとして生まれ                         |
| とすれば、サスチに対しノスース。してらなるは、                    |
| 12(f(x)) - 2(f(x))   < E,                  |
| つまり                                        |
| 190f(x)-gof(x.)   < 8                      |
| となる。従ってまってはつてって連系をとなる。                     |
| XoeRは任意だったから、gofはR上連続                      |
| 27x3.                                      |
| §§2.4 閉区間上の連続関数                            |
| I=[a,b] CR上の連続関数fi[a,b]→R                  |
| には重要な一性質がある。                               |
|                                            |
| 定理2.8(中間値の定理)                              |
| f: [a.b]→ R は連続, fra) < f(b)               |
| => YE & [fla), f(b)] 1= total 3 20 & [a,b] |
| $S.t. f(x_0) = C$                          |
|                                            |

| 中間値の定理を                                                                 | Y=fix)     |  |
|-------------------------------------------------------------------------|------------|--|
| グラフでいうと、 f(b)                                                           |            |  |
| YCE [f(a), f(b)] 15 4=c                                                 |            |  |
| 対けて直続なってくり                                                              |            |  |
| 1777 4=f(x) 17 (f(a)                                                    |            |  |
| まじわるということ、                                                              | a xo b x   |  |
| 其vc涞                                                                    |            |  |
|                                                                         | 交点がみつかる(2) |  |
|                                                                         | (-7とは限うない) |  |
|                                                                         | y=f(x)     |  |
| 4ce[fla), flb] flb)-                                                    |            |  |
| १०१८, ४००                                                               |            |  |
| E = {x \in \text{[a,b]} = \frac{1}{2} \text{[x \cdot \text{]}}          |            |  |
| とかく(を図参照). かね)                                                          |            |  |
| Xo=Sup E                                                                | at Tib x   |  |
| となくと、 [9.6] かい                                                          | 70         |  |
| 閉区間FI) X。 E[a,b] と                                                      |            |  |
| レスト、fixo)=cとなる                                                          | とを示す。      |  |
| 1. f(x0) ≤ CE7-7.                                                       |            |  |
| $\exists \{x_n   x_n \in E \text{ s.t. } x_n \to x_o (n \to \infty) \}$ |            |  |
| とできる。「FMEN に対してXMEE」                                                    |            |  |
| まりf(xn) s c であり、fは[a,b]                                                 |            |  |
| 上連続だから、ハナのとなと                                                           |            |  |
| f(x0) ≤ C と tu3.                                                        |            |  |
|                                                                         |            |  |
|                                                                         |            |  |
|                                                                         |            |  |



| 2. f(x0) 2 C 表示 す. YneN (文寸し.                                                   |          |
|---------------------------------------------------------------------------------|----------|
| $\frac{\chi_n':=\chi_0+\frac{b-\chi_0}{n}}{\chi_n':=\chi_0+\frac{b-\chi_0}{n}}$ |          |
| n n                                                                             |          |
| え。くながるとなる。 6-20~                                                                |          |
| $x_0 < x_n \le b \ge t \le 3$ . $(t \boxtimes )$ , $x_0 = \sup E$ $x_0 = x_n$   | <u></u>  |
| より xn を 目 だから                                                                   | <i>U</i> |
| f(xが)>cとなる。                                                                     |          |
| n→∞とするとfはI上連続かつ。                                                                |          |
| スルース。 (いつの) だから f(xo) 2 C                                                       |          |
| と存る。                                                                            |          |
| 1. 2. より f(な)=c となる.                                                            | _        |
| 7 ( ( 3 ) 3 )                                                                   |          |
| 13112.10                                                                        |          |
| f: [0.1]→Rは連続で「Vxe[0.1]1                                                        |          |
|                                                                                 |          |
| まってってった。」というでする。                                                                | 6        |
| このとき、方程式fx)=xはCo.D.                                                             | <u> </u> |
| に削を持つ                                                                           |          |
| <del></del>                                                                     |          |
| हेEBA                                                                           |          |
| F:[0.1]→RをxE[0.1] に対すし                                                          |          |
| F(x) := f(x) - x                                                                |          |
| と定めると、FはCO、ワ上連続であり、                                                             |          |
| $F(0) = f(0) - 0 \ge 0 - 0 = 0$ (-: $f(0) \ge$                                  |          |
| F(1) = f(1)-1 < 1-1 = 0 (=fa) <                                                 |          |
| フまり F(0) < 0 < F(1) となるので 中間値 (                                                 |          |
| 定理から→x。∈[0.1] s.t. F(x。)=0となる                                                   |          |
| 100000000000000000000000000000000000000                                         | <u> </u> |

| 注美.2.0                                              |               |
|-----------------------------------------------------|---------------|
| [a,b)を閉区間にはいて訂                                      | 45£ A "TAGE   |
| は、な。そしの、しつとなるかどうか                                   | 1? 7° \$3 170 |
|                                                     | a ona ma      |
| 定理2.9 (Weierstrassの定理                               | 1             |
| f: [a,b] -> Rが連続                                    | )             |
|                                                     | 0 0 \$11      |
| =) 于は最大値、最小値をも                                      |               |
| supfix):=supff(x):xe[a                              |               |
|                                                     | xe[a,b]       |
| $\inf_{x \in [a,b]} f(x) = \min_{x \in [a,b]} f(x)$ |               |
|                                                     |               |
| が、放り支フ                                              |               |
|                                                     |               |
|                                                     | fix)          |
| グラフでいうと、 supfext                                    | <b>A</b>      |
| かうつの一番高いところと なきない                                   | 10            |
| 一番任いて=3かるということが行るし                                  |               |
|                                                     | a b X         |
|                                                     |               |
| [a,b)を(a,b)にかえな イチ                                  | efix)         |
| をのグラフかう最大値。                                         | a             |
| 最小値がないことが                                           |               |
| 并往溴川で生3。                                            |               |
|                                                     |               |
|                                                     | D 2           |
| C                                                   | <u> </u>      |
|                                                     |               |
|                                                     |               |
|                                                     |               |



| <b>EEPA</b>                                                                         |
|-------------------------------------------------------------------------------------|
| 最大値の存在されず、                                                                          |
| 1. 以来的近似到它作3. M:= Sup f(x)                                                          |
| XELAN                                                                               |
| Ex-cz. = (xuln= C[a,b]s.t.                                                          |
| $f(x_n) \rightarrow M$ $(n\rightarrow \infty) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ |
|                                                                                     |
| 1ま有界引なので Bolzano-Weierstrassの                                                       |
| 定理于)収集部分引于Xn上1001(介Xn1001                                                           |
| が存在する。                                                                              |
| 2. lim Xng = x0 6t- ( 1 f(x0) = M                                                   |
| となることを示す。「Xne(ex)(C[a,b]                                                            |
| F1), x0 ∈ [a,b] × \$13. +1" [a,b]                                                   |
| 上連続だから                                                                              |
| $f(x_{n}) \rightarrow f(x_0)  (k \rightarrow \infty)$                               |
| となる。他方                                                                              |
| $f(x_{ne}) \rightarrow M  (\cancel{\xi} + \infty)$                                  |
| だったかう、M=f(xo)となる。よって                                                                |
|                                                                                     |
| M=supf(x)は最大値となる。                                                                   |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |

| 〈一棋連絲性〉                                          |
|--------------------------------------------------|
| ICR 1文計し十、コッRが連続のは、                              |
| 一般に定奏でとれるら>0はx。EIで                               |
| 異なる.                                             |
|                                                  |
| 行[2.1]                                           |
| f:R→RをxeRic女しfx):=x2                             |
| で定めると干は水上連続となる。                                  |
| Xo ER ド文サレ、 E-5論法の 5>0が、                         |
| どうかわるかみてみよう。                                     |
| YE20に女もし、820をあてで決める。                             |
| YxeRに対けし  x-x。  くるを仮定すると                         |
| $ f(x) - f(x_0)  =  x^2 - x_0^2 $                |
| $=  (x-x_0)(x+x_0) $                             |
| $= x-x_0  x-x_0+2x_0 $                           |
| $\leq  x-x_0 ( x-x_0 +2 x_0 )$                   |
| (三)种学式)                                          |
| $<\delta(\delta+2 x_{0} )$                       |
| $(1/2)  x-x  < \delta$                           |
| ≤&( +2 x₀ )                                      |
| (((金) 至何定)                                       |
| kti3. δ(1+21x01)≤ε κtin1ti                       |
|                                                  |
| $ f(x)-f(x_0) <\delta( +2 x_0 )\leq \varepsilon$ |
| xt53.                                            |
|                                                  |
|                                                  |



| もく(1+21261) ミモモらについて解くと                                    |                 |
|------------------------------------------------------------|-----------------|
| るミ (+2 xol となる。4たって                                        |                 |
| S:= min { E   E ENIX;                                      |                 |
| よいがしなるしが大きいとるはいくうでも                                        |                 |
| 小さくなってしまうことがわかる。つまり                                        |                 |
| 1xol-> 00 1+2 xol                                          |                 |
| 1xol-> 00 1+21xol                                          |                 |
| がわかる。                                                      |                 |
| 1912.12<br>f:RoRをxeRに対しfix):=xと                            |                 |
| 定路と、十はR上連続となる。2。日内に                                        |                 |
| 女中し、とろ言念法のようのかどうなるかりてみ                                     | _1              |
| サミンロに女子し おこのをあとできためる。                                      | <del>-</del> ?. |
| YxelRに対し、1x-x。1くるを何定すると                                    |                 |
| $ f(x)-f(x_0) = x-x_0 $                                    |                 |
| \[   \zerightarrow \tau \tau \tau \tau \tau \tau \tau \tau | <u> </u>        |
| となるから、包ェモスかいは、                                             | <u> </u>        |
| 1fx)-fx, 1<8≤ E                                            |                 |
| となる。作ってもこととればよいが                                           |                 |
| xueRがどの値であってもおは小さく                                         |                 |
| +12+ 1121 412                                              |                 |
| (4)(ないくことが、内から。                                            |                 |
|                                                            |                 |
|                                                            |                 |



| 1912.11,1912.12からR上連続といったは                           |
|------------------------------------------------------|
| 違いがあることがわかる。何12.12の性質を                               |
| 定式化してみる                                              |
|                                                      |
| 定義2.10 (一樣連続)                                        |
| ICRに対し、やエコアがエトー村。連続                                  |
| (a) 4 8 20 10 pt 2 200 pt                            |
| ★* サス,x' ∈ I 1=女+して                                  |
| $ x-x' <\delta \Rightarrow  f(x)-f(x') <\epsilon$    |
| 12 2110 71101 101112                                 |
| 131(2.13                                             |
| (312 10 0 FH D h + + + + + + + + + + + + + + + + + + |
| 1912、1201下131K上一个科里和地である。                            |
| FETOR                                                |
|                                                      |
| AESO (241) Q:= ESO 253°                              |
| サス、水(をR に対し 1x-x1くるならは)                              |
| f(x)-f(x') = x-x'                                    |
| < 8 (= 1x-x'1<8                                      |
| 3 =                                                  |
| となるので千はR上一様連続である。 L                                  |
|                                                      |
| 注意-2.8                                               |
| 一様連続の定義のようのもみかけるため                                   |
| には何12、12の計算が必要である 四                                  |
|                                                      |
|                                                      |
|                                                      |

| 一般に一様連続かどうかを定義に従って                                                  |
|---------------------------------------------------------------------|
| 示すのは葉佳しい。しか、次の強な定理がある。                                              |
|                                                                     |
| 定理2.10                                                              |
| f:[a,b]→Rが[a,b]上連続                                                  |
|                                                                     |
| 马fはCabD上一樣連続 四                                                      |
|                                                                     |
| 注意-2.9                                                              |
| 定理2.10は有界、閉区間であることが                                                 |
| 重要。開区間では放り立たない                                                      |
|                                                                     |
| 定理2.10の証明(代数)                                                       |
| 松理法で示す、つまり、十か「Ca.b]上で                                               |
| 一様連続でないと仮定する。                                                       |
| 1. ナが「Ca、b)上一様連続でないにとと                                              |
|                                                                     |
| 論理記号でかくと                                                            |
| [3 €. 70 5.t. \$5>0 1=\$\$\tau\tau\tau\tau\tau\tau\tau\tau\tau\tau  |
| S.t. 125-25/1<8 000 H(xs)-f(xs)/2801                                |
| -(x)                                                                |
| が成り立つ。                                                              |
| で定 ヨ→サ、サ→ヨ<br>P⇒シタ → Pかってなでない」                                      |
| P=> & -> Pho &itu                                                   |
|                                                                     |
| 2. 4neかに対し、でニーかととりはを用いると                                            |
| $\exists x_n, x_n \in [a,b] \text{ s.t.}  x_n - x_n  < \frac{1}{n}$ |
| An, anelying J. C [An an ] of                                       |
| かつ   チはかーチはか   ことできる。                                               |
|                                                                     |

| 2 12 180 0 12 12 10 20 12 12 12                                                           |  |
|-------------------------------------------------------------------------------------------|--|
| 3.  xn/mi C [a,b]は有界がだから                                                                  |  |
| Bol zano- Weierstrassの定理をり 収束部分引                                                          |  |
| 「Xng B=1 C「Xn min が存在する。                                                                  |  |
| $\chi_{n_k} \rightarrow \chi_o (k \rightarrow \infty) \times 73 \times, \chi_o \in [a,b]$ |  |
| 7 3.                                                                                      |  |
| 12ng - x0 = 12ng - 2ng + 12ng - x01                                                       |  |
| $\leq \frac{1}{h_B} +  x_{n_B} - x_o $                                                    |  |
| -) O (\$-700)                                                                             |  |
| у Ср. 700 /                                                                               |  |
| とはるから、 2(10 ) かかる。                                                                        |  |
| 4. fは [a,b]上連続だから                                                                         |  |
| $f(x_{n_{R}}) \rightarrow f(x_{0}), f(x_{n_{R}}) \rightarrow f(x_{0})$                    |  |
| (fe -> 00)                                                                                |  |
| となる、代方(*) +1)  f(xng)-f(xng) 28。                                                          |  |
| となるから、た十のとすれは"                                                                            |  |
| $\varepsilon_0 \leq  f(x_0) - f(x_0)  = 0$                                                |  |
| となり、そのですったことに矛盾する口                                                                        |  |
|                                                                                           |  |
| 注度.2.(0                                                                                   |  |
| 定理2.9は (19年後)                                                                             |  |
| 在国的条件结合的                                                                                  |  |
| の面積が(素料な                                                                                  |  |
| 意味で)決まること ////                                                                            |  |
| と示すのに使う なりな                                                                               |  |
| (後期ででる)                                                                                   |  |
|                                                                                           |  |
|                                                                                           |  |