On the number of components in 2-factors of claw-free graphs

Kiyoshi Yoshimoto
Department of Mathematics, Collage of Science and Technology
Nihon University, Tokyo 101-8308, Japan
yosimoto@math.cst.nihon-u.ac.jp

Abstract

In this paper, we prove that if a claw-free graph G with minimum degree $\delta \geq 4$ has no maximal clique of two vertices, then G has a 2 -factor with at most $(|G|-1) / 4$ components. This upper bound is best possible. Additionally, we give a family of claw-free graphs with minimum degree $\delta \geq 4$ in which every 2 -factor contains more than n / δ components.

1 Introduction

In this paper, we consider only finite graphs with no loops or no multiple edges. If no ambiguity can arise, we denote simply the order $|G|$ of G by n and the minimum degree $\delta(G)$ by δ. All notation and terminology not explained in this paper is given in [2].

A 2-factor of a graph G is a spanning 2-regular subgraph of G, and so a Hamilton cycle is a 2 -factor. It is a well known conjecture that every 4 -connected claw-free graph is hamiltonian ([10]). For small connected claw-free graphs, Jackson and the author proved the following.

Theorem 1 ([6], [7]). 1. Every 3-connected claw-free graph with $\delta \geq 4$ has a 2-factor with at most $2 n / 15$ components.
2. Every 2-connected claw-free graph with $\delta \geq 4$ has a 2-factor with at most $(n+1) / 4$ components.

Probably, neither of the upper bounds in Theorem 1 is best possible. For connected claw-free graphs, Faudree et al. [4] showed that a claw-free graph with $\delta \geq 4$
has a 2 -factor with at most $6 n /(\delta+2)-1$ components, and Gould and Jacobson [9] proved that if $\delta \geq(4 n)^{\frac{2}{3}}$, then the graph has a 2 -factor with at most n / δ components. In general, the second upper bound is too strong. In Section 3, we will construct examples of claw-free graphs in which every 2 -factor contains more than n / δ components. Especially, for the case of $\delta=4$, there exists a family $\left\{G_{i}\right\}$ of claw-free graphs such that

$$
\frac{f_{2}\left(G_{i}\right)}{\left|G_{i}\right|} \rightarrow \frac{5}{18} \quad\left(\left|G_{i}\right| \rightarrow \infty\right)
$$

where $f_{2}\left(G_{i}\right)$ is the minimum number of components in a 2-factor of G_{i}. We construct this example also in Section 3.

Both of the above examples contain bridges. Hence, it is a natural question to ask whether a bridgeless claw-free graph has a 2 -factor with at most $n / 4$ components or not. In this paper, we show that the following slightly weaker statement holds.

Theorem 2. Let G be a claw-free graph with $\delta \geq 4$. If G has no maximal clique of two vertices, then G has a 2-factor with at most $(n-1) / 4$ components.

We will prove this theorem in Section 4 and describe an example in Section 3, which shows that the upper bound on the number of components in Theorem 2 is, in some sense, best possible.

The results of Egawa and Ota [3] and Choudum and Paulraj [1] implies that a claw-free graph G with $\delta \geq 4$ has a 2 -factor. If G has a bridge, then the graph obtained from G by removing all bridges has a 2 -factor, i.e., each block of G has a 2 -factor. In general, for blocks, we can reduce the minimum degree condition.

Theorem 3. Every 2-connected claw-free graph with $\delta \geq 3$ has a 2-factor.

However, we cannot replace 2-connectivity by bridgeless. For example, the line graph G of the graph drawn in Figure 1 is bridgeless, $\delta(G)=3$, and G has no 2 -factor.

Figure 1:

2 Notation and Preliminary Results

The set of all the neighbours of a vertex x in a graph G is denoted by $N_{G}(x)$, or simply $N(x)$, and its cardinality by $d_{G}(x)$, or $d(x)$. The edge-degree of an edge $u v$ is defined as $d(u)+d(v)-2$ and the minimum edge-degree $\delta_{e}(G)$ is the minimum number of the edge-degrees of all edges in G. Let $e(G)$ denote the size of $E(G)$, i.e., the number of edges in G. The set of all vertices of degree k in G is denoted by $V_{k}(G)$ and we put $V_{\geq k}(G)=\bigcup_{i \geq k} V_{i}(G)$.

For a subgraph H of G, we denote $N_{G}(x) \cap V(H)$ by $N_{H}(x)$ and its cardinality by $d_{H}(x)$. The set of neighbours $\left(\bigcup_{v \in H} N_{G}(v)\right) \backslash V(H)$ is written by $N_{G}(H)$ or $N(H)$, and for a subgraph $F \subset G, N_{G}(H) \cap V(F)$ is denoted by $N_{F}(H)$. For simplicity, we denote $|V(H)|$ by $|H|$, " $u_{i} \in V(H)$ " by " $u_{i} \in H$ ", and " $G-V(H)$ " by " $G-H$ ".

An even graph is a graph in which every vertex has positive even degree. A connected even subgraph is called a circuit, and the $K_{1, m}$, a star. Let \mathcal{S} be a set of edge-disjoint circuits and stars with at least three edges in a graph H. We call \mathcal{S} a system that dominates H if every edge of H is either contained in one of the circuits or stars of \mathcal{S} or is adjacent to one of the circuits. The number of elements in \mathcal{S} is denoted by $\# \mathcal{S}$. We shall use the following result of Gould and Hynds.

Lemma A ([8]). Let H be a graph. Then $L(H)$ has a 2-factor with c components if and only if there is a system that dominates H with c elements.

3 Examples

1. We first construct a line graph in which every 2-factor contains more than n / δ components. Let $d \geq 4$ be an integer and R_{d} be the graph obtained from $K_{2} \cup(d-1) K_{1, d}$ by adding $d-1$ edges joining a specified vertex in K_{2} and the center of each $K_{1, d}$ as in Figure 2. Let us call the gray vertex in this figure a top.

Figure 2: R_{d}

We define a tree $H_{m, d}^{*}$ from the path $P_{m}=u_{1} u_{2} \cdots u_{m}$ and a number of R_{d} as follows. For each inner vertex of P_{m}, we add $(d-2) R_{d}$ and $d-2$ edges joining the inner vertex and the top of each R_{d} as in Figure 3, and for each end of P_{m}, we add $(d-1) R_{d}$ and

Figure 3: $H_{m, d}^{*}$
$d-1$ edges. It is easy to check that $\delta_{e}\left(H_{m, d}^{*}\right) \geq d$, and so $\delta\left(L\left(H_{m, d}^{*}\right)\right) \geq d \geq 4$. Hence $L\left(H_{m, d}^{*}\right)$ has a 2 -factor, and by Lemma A , there exists a system \mathcal{S} that dominates $H_{m, d}^{*}$. We show that the cardinality $\# \mathcal{S}$ must be greater than e / d, where e is the
size of $H_{m, 2 d}^{*}$.
Let S be the set of the centers of all the stars in \mathcal{S}, and we show that $S=$ $V_{\geq 3}\left(H_{m, d}^{*}\right)$. By the definition of a system, $S \subseteq V_{\geq 3}\left(H_{m, d}^{*}\right)$. Let us label the neighbours of P_{m} as follows

$$
N\left(P_{m}\right)=\left\{y_{i j} \mid 1 \leq j \leq d-1 \text { if } i=1 \text { or } m ; \text { and } 1 \leq j \leq d-2 \text { if } 2 \leq i \leq m-1\right\} .
$$

For each $y_{i j}$, let $x_{i j}$ be the neighbour of $y_{i j}$ which is not u_{i}. Since $d\left(y_{i j}\right)=2$, the edges $u_{i} y_{i j}, y_{i j} x_{i j}$ must be covered by the stars in \mathcal{S} whose center are $u_{i}, x_{i j}$, respectively. This implies $\left\{u_{i}\right\} \cup\left\{x_{i j}\right\} \subset S$. Similarly, every pendant edge is also covered by a star in \mathcal{S} whose center is in $N\left(V_{1}\left(H_{m, d}^{*}\right)\right)$. Therefore, $V_{\geq 3}\left(H_{m, d}^{*}\right) \subseteq S$, which are colored black in Figure 3. Thus, $\# \mathcal{S}=\left|V_{\geq 3}\left(H_{m, d}^{*}\right)\right|$.

Since the order of R_{d} is $(d+1)(d-1)+2=d^{2}+1$,

$$
\left|H_{m, 2 d}^{*}\right|=m+\left(d^{2}+1\right)(d-2) m+2\left(d^{2}+1\right)=\left(d^{3}-2 d^{2}+d-1\right) m+2\left(d^{2}+1\right) .
$$

Hence,

$$
\begin{equation*}
e=\left(d^{3}-2 d^{2}+d-1\right) m+2 d^{2}+1 \quad \text { and } \quad m=\frac{e-\left(2 d^{2}+1\right)}{d^{3}-2 d^{2}+d-1} \tag{1}
\end{equation*}
$$

Since each R_{d} contains d vertices of degree at least three,

$$
\begin{align*}
\left|V_{\geq 3}\left(H_{m, d}^{*}\right)\right| & =m+d(d-2) m+2 d=\left(d^{2}-2 d+1\right) m+2 d \\
& =\left(d^{2}-2 d+1\right) \frac{e-\left(2 d^{2}+1\right)}{d^{3}-2 d^{2}+d-1}+2 d \quad \quad(\text { by }(1)) \\
& =\frac{\left(d^{2}-2 d+1\right) e-\left(2 d^{2}+1\right)\left(d^{2}-2 d+1\right)+2 d\left(d^{3}-2 d^{2}+d-1\right)}{d^{3}-2 d^{2}+d-1} \\
& =\frac{\left(d^{2}-2 d+1\right) e-\left(d^{2}+1\right)}{d^{3}-2 d^{2}+d-1}>\frac{e}{d} \\
& \Longleftrightarrow e>d\left(d^{2}+1\right) \\
& \left.\Longleftrightarrow\left(d^{3}-2 d^{2}+d-1\right) m+2 d^{2}+1>d\left(d^{2}+1\right) \quad \quad \quad \text { by }(1)\right) \tag{1}\\
& \Longleftrightarrow m>\frac{d^{3}-2 d^{2}+d-1}{d^{3}-2 d^{2}+d-1}=1 .
\end{align*}
$$

Hence if $m \geq 2$, then $\left|V_{\geq 3}\left(H_{m, d}^{*}\right)\right|>e / d$. Therefore, by Lemma A, any 2-factor of $L\left(H_{m, d}^{*}\right)$ has more than n / d components.

On the other hand, since $\left|V_{\geq 3}\left(H_{m, d}^{*}\right)\right|<e /(d-1)$, the following problem still remains.

Problem 4. Does every claw-free graph with $\delta \geq 4$ have a 2-factor with less than $n /(\delta-1)$ components?
2. The second example is complicated. First we define a tree B_{T}^{m} inductively from $B_{T}^{0}=K_{1}$ as follows; B_{T}^{m} is obtained from B_{T}^{m-1} by adding, for each end vertex of B_{T}^{m-1}, two new vertices and two edges joining the end and the new vertices. The graph B_{T}^{2} is drawn in Figure 4(i). Let $\widetilde{B_{T}^{m}}$ be the graph obtained from B_{T}^{m} by

(i)

Figure 4:
replacing each end vertex of B_{T}^{m} by $K_{1,4}$ as in Figure 4(ii). Then

$$
\begin{aligned}
\left|B_{T}^{m}\right| & =\sum_{0 \leq i \leq m} 2^{i}=2^{m+1}-1 \text { and } \\
\left|\widetilde{B_{T}^{m}}\right| & =\left|B_{T}^{m}\right|+4\left(2^{m}\right)=2^{m+1}-1+2\left(2^{m+1}\right)=3\left(2^{m+1}\right)-1 .
\end{aligned}
$$

Let u_{0} be the vertex of degree two in B_{T}^{m} and

$$
\begin{aligned}
& U_{0}^{m}=\left\{u \in V\left(B_{T}^{m}\right) \mid d\left(u, u_{0}\right) \equiv 0(\bmod 2)\right\} \text { and } \\
& U_{1}^{m}=V\left(B_{T}^{m}\right) \backslash U_{0}^{m} .
\end{aligned}
$$

Let $m=2 k$ and then

$$
\begin{aligned}
& \left|U_{0}^{2 k}\right|=\sum_{0 \leq i \leq k} 2^{2 i}=\frac{2^{2 k+2}-1}{3} \text { and } \\
& \left|U_{1}^{2 k}\right|=\left|B_{T}^{2 k}\right|-\left|U_{0}^{2 k}\right|=2^{2 k+1}-1-\frac{2^{2 k+2}-1}{3}=\frac{2^{2 k+1}-2}{3} .
\end{aligned}
$$

Let

$$
\widetilde{U_{i}^{2 k}}=U_{i}^{2 k} \cup V_{1}\left(B_{T}^{2 k}\right),
$$

for $i \in\{0,1\}$, and then

$$
\left|\widetilde{U_{0}^{2 k}}\right|=\left|U_{0}^{2 k}\right|=\frac{2^{2 k+2}-1}{3} \text { and }\left|\widetilde{U_{1}^{2 k}}\right|=\left|U_{1}^{2 k}\right|+2^{2 k}=\frac{5\left(2^{2 k}\right)-2}{3}
$$

For simplicity, let $x=2^{2 k}$ and then

$$
\begin{equation*}
\left|\widetilde{B_{T}^{m}}\right|=6 x-1,\left|\widetilde{U_{0}^{2 k}}\right|=\frac{4 x-1}{3}, \text { and }\left|\widetilde{U_{1}^{2 k}}\right|=\frac{5 x-2}{3} \tag{2}
\end{equation*}
$$

Notice that $\widetilde{B_{T}^{2 k}}$ has only one system, i.e., the set of all the stars of which centers are the vertices of $\widetilde{U_{1}^{2 k}}$. Note that in order to make these stars edge-disjoint, the star with center in $U_{1}^{2 k}$ can be taken as the vertex with all its neighbours, while the stars with center in $V_{1}\left(B_{T}^{2 k}\right)$ must avoid the edge to its neighbour u which is at distance $d\left(u, u_{0}\right)=2 k-1$ from u_{0}. The cardinality of the system is $(5 x-2) / 3$ and the ratio of $\left|\widetilde{U_{1}^{2 k}}\right|$ and $\left|\widetilde{B_{T}^{2 k}}\right|$ is

$$
\frac{\widetilde{U_{1}^{2 k}} \mid}{\left|\widetilde{B_{T}^{2 k}}\right|}=\frac{5 x-2}{18 x-3} \rightarrow \frac{5}{18} \quad(2 k \rightarrow \infty)
$$

but the minimum edge-degree is three. Hence, next we construct a tree of which minimum edge-degree is four using $\widetilde{B_{T}^{2 k}}$.

Let $B_{m, 2 k}$ be the graph obtained from P_{m} and $m K_{1,5}$ and $(m+2) \widetilde{B_{T}^{2 k}}$ by adding $(2 m+2)$ edges as in Figure 5. It is easy to check that $\delta_{e}\left(B_{m, 2 k}\right)=4$. Hence, there is a system that dominates $B_{m, 2 k}$ by Lemma A . Let \mathcal{S} be a system that dominates $B_{m, 2 k}$ such that the cardinality is minimum, and let S be the set of the centers of all the stars in \mathcal{S}.

Since $V_{2}\left(B_{m, 2 k}\right) \cap S=\emptyset$, the center of each $K_{1,5}$ and $V\left(P_{m}\right)$ are included in S. Thus $S \cap V\left(\widetilde{B_{T}^{2 k}}\right)$ is $\widetilde{U_{0}^{2 k}}$ or $\widetilde{U_{1}^{2 k}}$ obviously. However, the degrees of vertices in P_{m} are four and those are adjacent consecutively. Therefore, except one $\widetilde{B_{T}^{2 k}}$, for every $\widetilde{B_{T}^{2 k}}$,

$$
S \cap V\left(\widetilde{B_{T}^{2 k}}\right)=\widetilde{U_{1}^{2 k}}
$$

In Figure $5, S$ is the set of all black vertices. Hence by (2),

$$
\begin{aligned}
\# \mathcal{S}=|S| & =m+m+(m+1)\left|\widetilde{U_{1}^{2 k}}\right|+\left|\widetilde{U_{0}^{2 k}}\right|=2 m+(m+1) \frac{5 x-2}{3}+\frac{4 x-1}{3} \\
& =\frac{5 x+4}{3} m+(3 x-1) .
\end{aligned}
$$

Figure 5: $B_{m, 2 k}$

Since $\left|K_{1,5}\right|=6$ and $\left|\widetilde{B_{T}^{2 k}}\right|=6 x-1$,

$$
\left|B_{m, 2 k}\right|=m+6 m+(6 x-1) m+2(6 x-1)=(6 x+6) m+2(6 x-1)
$$

and so

$$
e=e\left(B_{m, 2 k}\right)=(6 x+6) m+12 x-3 .
$$

Thus the ratio of $|S|$ and e, i.e., the ratio of the the minimum number of cycles in a 2-factor of $L\left(B_{m, 2 k}\right)$ and $\left|L\left(B_{m, 2 k}\right)\right|$, is

$$
\frac{|S|}{e}=\frac{\frac{5 x+4}{3} m+(3 x-1)}{(6 x+6) m+12 x-3)}=\frac{5 x m+4 m+9 x-3}{18 x m+18 m+36 x-9} \rightarrow \frac{5}{18} \quad(2 k, m \rightarrow \infty) .
$$

Now, the following problem remains.

Problem 5. Does every claw-free graph with $\delta \geq 4$ have a 2-factor with at most $5 n / 18$ components?
3. Finally we construct line graphs which show that the upper bound in Theorem 2 is best possible. Let $P_{2 m}=u_{1} u_{2} \cdots u_{2 m}$ be the path and let $H_{2 m, 4}$ be the graph obtained from $P_{2 m} \cup(2 m+2) K_{1,4}$ by adding $2 m+2$ edges as in Figure 6.

Figure 6: $H_{2 m, 4}$

Clearly $\delta_{e}\left(H_{2 m, 4}\right)=4$, and so its line graph $L\left(H_{2 m, 4}\right)$ has minimum degree four. Moreover, $L\left(H_{2 m, 4}\right)$ has no maximal clique of two vertices because there is no vertex of degree two in $H_{2 m, 4}$. Let \mathcal{S} be a system that dominates $H_{2 m, 4}$ and S be the set of the centers of all stars in \mathcal{S}.

Since every edge $u_{i} u_{i+1}$ in $P_{2 m}$ is covered by a star in \mathcal{S} with center u_{i} or u_{i+1}, S have to contain at least half vertices in $P_{2 m}$. On the other hand, since $V\left(P_{2 m}\right) \subset$ $V_{3}\left(H_{2 m, 4}\right)$, no consecutive two vertices are contained in S. Therefore, $\left|S \cap V\left(P_{2 m}\right)\right|=$ m. Since $S \cap V_{1}\left(H_{2 m, 4}\right)=\emptyset, S$ contains all vertices in $V_{5}\left(H_{2 m, 4}\right)$; otherwise, there is a pendant edge which is not covered by a star in \mathcal{S}. Thus

$$
\# \mathcal{S}=|S|=m+(2 m+2)=3 m+2
$$

Since the order of $H_{2 m, 4}$ is

$$
2 m+5(2 m+2)=12 m+10,
$$

then, $e=e\left(H_{2 m, 4}\right)=12 m+9$. Therefore

$$
\# \mathcal{S}=3 m+2=3 \frac{e-9}{12}+2=\frac{e-1}{4}
$$

and any 2-factor of $L\left(H_{2 m, 4}\right)$ has at least $\left(\left|L\left(H_{2 m, 4}\right)\right|-1\right) / 4$ components by Lemma A.
Easily we can generalize this example as follows. Let $H_{2 m, d}$ be the graph obtained from $H_{2 m, 4}$ by replacing each $K_{1,4}$ adjacent to internal vertices of $P_{2 m}$ by $(d-2) / 2 K_{1, d}$ and by replacing each $2 K_{1,4}$ adjacent to the ends by $(d / 2) K_{1, d}$ as in Figure 7. Then as in the case of $H_{2 m, 4}$, it is easy to see that the minimum edge-degree is d and $L\left(H_{2 m, d}\right)$ has no maximal clique of two vertices.

Since the order is

$$
2 m+(d+1) \frac{d-2}{2} 2 m+2(d+1)=d(d-1) m+2(d+1)
$$

Figure 7: $H_{2 m, d}$
then, $e=e\left(L\left(H_{2 m, d}\right)\right)=d(d-1) m+2 d+1$. As in the case of $H_{2 m, 4}$, it is easy to check that the number of stars of any system that dominates $H_{2 m, d}$ is at least

$$
m+\frac{d-2}{2} 2 m+2=(d-1) m+2=(d-1) \frac{e-(2 d+1)}{d(d-1)}+2=\frac{e-1}{d} .
$$

Problem 6. Does every bridgeless claw-free graph with $\delta \geq 4$ have a 2-factor with at most $(n-1) / \delta$ components?

4 Proofs of Theorems 2 and 3

Let x be a vertex of a claw-free graph G. If the subgraph induced by $N(x)$ is connected, we add edges joining all pairs of nonadjacent vertices in $N(x)$. This operation is called local completion of G at x. The $\operatorname{closure} \operatorname{cl}(G)$ of G is a graph obtained by recursively repeating the local completion operation, as long as this is possible. Ryjácěk [11] showed that the closure of G is uniquely determined and G is hamiltonian if and only if $\operatorname{cl}(G)$ is hamiltonian. The latter result was extended to 2-factors as follows.

Theorem B (Ryjácěk, Saito and Shelp [12]). Let G be a claw-free graph. If $\operatorname{cl}(G)$ has a 2-factor with k components, then G has a 2-factor with at most k components.

Since G is a spanning subgraph of $\operatorname{cl}(G)$, Theorem B implies that

$$
f_{2}(G)=f_{2}(c l(G)),
$$

where $f_{2}(G)$ is the minimum number of components in a 2-factor of G. Ryjácěk also proved:

Theorem C ([11]). If G is a claw-free graph, then there is a triangle-free graph H such that

$$
L(H)=c l(G) .
$$

If a claw-free graph G has no maximal clique of two vertices, then obviously $\operatorname{cl}(G)$ also has no such cliques. Moreover, $L(H)$ has no maximal clique of two vertices if and only if H has no vertex of degree two. Thus for Theorem 2, it is sufficient to prove the following lemma, by Theorems B and C.

Lemma 7. Let H be a triangle-free graph with $\delta_{e}(H) \geq 4$. If $V_{2}(H)=\emptyset$, then H has a system of cardinality at most $(e(H)-1) / 4$ that dominates H.

A graph H is essentially k-edge-connected if for any edge set E_{0} of at most $k-1$ edges, $H-E_{0}$ contains at most one component with edges. Since $L(H)$ is k-edgeconnected if and only if H is an essentially k-edge-connected, for Theorem 3, it is sufficient to prove the following lemma, by Theorems B and C.

Lemma 8. If H is an essentially 2-edge-connected graph with $\delta_{e}(H) \geq 3$, then there exists a system \mathcal{S} that dominates H such that the even subgraph in \mathcal{S} passes through all vertices in $V_{\geq 3}\left(H-V_{1}(H)\right)$.

4.1 Proof of Lemma 7

We first show the following lemma.

Lemma 9. Let H be a tree with $\delta_{e}(H) \geq 4$. If $V_{2}(H)=\emptyset$, then H has a system of cardinality at most $(e(H)-1) / 4$ that dominates H.

Proof. We proceed by contradiction. Suppose the lemma is false and choose a counterexample H with $e(H)$ as small as possible. Let $F=H-V_{1}(H)$ and $\operatorname{Pr}(H)=$ $N\left(V_{1}(H)\right)$.

Claim 1. $d_{H}(x)=5$ for all $x \in \operatorname{Pr}(H)$.

Proof. Since $\delta_{e}(H) \geq 4, d_{H}(x) \geq 5$ for $x \in \operatorname{Pr}(H)$. Label the vertices of $N_{H}(x)$ as follows:

$$
\begin{align*}
N_{H}(x) \cap V_{1}(H)=\left\{u_{i} \mid i\right. & \left.\leq\left|N_{H}(x) \cap V_{1}(H)\right|\right\}, \\
& N_{F}(x) \tag{3}
\end{align*}=\left\{y_{j}\left|j \leq\left|N_{F}(x)\right|\right\}, ~ \$\right.
$$

and for each $y_{j} \in N_{F}(x)$, let F_{j} be the component of $H-x$ containing y_{j}. Assume that $d_{H}(x) \geq 6$. Suppose $\left|N_{H}(x) \cap V_{1}(H)\right| \geq 2$ and let $H^{\prime}=H-u_{1}$. Since $d_{H^{\prime}}(x) \geq 5, \delta_{e}\left(H^{\prime}\right) \geq 4$. As $e\left(H^{\prime}\right)<e(H)$, there exists a system \mathcal{S}^{\prime} that dominates H^{\prime}, of cardinality at most $\left(e\left(H^{\prime}\right)-1\right) / 4=(e(H)-2) / 4$. Let A be the star in \mathcal{S}^{\prime} containing the edge $x u_{2}$. Clearly, the center of A is x, and so $A^{\prime}=A \cup x u_{1}$ is a star. Hence $\left(\mathcal{S}^{\prime} \backslash\{A\}\right) \cup\left\{A^{\prime}\right\}$ is a system that dominates H and its cardinality is at most $(e(H)-2) / 4$. This contradicts the choice of H.

Hence, $\left|N_{H}(x) \cap V_{1}(H)\right|=1$. See Figure 8(i). Let $H_{1}^{\prime}=F_{1} \cup F_{2} \cup\left\{y_{1} y_{2}\right\}$. Let

Figure 8:
v be a new vertex and $H_{2}^{\prime}=\left(H-\left(F_{1} \cup F_{2}\right)\right) \cup\{v, x v\}$. See Figure 8(ii). Because $\delta_{e}\left(H_{i}^{\prime}\right) \geq 4$, there exists a system \mathcal{S}_{i} that dominates H_{i}^{\prime}, of cardinality at most $\left(e\left(H_{i}^{\prime}\right)-1\right) / 4$ for each $i \in\{1,2\}$. Let A_{1} be the star in \mathcal{S}_{1} containing the edge $y_{1} y_{2}$ and A_{2} be the star in \mathcal{S}_{2} containing $x v$. By symmetry, we may assume that the center of A_{1} is y_{2}. Let $A_{1}^{\prime}=\left(A_{1}-y_{1}\right) \cup y_{2} x$ and $A_{2}^{\prime}=\left(A_{1}-v\right) \cup x y_{1}$. Then, $\left(\mathcal{S}_{1} \cup \mathcal{S}_{2} \backslash\left\{A_{1}, A_{2}\right\}\right) \cup\left\{A_{1}^{\prime}, A_{2}^{\prime}\right\}$ is a system that dominates H and its cardinality is

$$
\begin{aligned}
\# \mathcal{S}_{1}+\# \mathcal{S}_{2} & \leq \frac{e\left(H_{1}^{\prime}\right)-1}{4}+\frac{e\left(H_{2}^{\prime}\right)-1}{4} \\
& =\frac{e\left(F_{1}\right)+e\left(F_{2}\right)+1-1}{4}+\frac{e(H)-e\left(F_{1}\right)-e\left(F_{2}\right)-2+1-1}{4} \\
& =\frac{e(H)-2}{4} .
\end{aligned}
$$

This contradicts again the choice of H.
Claim 2. $\operatorname{Pr}(H)=V_{1}(F)$.
Proof. Since $V_{1}(F) \subseteq \operatorname{Pr}(H)$, it is sufficient to prove that $\operatorname{Pr}(H) \subseteq V_{1}(F)$. Suppose that there is $x \in \operatorname{Pr}(H) \backslash V_{1}(F)$ and let us label its neighbours $\left\{u_{i}\right\},\left\{y_{j}\right\}$ as in (3), and define $\left\{F_{j}\right\}$ as before. We divide our argument into three cases.

1. $\left|N_{H}(x) \cap V_{1}(H)\right|=3$.

By Claim $1, d_{F}(x)=2$ and

$$
\begin{equation*}
\sum_{1 \leq j \leq d_{F}(x)} e\left(F_{j}\right)=e(H)-5 . \tag{4}
\end{equation*}
$$

See Figure 9(i). Since the tree $H^{\prime}=F_{1} \cup F_{2} \cup\left\{y_{1} y_{2}\right\}$ has minimum edge-degree

Figure 9:
at least four and $\left|e\left(H^{\prime}\right)\right|<|e(H)|$. As $e\left(H^{\prime}\right)<e(H)$, there exists a system \mathcal{S}^{\prime} that dominates H^{\prime}, of cardinality at most

$$
\frac{e\left(F_{1}\right)+e\left(F_{2}\right)+1-1}{4}=\frac{e\left(F_{1}\right)+e\left(F_{2}\right)}{4}=\frac{e(H)-5}{4} .
$$

See Figure 9(ii). By symmetry, we may assume that the center of the star $A \in \mathcal{S}$ containing the edge $y_{1} y_{2}$ is y_{2}. Let A^{\prime} be the star $\left(A-y_{1}\right) \cup y_{2} x$ and B be the star $x y_{1} \cup x u_{1} \cup x u_{2} \cup x u_{3}$. See Figure 9(iii). Then $\left(\mathcal{S}^{\prime} \backslash\{A\}\right) \cup\left\{A^{\prime}, B\right\}$ is a system that dominates H and its cardinality is

$$
\# \mathcal{S}^{\prime}+1 \leq \frac{e(H)-5}{4}+1=\frac{e(H)-1}{4} .
$$

This contradicts our choice of H.

Figure 10:
2. $\left|N_{H}(x) \cap V_{1}(H)\right|=2$.

By Claim 1, $d_{F}(x)=3$ and (4) holds. See Figure 10(i). Let $H_{1}^{\prime}=F_{1} \cup F_{2} \cup\left\{y_{1} y_{2}\right\}$. Let v_{1}, v_{2} be new vertices and

$$
H_{2}^{\prime}=\left(H-\left(F_{1} \cup F_{2}\right)\right) \cup\left\{v_{1}, v_{2}, x v_{1}, x v_{2}\right\} .
$$

See Figure 10 (ii). As $\delta_{e}\left(H_{i}^{\prime}\right) \geq 4$ and $e\left(H_{i}^{\prime}\right)<e(H)$, there exists a system \mathcal{S}_{i}^{\prime} that dominates H_{i}^{\prime} for each $i \in\{1,2\}$, such that

$$
\begin{aligned}
& \# \mathcal{S}_{1}^{\prime} \leq \frac{e\left(F_{1}\right)+e\left(F_{2}\right)+1-1}{4}=\frac{e\left(F_{1}\right)+e\left(F_{2}\right)}{4} \\
& \# \mathcal{S}_{2}^{\prime} \leq \frac{e\left(F_{3}\right)+5-1}{4}=\frac{e\left(F_{3}\right)+4}{4}
\end{aligned}
$$

By symmetry, we may assume that the center of the star $A_{1} \in \mathcal{S}_{1}$ containing the edge $y_{1} y_{2}$ is y_{2}, and let $A_{2} \in \mathcal{S}_{2}$ be the star containing the edge $x u_{1}$. Let $A_{1}^{\prime}=$ $\left(A_{1}-y_{1}\right) \cup y_{2} x$ and $A_{2}^{\prime}=\left(A_{2}-\left\{v_{1}, v_{2}\right\}\right) \cup x y_{1}$. See Figure 10(iii). Then $\left(\mathcal{S}_{1} \cup \mathcal{S}_{2} \backslash\right.$ $\left.\left\{A_{1}, A_{2}\right\}\right) \cup\left\{A_{1}^{\prime}, A_{2}^{\prime}\right\}$ is a system that dominates H and, by (4), its cardinality is

$$
\# \mathcal{S}_{1}+\# \mathcal{S}_{2} \leq \frac{e\left(F_{1}\right)+e\left(F_{2}\right)+e\left(F_{3}\right)+4}{4}=\frac{e(H)-1}{4}
$$

a contradiction.
3. $\left|N_{H}(x) \cap V_{1}(H)\right|=1$.

By Claim 1, $d_{F}(x)=4$ and (4) holds. See Figure 11(i). Let $H_{1}^{\prime}=F_{1} \cup F_{2} \cup\left\{y_{1} y_{2}\right\}$ and $H_{2}^{\prime}=F_{3} \cup F_{4} \cup\left\{y_{3} y_{4}\right\}$, and then as in the previous case, there exists a system \mathcal{S}_{i} that dominates H_{i}^{\prime}, of cardinality at most

$$
\frac{e\left(F_{2 i-1}\right)+e\left(F_{2 i}\right)+1-1}{4}=\frac{e\left(F_{2 i-1}\right)+e\left(F_{2 i}\right)}{4}
$$

Figure 11:
for each $i \in\{1,2\}$. By symmetry, we may assume that the center of the star A_{i} containing the edge $y_{2 i-1} y_{2 i}$ in \mathcal{S}_{i} is $y_{2 i},(i=1,2)$. Let $A_{i}^{\prime}=\left(A_{i}-y_{2 i-1}\right) \cup y_{2 i} x$ $(i=1,2)$ and B be the star $x y_{1} \cup x y_{3} \cup x u_{1}$. Then $\left(\mathcal{S}_{1} \cup \mathcal{S}_{2} \backslash\left\{A_{1}, A_{2}\right\}\right) \cup\left\{A_{1}^{\prime}, A_{2}^{\prime}, B\right\}$ is a system that dominates H and its cardinality is

$$
\# \mathcal{S}_{1}+\# \mathcal{S}_{2}+1 \leq \frac{e\left(F_{1}\right)+e\left(F_{2}\right)+e\left(F_{3}\right)+e\left(F_{4}\right)}{4}+1=\frac{e(H)-1}{4},
$$

a contradiction.

Now, we construct a required system that dominates H. Let $\left(Z, Z^{\prime}\right)$ be a bipartition of $V(F) \backslash V_{1}(F)$ with $|Z| \leq\left|Z^{\prime}\right|$. Let

$$
X_{1}=\left\{x \in V_{1}(F) \mid N_{F}(x) \cap Z=\emptyset\right\} \text { and } X_{2}=V_{1}(F) \backslash X_{1} .
$$

Let
$S t(z)$ be the star with the center z and the ends $N_{H}(z)$ for $z \in Z$
$T_{1}(x)$ be the star with the center x and the ends $N_{H}(x)$ for $x \in X_{1}$
$T_{2}(x)$ be the star with the center x and the ends $N_{H}(x) \cap V_{1}(H)$ for $x \in X_{2}$, and let

$$
\mathcal{S}=\{S t(z) \mid z \in Z\} \cup\left\{T_{1}(x) \mid x \in X_{1}\right\} \cup\left\{T_{2}(x) \mid x \in X_{2}\right\} .
$$

Since $d_{H}(x) \geq 3$ for $x \in V(F)$, every star in \mathcal{S} has at least three edges. Obviously $E(H)=\bigcup_{S \in \mathcal{S}} E(S)$ and all the stars in \mathcal{S} are mutually edge-disjoint, and so \mathcal{S} is a system that dominates H and its cardinality is

$$
\begin{equation*}
\# \mathcal{S}=|Z|+\left|X_{1}\right|+\left|X_{2}\right| \leq \frac{\left|F-V_{1}(F)\right|}{2}+\left|V_{1}(F)\right| . \tag{5}
\end{equation*}
$$

Claim 2 and $V_{2}(H)=\emptyset$ imply $V_{2}(F)=\emptyset$. Therefore

$$
\left|V_{1}(F)\right|=\sum_{i \geq 3}(i-2)\left|V_{i}(F)\right|+2 \geq\left|F-V_{1}(F)\right|+2,
$$

and so

$$
e(F)=\left|F-V_{1}(F)\right|+\left|V_{1}(F)\right|-1 \geq 2\left|F-V_{1}(F)\right|+1 .
$$

Since $e(H)-e(F)=4\left|V_{1}(F)\right|$, the upper bound of (5) is

$$
\frac{\left|F-V_{1}(F)\right|}{2}+\left|V_{1}(F)\right| \leq \frac{e(F)-1}{4}+\frac{e(H)-e(F)}{4}=\frac{e(H)-1}{4},
$$

a contradiction.

Proof of Lemma 7. Without loosing generality, we may assume that H is connected. Let X be a maximum even subgraph of H. If $V(H)=V(X)$, then X is a system that dominates H. If $E(X)=E(H)$, then the number $\# X$ of the components in X is $1<(e(H)-1) / 4$. If $E(X) \subsetneq E(H)$, then $\# X \leq e(X) / 4 \leq(e(H)-1) / 4$ because H is triangle-free. Thus X constitutes a desired system that dominates H.

Suppose $H-V(X)$ is not empty. Let $\left\{Y_{i}\right\}$ be the set of all the components in $H-V(X)$ and S_{i} be the set of all the edges joining Y_{i} and X. Let Y_{i}^{*} be the graph obtained from $Y_{i} \cup S_{i} \cup k K_{1,4}$ by identifying each vertex in $V_{1}\left(Y_{i} \cup S_{i}\right) \cap V\left(S_{i}\right)$ and each center of $K_{1,4}$, where $k=\left|S_{i}\right|$, as in Figure 12. Then $\delta_{e}\left(Y_{i}^{*}\right) \geq 4$ and

Figure 12:
$V_{2}\left(Y_{i}^{*}\right)=\emptyset$. Hence, by Lemma 9, there exists a system \mathcal{S}_{i}^{*} of cardinality at most $\left(e\left(Y_{i}\right)+5\left|S_{i}\right|-1\right) / 4$ that dominates Y_{i}^{*}. Let \mathcal{T}_{i} be the set of all the stars in \mathcal{S}_{i}^{*} with
centers in $V_{1}\left(Y_{i} \cup S_{i}\right) \cap V\left(S_{i}\right)$. Then $\# \mathcal{T}_{i}=\left|S_{i}\right|$. Since the set of the stars $\mathcal{S}_{i}=\mathcal{S}_{i}^{*} \backslash \mathcal{T}_{i}$ contains all edges in Y_{i} and every edge in $\bigcup_{i} S_{i}$ is incident to X,

$$
\mathcal{S}=\{\text { all circuits in } X\} \cup \bigcup_{i} \mathcal{S}_{i}
$$

is a system that dominates H. As H is triangle-free, $\# X \leq e(X) / 4$ and so

$$
\begin{aligned}
\# \mathcal{S} & =\frac{e(X)}{4}+\sum_{i}\left(\# \mathcal{S}_{i}^{*}-\# \mathcal{T}_{i}\right)=\frac{e(X)}{4}+\sum_{i}\left(\frac{e\left(Y_{i}\right)+5\left|S_{i}\right|-1}{4}-\left|S_{i}\right|\right) \\
& =\frac{e(X)}{4}+\sum_{i} \frac{e\left(Y_{i}\right)+\left|S_{i}\right|-1}{4}=\frac{e(X)+\sum_{i}\left(e\left(Y_{i}\right)+\left|S_{i}\right|\right)-i}{4} \leq \frac{e(H)-i}{4} .
\end{aligned}
$$

Hence, \mathcal{S} is a desired system that dominates H.

4.2 Proof of Lemma 8

We use the following lemma.
Lemma D (Fleischner [5]). Every bridgeless multigraph with $\delta \geq 3$ has a spanning even subgraph.

If $V_{1}(H)=\emptyset$, then H has no bridge, and so the graph H^{\prime} obtained from H by suppressing all vertices of degree two, i.e., remove a vertex of degree two and join the neighbours by an edge, is a bridgeless multigraph with $\delta\left(H^{\prime}\right) \geq 3$. Hence, by Lemma D, H^{\prime} has a spanning even subgraph X^{\prime}. Because $V_{2}(H)$ is a stable set in H, the even subgraph X in H corresponding to X^{\prime} is a system that dominates H such that $V_{\geq 3}(H) \subset V(X)$.

Suppose $V_{1}(H) \neq \emptyset$, and let $F=H-V_{1}(H)$ and $\operatorname{Pr}(H)=N\left(V_{1}(H)\right)$. Let F^{\prime} be the graph obtained from F by suppressing all vertices in $V_{2}(F)$. Then by Lemma D, F^{\prime} has a spanning even subgraph X^{\prime}. Let X be the even subgraph in H corresponding to X^{\prime} and let Q be the forest obtained from $F-E(X)$ by removing all isolated vertices. Notice that each component in Q is a path as $V_{\geq 3}(F) \subset V(X)$. Because $V_{2}(H)$ is a stable set, easily we can assign direction to every edge in Q such that the initial vertex is a vertex in $\operatorname{Pr}(H)$ and for each vertex $x \in \operatorname{Pr}(H)$, there is a directed edge with initial vertex x.

For $x \in \operatorname{Pr}(H) \cap V_{2}(F)$, let $S t(x)$ be the star with center x and all pendant edges incident to x and all directed edges with initial vertex x. Since there are at least two pendant edges incident to $x \in \operatorname{Pr}(H) \cap V_{2}(F), S t(x)$ has at least three edges. Thus, $\{S t(x) \mid x \in \operatorname{Pr}(H)\}$ and X constitutes a system that dominate H such that the even subgraph X passes through all vertices in $V_{\geq 3}(F)$.

References

[1] S.A. Choudum and M.S. Paulraj, Regular factors in $K_{1,3}-$ free graphs, J. Graph Theory 15 (1991) 259-265.
[2] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000)
[3] Y. Egawa and K. Ota, Regular factors in $K_{1, n}$-free graphs, J. Graph Theory 15 (1991) 337-344.
[4] R.J. Faudree, O. Favaron, E. Flandrin, H. Li, Z. Liu, On 2-factors in claw-free graphs, Discrete Math. 206 (1999) 131-137.
[5] H. Fleischner, Spanning Eulerian subgraphs, the splitting lemma, and Petersen's theorem, Disc. Math. 101 (1992) 33-37.
[6] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2-factors of line graphs, submitted
[7] B. Jackson and K. Yoshimoto, Spanning Even Subgraphs of 3-edge-connected Graphs, submitted
[8] R. Gould and E. Hynds, A note on cycles in 2-factors of line graphs, Bull. of ICA. 26 (1999), 46-48.
[9] R.J. Gould and M.S. Jacobson, Two-factors with few cycles in claw-free graphs, Discrete Math. 231 (2001), 191-197.
[10] M. M. Matthews and D. P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984), 139-146.
[11] Z. Ryjácěk, On a closure concept in claw-free graphs, J Combin Theory Ser B 70 (1997) 217-224.
[12] Z. Ryjácěk, A. Saito and R.H. Schelp, Closure, 2-factor, and cycle coverings in claw-free graphs, J. Graph Theory 32 (1999) 109-117.

