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Abstract

In this paper, we prove that if a claw-free graph G with minimum degree
δ ≥ 4 has no maximal clique of two vertices, then G has a 2-factor with at most
(|G| − 1)/4 components. This upper bound is best possible. Additionally, we
give a family of claw-free graphs with minimum degree δ ≥ 4 in which every
2-factor contains more than n/δ components.

1 Introduction

In this paper, we consider only finite graphs with no loops or no multiple edges. If

no ambiguity can arise, we denote simply the order |G| of G by n and the minimum

degree δ(G) by δ. All notation and terminology not explained in this paper is given

in [2].

A 2-factor of a graph G is a spanning 2-regular subgraph of G, and so a Hamilton

cycle is a 2-factor. It is a well known conjecture that every 4-connected claw-free

graph is hamiltonian ([10]). For small connected claw-free graphs, Jackson and the

author proved the following.

Theorem 1 ([6], [7]). 1. Every 3-connected claw-free graph with δ ≥ 4 has a

2-factor with at most 2n/15 components.

2. Every 2-connected claw-free graph with δ ≥ 4 has a 2-factor with at most

(n + 1)/4 components.

Probably, neither of the upper bounds in Theorem 1 is best possible. For con-

nected claw-free graphs, Faudree et al. [4] showed that a claw-free graph with δ ≥ 4
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has a 2-factor with at most 6n/(δ +2)− 1 components, and Gould and Jacobson [9]

proved that if δ ≥ (4n)
2
3 , then the graph has a 2-factor with at most n/δ com-

ponents. In general, the second upper bound is too strong. In Section 3, we will

construct examples of claw-free graphs in which every 2-factor contains more than

n/δ components. Especially, for the case of δ = 4, there exists a family {Gi} of

claw-free graphs such that

f2(Gi)

|Gi|
→ 5

18
(|Gi| → ∞),

where f2(Gi) is the minimum number of components in a 2-factor of Gi. We con-

struct this example also in Section 3.

Both of the above examples contain bridges. Hence, it is a natural question to

ask whether a bridgeless claw-free graph has a 2-factor with at most n/4 components

or not. In this paper, we show that the following slightly weaker statement holds.

Theorem 2. Let G be a claw-free graph with δ ≥ 4. If G has no maximal clique of

two vertices, then G has a 2-factor with at most (n − 1)/4 components.

We will prove this theorem in Section 4 and describe an example in Section 3,

which shows that the upper bound on the number of components in Theorem 2 is,

in some sense, best possible.

The results of Egawa and Ota [3] and Choudum and Paulraj [1] implies that a

claw-free graph G with δ ≥ 4 has a 2-factor. If G has a bridge, then the graph

obtained from G by removing all bridges has a 2-factor, i.e., each block of G has a

2-factor. In general, for blocks, we can reduce the minimum degree condition.

Theorem 3. Every 2-connected claw-free graph with δ ≥ 3 has a 2-factor.

However, we cannot replace 2-connectivity by bridgeless. For example, the line

graph G of the graph drawn in Figure 1 is bridgeless, δ(G) = 3, and G has no

2-factor.
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Figure 1:

2 Notation and Preliminary Results

The set of all the neighbours of a vertex x in a graph G is denoted by NG(x), or

simply N(x), and its cardinality by dG(x), or d(x). The edge-degree of an edge uv

is defined as d(u) + d(v) − 2 and the minimum edge-degree δe(G) is the minimum

number of the edge-degrees of all edges in G. Let e(G) denote the size of E(G), i.e.,

the number of edges in G. The set of all vertices of degree k in G is denoted by

Vk(G) and we put V≥k(G) =
⋃

i≥k Vi(G).

For a subgraph H of G, we denote NG(x)∩V (H) by NH(x) and its cardinality by

dH(x). The set of neighbours (
⋃

v∈H NG(v)) \ V (H) is written by NG(H) or N(H),

and for a subgraph F ⊂ G, NG(H)∩V (F ) is denoted by NF (H). For simplicity, we

denote |V (H)| by |H|, “ui ∈ V (H)” by “ui ∈ H”, and “G − V (H)” by “G − H”.

An even graph is a graph in which every vertex has positive even degree. A

connected even subgraph is called a circuit, and the K1,m, a star. Let S be a set of

edge-disjoint circuits and stars with at least three edges in a graph H. We call S a

system that dominates H if every edge of H is either contained in one of the circuits

or stars of S or is adjacent to one of the circuits. The number of elements in S is

denoted by #S. We shall use the following result of Gould and Hynds.

Lemma A ([8]). Let H be a graph. Then L(H) has a 2-factor with c components

if and only if there is a system that dominates H with c elements.
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3 Examples

1. We first construct a line graph in which every 2-factor contains more than

n/δ components. Let d ≥ 4 be an integer and Rd be the graph obtained from

K2 ∪ (d − 1)K1,d by adding d − 1 edges joining a specified vertex in K2 and the

center of each K1,d as in Figure 2. Let us call the gray vertex in this figure a top.

KdKd

.... d-1

....

Rd

Kd ....
= K1,d =

d

Figure 2: Rd

We define a tree H∗
m,d from the path Pm = u1u2 · · ·um and a number of Rd as follows.

For each inner vertex of Pm, we add (d−2)Rd and d−2 edges joining the inner vertex

and the top of each Rd as in Figure 3, and for each end of Pm, we add (d−1)Rd and

……
d - 1

d - 2

KdKd

.... d-1

....KdKd

.... d-1

....KdKd

.... d-1

.... KdKd

.... d-1

....

……

Figure 3: H∗
m,d

d−1 edges. It is easy to check that δe(H
∗
m,d) ≥ d, and so δ(L(H∗

m,d)) ≥ d ≥ 4. Hence

L(H∗
m,d) has a 2-factor, and by Lemma A, there exists a system S that dominates

H∗
m,d. We show that the cardinality #S must be greater than e/d, where e is the
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size of H∗
m,2d.

Let S be the set of the centers of all the stars in S, and we show that S =

V≥3(H
∗
m,d). By the definition of a system, S ⊆ V≥3(H

∗
m,d). Let us label the neigh-

bours of Pm as follows

N(Pm) = {yij | 1 ≤ j ≤ d − 1 if i = 1 or m; and 1 ≤ j ≤ d − 2 if 2 ≤ i ≤ m − 1}.

For each yij, let xij be the neighbour of yij which is not ui. Since d(yij) = 2,

the edges uiyij, yijxij must be covered by the stars in S whose center are ui, xij,

respectively. This implies {ui} ∪ {xij} ⊂ S. Similarly, every pendant edge is also

covered by a star in S whose center is in N(V1(H
∗
m,d)). Therefore, V≥3(H

∗
m,d) ⊆ S,

which are colored black in Figure 3. Thus, #S = |V≥3(H
∗
m,d)|.

Since the order of Rd is (d + 1)(d − 1) + 2 = d2 + 1,

|H∗
m,2d| = m + (d2 + 1)(d − 2)m + 2(d2 + 1) = (d3 − 2d2 + d − 1)m + 2(d2 + 1).

Hence,

e = (d3 − 2d2 + d − 1)m + 2d2 + 1 and m =
e − (2d2 + 1)

d3 − 2d2 + d − 1
. (1)

Since each Rd contains d vertices of degree at least three,

|V≥3(H
∗
m,d)| = m + d(d − 2)m + 2d = (d2 − 2d + 1)m + 2d

= (d2 − 2d + 1)
e − (2d2 + 1)

d3 − 2d2 + d − 1
+ 2d ( by (1))

=
(d2 − 2d + 1)e − (2d2 + 1)(d2 − 2d + 1) + 2d(d3 − 2d2 + d − 1)

d3 − 2d2 + d − 1

=
(d2 − 2d + 1)e − (d2 + 1)

d3 − 2d2 + d − 1
>

e

d

⇐⇒ e > d(d2 + 1)

⇐⇒ (d3 − 2d2 + d − 1)m + 2d2 + 1 > d(d2 + 1) ( by (1))

⇐⇒ m >
d3 − 2d2 + d − 1

d3 − 2d2 + d − 1
= 1.

Hence if m ≥ 2, then |V≥3(H
∗
m,d)| > e/d. Therefore, by Lemma A, any 2-factor of

L(H∗
m,d) has more than n/d components.

On the other hand, since |V≥3(H
∗
m,d)| < e/(d − 1), the following problem still

remains.
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Problem 4. Does every claw-free graph with δ ≥ 4 have a 2-factor with less than

n/(δ − 1) components?

2. The second example is complicated. First we define a tree Bm
T inductively

from B0
T = K1 as follows; Bm

T is obtained from Bm−1
T by adding, for each end vertex

of Bm−1
T , two new vertices and two edges joining the end and the new vertices.

The graph B2
T is drawn in Figure 4(i). Let B̃m

T be the graph obtained from Bm
T by

2
0

2
1

2
2

K4 K4 K4 K4

2
0

2
1

2
2

BT
2

(i) (ii)

BT
2~

Figure 4:

replacing each end vertex of Bm
T by K1,4 as in Figure 4(ii). Then

|Bm
T | =

∑
0≤i≤m

2i = 2m+1 − 1 and

|B̃m
T | = |Bm

T | + 4(2m) = 2m+1 − 1 + 2(2m+1) = 3(2m+1) − 1.

Let u0 be the vertex of degree two in Bm
T and

Um
0 = {u ∈ V (Bm

T ) | d(u, u0) ≡ 0 (mod 2) } and

Um
1 = V (Bm

T ) \ Um
0 .

Let m = 2k and then

|U2k
0 | =

∑
0≤i≤k

22i =
22k+2 − 1

3
and

|U2k
1 | = |B2k

T | − |U2k
0 | = 22k+1 − 1 − 22k+2 − 1

3
=

22k+1 − 2

3
.

Let

Ũ2k
i = U2k

i ∪ V1(B
2k
T ),
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for i ∈ {0, 1}, and then

|Ũ2k
0 | = |U2k

0 | =
22k+2 − 1

3
and |Ũ2k

1 | = |U2k
1 | + 22k =

5(22k) − 2

3
.

For simplicity, let x = 22k and then

|B̃m
T | = 6x − 1, |Ũ2k

0 | =
4x − 1

3
, and |Ũ2k

1 | =
5x − 2

3
. (2)

Notice that B̃2k
T has only one system, i.e., the set of all the stars of which centers are

the vertices of Ũ2k
1 . Note that in order to make these stars edge-disjoint, the star

with center in U2k
1 can be taken as the vertex with all its neighbours, while the stars

with center in V1(B
2k
T ) must avoid the edge to its neighbour u which is at distance

d(u, u0) = 2k − 1 from u0. The cardinality of the system is (5x− 2)/3 and the ratio

of |Ũ2k
1 | and |B̃2k

T | is

|Ũ2k
1 |

|B̃2k
T |

=
5x − 2

18x − 3
→ 5

18
(2k → ∞),

but the minimum edge-degree is three. Hence, next we construct a tree of which

minimum edge-degree is four using B̃2k
T .

Let Bm,2k be the graph obtained from Pm and mK1,5 and (m + 2)B̃2k
T by adding

(2m + 2) edges as in Figure 5. It is easy to check that δe(Bm,2k) = 4. Hence, there

is a system that dominates Bm,2k by Lemma A. Let S be a system that dominates

Bm,2k such that the cardinality is minimum, and let S be the set of the centers of

all the stars in S.

Since V2(Bm,2k) ∩ S = ∅, the center of each K1,5 and V (Pm) are included in S.

Thus S ∩ V (B̃2k
T ) is Ũ2k

0 or Ũ2k
1 obviously. However, the degrees of vertices in Pm

are four and those are adjacent consecutively. Therefore, except one B̃2k
T , for every

B̃2k
T ,

S ∩ V (B̃2k
T ) = Ũ2k

1 .

In Figure 5, S is the set of all black vertices. Hence by (2),

#S = |S| = m + m + (m + 1)|Ũ2k
1 | + |Ũ2k

0 | = 2m + (m + 1)
5x − 2

3
+

4x − 1

3

=
5x + 4

3
m + (3x − 1).
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K4 K4 K4 K4K4 K4 K4 K4K4 K4 K4 K4

K4 K4

BT
2~

BT
2~

BT
2~

Figure 5: Bm,2k

Since |K1,5| = 6 and |B̃2k
T | = 6x − 1,

|Bm,2k| = m + 6m + (6x − 1)m + 2(6x − 1) = (6x + 6)m + 2(6x − 1)

and so

e = e(Bm,2k) = (6x + 6)m + 12x − 3.

Thus the ratio of |S| and e, i.e., the ratio of the the minimum number of cycles in

a 2-factor of L(Bm,2k) and |L(Bm,2k)|, is

|S|
e

=

5x + 4

3
m + (3x − 1)

(6x + 6)m + 12x − 3)
=

5xm + 4m + 9x − 3

18xm + 18m + 36x − 9
→ 5

18
(2k,m → ∞).

Now, the following problem remains.

Problem 5. Does every claw-free graph with δ ≥ 4 have a 2-factor with at most

5n/18 components?

3. Finally we construct line graphs which show that the upper bound in The-

orem 2 is best possible. Let P2m = u1u2 · · · u2m be the path and let H2m,4 be the

graph obtained from P2m ∪ (2m + 2)K1,4 by adding 2m + 2 edges as in Figure 6.
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Figure 6: H2m,4

Clearly δe(H2m,4) = 4, and so its line graph L(H2m,4) has minimum degree four.

Moreover, L(H2m,4) has no maximal clique of two vertices because there is no vertex

of degree two in H2m,4. Let S be a system that dominates H2m,4 and S be the set

of the centers of all stars in S.

Since every edge uiui+1 in P2m is covered by a star in S with center ui or ui+1,

S have to contain at least half vertices in P2m. On the other hand, since V (P2m) ⊂

V3(H2m,4), no consecutive two vertices are contained in S. Therefore, |S∩V (P2m)| =

m. Since S ∩ V1(H2m,4) = ∅, S contains all vertices in V5(H2m,4); otherwise, there is

a pendant edge which is not covered by a star in S. Thus

#S = |S| = m + (2m + 2) = 3m + 2.

Since the order of H2m,4 is

2m + 5(2m + 2) = 12m + 10,

then, e = e(H2m,4) = 12m + 9. Therefore

#S = 3m + 2 = 3
e − 9

12
+ 2 =

e − 1

4
,

and any 2-factor of L(H2m,4) has at least (|L(H2m,4)|−1)/4 components by Lemma A.

Easily we can generalize this example as follows. Let H2m,d be the graph obtained

from H2m,4 by replacing each K1,4 adjacent to internal vertices of P2m by (d−2)/2K1,d

and by replacing each 2K1,4 adjacent to the ends by (d/2)K1,d as in Figure 7. Then

as in the case of H2m,4, it is easy to see that the minimum edge-degree is d and

L(H2m,d) has no maximal clique of two vertices.

Since the order is

2m + (d + 1)
d − 2

2
2m + 2(d + 1) = d(d − 1)m + 2(d + 1),
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…………

(d - 2)/2+1 (d - 2)/2
Kd Kd Kd Kd

Figure 7: H2m,d

then, e = e(L(H2m,d)) = d(d − 1)m + 2d + 1. As in the case of H2m,4, it is easy to

check that the number of stars of any system that dominates H2m,d is at least

m +
d − 2

2
2m + 2 = (d − 1)m + 2 = (d − 1)

e − (2d + 1)

d(d − 1)
+ 2 =

e − 1

d
.

Problem 6. Does every bridgeless claw-free graph with δ ≥ 4 have a 2-factor with

at most (n − 1)/δ components?

4 Proofs of Theorems 2 and 3

Let x be a vertex of a claw-free graph G. If the subgraph induced by N(x) is

connected, we add edges joining all pairs of nonadjacent vertices in N(x). This

operation is called local completion of G at x. The closure cl(G) of G is a graph

obtained by recursively repeating the local completion operation, as long as this is

possible. Ryjácěk [11] showed that the closure of G is uniquely determined and G

is hamiltonian if and only if cl(G) is hamiltonian. The latter result was extended to

2-factors as follows.

Theorem B (Ryjácěk, Saito and Shelp [12]). Let G be a claw-free graph. If cl(G)

has a 2-factor with k components, then G has a 2-factor with at most k components.

Since G is a spanning subgraph of cl(G), Theorem B implies that

f2(G) = f2(cl(G)),

where f2(G) is the minimum number of components in a 2-factor of G. Ryjácěk also

proved:
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Theorem C ([11]). If G is a claw-free graph, then there is a triangle-free graph H

such that

L(H) = cl(G).

If a claw-free graph G has no maximal clique of two vertices, then obviously cl(G)

also has no such cliques. Moreover, L(H) has no maximal clique of two vertices if

and only if H has no vertex of degree two. Thus for Theorem 2, it is sufficient to

prove the following lemma, by Theorems B and C.

Lemma 7. Let H be a triangle-free graph with δe(H) ≥ 4. If V2(H) = ∅, then H

has a system of cardinality at most (e(H) − 1)/4 that dominates H.

A graph H is essentially k-edge-connected if for any edge set E0 of at most k− 1

edges, H − E0 contains at most one component with edges. Since L(H) is k-edge-

connected if and only if H is an essentially k-edge-connected, for Theorem 3, it is

sufficient to prove the following lemma, by Theorems B and C.

Lemma 8. If H is an essentially 2-edge-connected graph with δe(H) ≥ 3, then there

exists a system S that dominates H such that the even subgraph in S passes through

all vertices in V≥3(H − V1(H)).

4.1 Proof of Lemma 7

We first show the following lemma.

Lemma 9. Let H be a tree with δe(H) ≥ 4. If V2(H) = ∅, then H has a system of

cardinality at most (e(H) − 1)/4 that dominates H.

Proof. We proceed by contradiction. Suppose the lemma is false and choose a

counterexample H with e(H) as small as possible. Let F = H−V1(H) and Pr(H) =

N(V1(H)).

Claim 1. dH(x) = 5 for all x ∈ Pr(H).
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Proof. Since δe(H) ≥ 4, dH(x) ≥ 5 for x ∈ Pr(H). Label the vertices of NH(x) as

follows:

NH(x) ∩ V1(H) = {ui | i ≤ |NH(x) ∩ V1(H)|},

NF (x) = {yj | j ≤ |NF (x)|}, (3)

and for each yj ∈ NF (x), let Fj be the component of H − x containing yj. Assume

that dH(x) ≥ 6. Suppose |NH(x) ∩ V1(H)| ≥ 2 and let H ′ = H − u1. Since

dH′(x) ≥ 5, δe(H
′) ≥ 4. As e(H ′) < e(H), there exists a system S ′ that dominates

H ′, of cardinality at most (e(H ′) − 1)/4 = (e(H) − 2)/4. Let A be the star in S ′

containing the edge xu2. Clearly, the center of A is x, and so A′ = A∪xu1 is a star.

Hence (S ′ \ {A})∪{A′} is a system that dominates H and its cardinality is at most

(e(H) − 2)/4. This contradicts the choice of H.

Hence, |NH(x) ∩ V1(H)| = 1. See Figure 8(i). Let H ′
1 = F1 ∪ F2 ∪ {y1y2}. Let

x

u1

y1
y2 y3 y4

y5
x

u1

y1
y2 y3 y4

y5x

u1

y1 y2 y3 y4

y5

v(i) (ii) (iii)

Figure 8:

v be a new vertex and H ′
2 = (H − (F1 ∪ F2)) ∪ {v, xv}. See Figure 8(ii). Because

δe(H
′
i) ≥ 4, there exists a system Si that dominates H ′

i, of cardinality at most

(e(H ′
i) − 1)/4 for each i ∈ {1, 2}. Let A1 be the star in S1 containing the edge

y1y2 and A2 be the star in S2 containing xv. By symmetry, we may assume that

the center of A1 is y2. Let A′
1 = (A1 − y1) ∪ y2x and A′

2 = (A1 − v) ∪ xy1. Then,

(S1 ∪ S2 \ {A1, A2}) ∪ {A′
1, A

′
2} is a system that dominates H and its cardinality is

#S1 + #S2 ≤ e(H ′
1) − 1

4
+

e(H ′
2) − 1

4

=
e(F1) + e(F2) + 1 − 1

4
+

e(H) − e(F1) − e(F2) − 2 + 1 − 1

4

=
e(H) − 2

4
.
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This contradicts again the choice of H.

Claim 2. Pr(H) = V1(F ).

Proof. Since V1(F ) ⊆ Pr(H), it is sufficient to prove that Pr(H) ⊆ V1(F ). Suppose

that there is x ∈ Pr(H) \ V1(F ) and let us label its neighbours {ui}, {yj} as in (3),

and define {Fj} as before. We divide our argument into three cases.

1. |NH(x) ∩ V1(H)| = 3.

By Claim 1, dF (x) = 2 and ∑
1≤j≤dF (x)

e(Fj) = e(H) − 5. (4)

See Figure 9(i). Since the tree H ′ = F1 ∪ F2 ∪ {y1y2} has minimum edge-degree

x

u1 u2

y1 y2

u3

x

u1 u2

y1 y2

u3

x

u1 u2

y1 y2

u3(i) (ii) (iii)

Figure 9:

at least four and |e(H ′)| < |e(H)|. As e(H ′) < e(H), there exists a system S ′ that

dominates H ′, of cardinality at most

e(F1) + e(F2) + 1 − 1

4
=

e(F1) + e(F2)

4
=

e(H) − 5

4
.

See Figure 9(ii). By symmetry, we may assume that the center of the star A ∈ S

containing the edge y1y2 is y2. Let A′ be the star (A − y1) ∪ y2x and B be the star

xy1 ∪ xu1 ∪ xu2 ∪ xu3. See Figure 9(iii). Then (S ′ \ {A})∪ {A′, B} is a system that

dominates H and its cardinality is

#S ′ + 1 ≤ e(H) − 5

4
+ 1 =

e(H) − 1

4
.

This contradicts our choice of H.
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x

u1 u2

y1 y2 y3

x

u1 u2 v1

y1 y2 y3

x

u1 u2

y1 y2 y3

v2(i) (ii) (iii)

Figure 10:

2. |NH(x) ∩ V1(H)| = 2.

By Claim 1, dF (x) = 3 and (4) holds. See Figure 10(i). Let H ′
1 = F1 ∪ F2 ∪ {y1y2}.

Let v1, v2 be new vertices and

H ′
2 = (H − (F1 ∪ F2)) ∪ {v1, v2, xv1, xv2}.

See Figure 10(ii). As δe(H
′
i) ≥ 4 and e(H ′

i) < e(H), there exists a system S ′
i that

dominates H ′
i for each i ∈ {1, 2}, such that

#S ′
1 ≤ e(F1) + e(F2) + 1 − 1

4
=

e(F1) + e(F2)

4

#S ′
2 ≤ e(F3) + 5 − 1

4
=

e(F3) + 4

4
.

By symmetry, we may assume that the center of the star A1 ∈ S1 containing the

edge y1y2 is y2, and let A2 ∈ S2 be the star containing the edge xu1. Let A′
1 =

(A1 − y1) ∪ y2x and A′
2 = (A2 − {v1, v2}) ∪ xy1. See Figure 10(iii). Then (S1 ∪ S2 \

{A1, A2}) ∪ {A′
1, A

′
2} is a system that dominates H and, by (4), its cardinality is

#S1 + #S2 ≤
e(F1) + e(F2) + e(F3) + 4

4
=

e(H) − 1

4
,

a contradiction.

3. |NH(x) ∩ V1(H)| = 1.

By Claim 1, dF (x) = 4 and (4) holds. See Figure 11(i). Let H ′
1 = F1 ∪ F2 ∪ {y1y2}

and H ′
2 = F3 ∪ F4 ∪ {y3y4}, and then as in the previous case, there exists a system

Si that dominates H ′
i, of cardinality at most

e(F2i−1) + e(F2i) + 1 − 1

4
=

e(F2i−1) + e(F2i)

4
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x

u1

y1
y2 y3 y4

x

u1

y1 y2 y3 y4

x

u1
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Figure 11:

for each i ∈ {1, 2}. By symmetry, we may assume that the center of the star Ai

containing the edge y2i−1y2i in Si is y2i, (i = 1, 2). Let A′
i = (Ai − y2i−1) ∪ y2ix

(i = 1, 2) and B be the star xy1 ∪xy3 ∪xu1. Then (S1 ∪S2 \{A1, A2})∪{A′
1, A

′
2, B}

is a system that dominates H and its cardinality is

#S1 + #S2 + 1 ≤ e(F1) + e(F2) + e(F3) + e(F4)

4
+ 1 =

e(H) − 1

4
,

a contradiction.

Now, we construct a required system that dominates H. Let (Z,Z ′) be a bipar-

tition of V (F ) \ V1(F ) with |Z| ≤ |Z ′|. Let

X1 = {x ∈ V1(F ) | NF (x) ∩ Z = ∅} and X2 = V1(F ) \ X1.

Let

St(z) be the star with the center z and the ends NH(z) for z ∈ Z

T1(x) be the star with the center x and the ends NH(x) for x ∈ X1

T2(x) be the star with the center x and the ends NH(x) ∩ V1(H) for x ∈ X2,

and let

S = {St(z) | z ∈ Z} ∪ {T1(x) | x ∈ X1} ∪ {T2(x) | x ∈ X2}.

Since dH(x) ≥ 3 for x ∈ V (F ), every star in S has at least three edges. Obviously

E(H) =
⋃

S∈S E(S) and all the stars in S are mutually edge-disjoint, and so S is a

system that dominates H and its cardinality is

#S = |Z| + |X1| + |X2| ≤
|F − V1(F )|

2
+ |V1(F )|. (5)
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Claim 2 and V2(H) = ∅ imply V2(F ) = ∅. Therefore

|V1(F )| =
∑
i≥3

(i − 2)|Vi(F )| + 2 ≥ |F − V1(F )| + 2,

and so

e(F ) = |F − V1(F )| + |V1(F )| − 1 ≥ 2|F − V1(F )| + 1.

Since e(H) − e(F ) = 4|V1(F )|, the upper bound of (5) is

|F − V1(F )|
2

+ |V1(F )| ≤ e(F ) − 1

4
+

e(H) − e(F )

4
=

e(H) − 1

4
,

a contradiction.

Proof of Lemma 7. Without loosing generality, we may assume that H is connected.

Let X be a maximum even subgraph of H. If V (H) = V (X), then X is a system

that dominates H. If E(X) = E(H), then the number #X of the components in X

is 1 < (e(H)− 1)/4. If E(X) ( E(H), then #X ≤ e(X)/4 ≤ (e(H)− 1)/4 because

H is triangle-free. Thus X constitutes a desired system that dominates H.

Suppose H − V (X) is not empty. Let {Yi} be the set of all the components

in H − V (X) and Si be the set of all the edges joining Yi and X. Let Y ∗
i be the

graph obtained from Yi ∪Si ∪ kK1,4 by identifying each vertex in V1(Yi ∪Si)∩V (Si)

and each center of K1,4, where k = |Si|, as in Figure 12. Then δe(Y
∗
i ) ≥ 4 and

Yi Yi

Figure 12:

V2(Y
∗
i ) = ∅. Hence, by Lemma 9, there exists a system S∗

i of cardinality at most

(e(Yi) + 5|Si| − 1)/4 that dominates Y ∗
i . Let Ti be the set of all the stars in S∗

i with
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centers in V1(Yi∪Si)∩V (Si). Then #Ti = |Si|. Since the set of the stars Si = S∗
i \Ti

contains all edges in Yi and every edge in
⋃

i Si is incident to X,

S = { all circuits in X } ∪
⋃
i

Si

is a system that dominates H. As H is triangle-free, #X ≤ e(X)/4 and so

#S =
e(X)

4
+

∑
i

(#S∗
i − #Ti) =

e(X)

4
+

∑
i

(
e(Yi) + 5|Si| − 1

4
− |Si|)

=
e(X)

4
+

∑
i

e(Yi) + |Si| − 1

4
=

e(X) +
∑

i(e(Yi) + |Si|) − i

4
≤ e(H) − i

4
.

Hence, S is a desired system that dominates H. ¤

4.2 Proof of Lemma 8

We use the following lemma.

Lemma D (Fleischner [5]). Every bridgeless multigraph with δ ≥ 3 has a spanning

even subgraph.

If V1(H) = ∅, then H has no bridge, and so the graph H ′ obtained from H by

suppressing all vertices of degree two, i.e., remove a vertex of degree two and join

the neighbours by an edge, is a bridgeless multigraph with δ(H ′) ≥ 3. Hence, by

Lemma D, H ′ has a spanning even subgraph X ′. Because V2(H) is a stable set in

H, the even subgraph X in H corresponding to X ′ is a system that dominates H

such that V≥3(H) ⊂ V (X).

Suppose V1(H) ̸= ∅, and let F = H − V1(H) and Pr(H) = N(V1(H)). Let

F ′ be the graph obtained from F by suppressing all vertices in V2(F ). Then by

Lemma D, F ′ has a spanning even subgraph X ′. Let X be the even subgraph in H

corresponding to X ′ and let Q be the forest obtained from F − E(X) by removing

all isolated vertices. Notice that each component in Q is a path as V≥3(F ) ⊂ V (X).

Because V2(H) is a stable set, easily we can assign direction to every edge in Q such

that the initial vertex is a vertex in Pr(H) and for each vertex x ∈ Pr(H), there is

a directed edge with initial vertex x.
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For x ∈ Pr(H)∩V2(F ), let St(x) be the star with center x and all pendant edges

incident to x and all directed edges with initial vertex x. Since there are at least

two pendant edges incident to x ∈ Pr(H) ∩ V2(F ), St(x) has at least three edges.

Thus, {St(x) | x ∈ Pr(H)} and X constitutes a system that dominate H such that

the even subgraph X passes through all vertices in V≥3(F ). ¤

References

[1] S.A. Choudum and M.S. Paulraj, Regular factors in K1,3-free graphs, J. Graph
Theory 15 (1991) 259-265.

[2] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173,
Springer (2000)

[3] Y. Egawa and K. Ota, Regular factors in K1,n-free graphs, J. Graph Theory 15
(1991) 337-344.

[4] R.J. Faudree, O. Favaron, E. Flandrin, H. Li, Z. Liu, On 2-factors in claw-free
graphs, Discrete Math. 206 (1999) 131-137.

[5] H. Fleischner, Spanning Eulerian subgraphs, the splitting lemma, and Petersen’s
theorem, Disc. Math. 101 (1992) 33-37.

[6] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2-factors
of line graphs, submitted

[7] B. Jackson and K. Yoshimoto, Spanning Even Subgraphs of 3-edge-connected
Graphs, submitted

[8] R. Gould and E. Hynds, A note on cycles in 2-factors of line graphs, Bull. of
ICA. 26 (1999), 46-48.

[9] R.J. Gould and M.S. Jacobson, Two-factors with few cycles in claw-free graphs,
Discrete Math. 231 (2001), 191-197.

[10] M. M. Matthews and D. P. Sumner, Hamiltonian results in K1,3-free graphs, J.
Graph Theory 8 (1984), 139-146.
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