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Abstract

Let G be a simple graph with order n and minimum degree at least two. In
this paper, we prove that if every odd branch-bond in G has an edge-branch,
then its line graph has a 2-factor with at most 3n−2

8 components. For a simple
graph with minimum degree at least three also, the same conclusion holds.

1 Introduction

We consider only simple graphs G and the order is denoted by n and the minimum

degree by δ throughout this article. The length of a path is defined by the number

of edges on the path, and the K1,m is called a star. A circuit is a connected graph

with at least three vertices in which every vertex has even degree.

There are various results about the number of the components in a 2-factor which

is a 2-regular spanning subgraph, see [1],[2],[7],[10],[12]. In this article, we study the

upper bound of the number of cycles in 2-factors in a line graph. By results of

Egawa and Ota [6] and Choudum and Paulraj [4], the line graph of a graph with

δ ≥ 3 has a 2-factor. In general, if there is a family S of edge-disjoint circuits and

stars with at least three edges in a graph G such that:

every edge in E(G) \
⋃

S∈S

E(S) is incident to a circuit in S,
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then obviously the line graph L(G) has a 2-factor in which every component is

induced by an element in S or a circuit in S together with some edges in E(G) \

∪S∈SE(S). Gould and Hynds [9] showed the above condition is a necessary and

sufficient one for the existence of a 2-factor with |S| components in L(G). Let us

call the family S a k-system that dominates G (or simply k-system), where k = |S|.

A branch in a graph G is a nontrivial path such that all of the internal vertices

have degree two and neither of the ends have degree two. Especially, a branch of

length one is called an edge-branch. A set B of branches is called a branch cut if

the graph obtained from G \
⋃
B∈B E(B) by deleting all the internal vertices in the

branches has more components than G. A branch-bond is a minimal branch cut.

Some results about hamiltonicity of L(G) and branches or branch-bonds have been

known, see [3],[13],[14],[15].

A branch-bond is called odd if it consists of an odd number of branches. If the

maximum number l(G) of the lengths of shortest branches in all odd branch-bonds

in G is at least three, then obviously G has no k-system for any k. In the case of

l(G) = 2, also there exist many graphs without a k-system. For example, the line

graph of the 2-connected graph G in Figure 1 has no 2-factor, while l(G) ≤ 2 since

Figure 1:

the subgraph obtained by removing the internal vertices in all branches of length

three is connected. However, if l(G) = 1, i.e., all odd branch-bonds have an edge-

branch, and δ ≥ 2, then its line graph contains a 2-factor. We show the following

fact in this paper.

Theorem 1. Let G be a simple graph of order n ≥ 4 and minimum degree δ ≥ 2.

If every odd branch-bond in G has an edge-branch, then its line graph has a 2-factor

with at most 3n−2
8

cycles.
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If a graph has minimum degree at least three, then all branches are edges, and

so the same conclusion holds.

The upper bound in Theorem 1 is best possible as follows. Let P2m be a path

of length 2m − 1. We add 2m + 2 edges to P2m ∪ (2m + 2)K3 as in Figure 2. Then

Figure 2:

the resultant graph H2m,3 has order 8m + 6, and so (3|V (H2m,3)| − 2)/8 = 3m + 2.

Because the edges on P2m are covered only by exactly m stars and each cycle K3

is covered only by itself, H2m,3 does not have a k-system for k < m + (2m + 2).

Moreover, the graph obtained by removing all the triangles which are adjacent to

the ends of P2m has no k-system for any k. Hence we can not relax the minimum

degree condition also.

In general, the following conjecture seems to hold.

Conjecture 2. If G is a simple graph with order n and minimum degree δ (≥ 3),

then its line graph has a 2-factor with at most
(2δ−3)n

2(δ2−δ−1)
(< n

δ
) cycles.

If this conjecture is true, then the upper bound of the number of cycles is almost

best possible by the graph obtained from H2m,3 by replacing each K3 adjacent to

internal vertices of P2m by (δ − 2)Kδ+1 and by replacing each 2K3 adjacent to the

ends by (δ − 1)Kδ+1. See Figure 3.

Figure 3:
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Notice that in [10], it was shown that: if a claw-free graph with order n′ and

minimum degree δ′ has an integer k such that n′/δ′ ≤ k ≤ 3
√

n′/16, then the graph

has a 2-factor with at most k cycles. However, this fact implies neither of Theorem 1

nor Conjecture 2 because if a graph G has an edge whose ends have degree δ, then

its line graph has no integer k satisfying the condition of the statement. Actually,

n′ = |E(G)| ≥ δ|V (G)|/2 and δ′ = 2(δ − 1) implies δ > |V (G)|2/2.

Finally we give some additional definitions and notation. The set of all the

neighbours of a vertex x ∈ V (G) is denoted by NG(x) or simply N(x), and its

cardinality by dG(x) or d(x). For a subgraph H of G, we denote NG(x) ∩ V (H) by

NH(x) and its cardinality by dH(x). For simplicity, we denote |V (H)| by |H | and

“ui ∈ V (H)” by “ui ∈ H”. The set of neighbours
⋃
v∈H NG(v) \ V (H) is written by

NG(H) or N(H), and for a subgraph F ⊂ G, NG(H)∩ V (F ) is denoted by NF (H).

For vertex-disjoint subgraphs H, H ′, we denote the set of all the edges joining H

and H ′ by E[H, H ′]. For subgraphs H ⊂ F , let IntFH = {u ∈ V (H) | dF (u) 6= 1}.

We use [5] for notation and terminology not explained here.

2 Proof of Theorem 1

The following lemma implies the existence of a 2-factor in L(G).

Lemma 3. A graph G has a set of vertex-disjoint circuits containing all vertices of

degree two if every odd branch-bond in G has an edge-branch.

Proof. Let C1, C2, . . . , Cl be vertex-disjoint circuits in G such that C =
⋃
i Ci con-

tains vertices of degree two as many as possible. Let F = G − V (C), and suppose

F contains a vertex x of degree two. Notice that every vertex in G of degree two

is contained in a branch or a cycle in which all but one vertex have degree two.

It follows from the choice of C1, C2, . . . , Cl that x is contained in a branch, say P .

Since IntG(P ) ⊂ V (F ), E(P ) ⊂ E(G) \ E(C). Let T be a maximal tree such that

P ⊂ T and

if there is an edge in T ∩ C, then neither of the ends have degree two. (1)

If we remove all the internal vertices of P from T , then two trees T1 and T2 are

remained. Let B be a branch-bond joining T1 and G − V (T1) ∪ IntG(P ) in which P

is one of branches.
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We choose a branch B in B as follows. If B\P has a branch which is edge-disjoint

to C, then let B be the branch. In the case that B \P has no such a branch, B is an

odd branch-bond, and so B has an edge-branch. We choose the edge-branch as B.

Notice that if E(B) ∩ E(C) 6= ∅, then B is an edge-branch and neither of the ends

have degree two by the definition of a branch. In either case, as the maximality of

T , B is joining T1 and T2, and so T ∪ B contains a cycle D. Then

C ′ = (C ∪ D) \ E(C ∩ D) − IntC∩D(C ∩ D)

is a set of circuits. Because P ⊂ C ′ and IntC∩D(C ∩ D) does not contain a vertex

of degree two by (1), the set C ′ of the circuits contains more vertices of degree two

than C, a contradiction.

Proof of Theorem 1

By Lemma 3, we can choose vertex-disjoint circuits C1, C2, . . . , Cα in G such that:

1. C =
⋃
i≤α Ci contains all the vertices of degree two;

2. Subject to 1, |V (C)| is maximal;

3. Subject to the above, α is as small as possible.

Then F = G − V (C) is a forest. Let F1, F2, . . . , Fβ be the components of F . As F

is a bipartite graph, there are partite sets X and Y of V (F ). Suppose |X | ≤ |Y |,

and for each x ∈ X, let S(x) be the star {xui | ui ∈ NG(x)}. Since dG(v) ≥ 3 for

every v ∈ V (F ), S(x) has at least three ends for all x ∈ X. As F is a forest, every

edge in G is contained in C or
⋃
x∈X S(x) or incident to C. Therefore

S = {C1, C2, . . . , Cα} ∪ {S(x) | x ∈ X}

is an (α + |X |)-system that dominates G. We prove the number α + |X | is at most

(3n − 2)/8.

First suppose that |F | ≤ (n − 6)/4, then

α + |X | ≤ α +
|F |

2
≤

n − |F |

3
+

|F |

2
=

2n + |F |

6
≤

3n − 2

8
. (2)

Next suppose that F = ∅. Then (2) holds for n ≥ 6. In case of n = 4 or 5, since we

cannot take two vertex disjoint circuits in G, α = 1. Therefore α+ |X | < (3n−2)/8

holds.
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Hence we may assume that F 6= ∅ and

|F | >
n − 6

4
. (3)

Claim 1. |E[e, Fk]| ≤ 1 for any edge e ∈ E(C) and any k ≤ β.

Proof. Suppose there is an edge e ∈ E(Ci) such that |E[e, Fk]| ≥ 2. Let uv, u′v′ ∈

E[e, Fk] be different edges, where u, u′ ∈ V (e), and Pv,v′ be the path in Fk joining

v and v′. If u = u′, then v 6= v′ as G is simple. Hence C ∪ {uv, uv′} ∪ Pv,v′ is the

set of circuits containing V (C) and V (Pv,v′). This contradicts the requirement 2 of

C. See Figure 4i. Similarly if u 6= u′, then C ∪ {uv, u′v′} ∪ Pv,v′ \ {uu′} is the set of

Figure 4:

circuits containing V (C) and V (Pv,v′). See Figure 4ii.

Let Ci = u1u2 . . . upu1. Using Claim 1, we define Di ⊂ Ci such that V (Di) =

V (Ci) and E[Z, Fk] ≤ 1 for any component Z of Di and any k ≤ β, as follows.

1. If p is even, say 2m, then let

Di = {u2j−1u2j | 1 ≤ j ≤ m}.

In Figure 5i, the spanning subgraph determined by heavy edges is Di.

Figure 5:
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2. Suppose p is odd, say 2m + 1. Assume Ci is an odd cycle. If E[Ci, F ] = ∅,

then let

Di = {upu1u2} ∪ {u2j−1u2j | 2 ≤ j ≤ m}. (4)

Suppose E[Ci, F ] 6= ∅. By symmetry, we may assume NF (u1) 6= ∅. If up and u2 are

not adjacent to the same tree, then we define Di by (4).

Assume both of up and u2 have neighbours on the same tree Fk. Now we prove

that u1 and u3 are not adjacent to the same tree in F . If both of u1 and u3 also

are adjacent to the same tree Fk′, then k 6= k′ and up /∈ N(Fk′) by Claim 1. As

u3 ∈ N(Fk′), u3 6= up, and so G[Ci ∪ Fk ∪Fk′ ] contains a circuit longer than Ci. See

Figure 5ii. Therefore u1 and u3 are not adjacent to the same tree. Thus we define

Di = {u1u2u3} ∪ {u2ju2j+1 | 2 ≤ j ≤ m}.

Note that dG(u2) ≥ 3.

Assume Ci is not an odd cycle. Then there is a vertex of which the degree is at

least four in Ci. By symmetry, we can suppose u1 is such a vertex. If both of up and

u2 are adjacent to some tree Fk, then C ∪ {upv, u2v
′} ∪ Pv,v′ \ {upu1, u1u2} is a set

of circuits containing V (C) ∪ V (Pv,v′), where v ∈ NFk
(up), v

′ ∈ NFk
(u2) and Pv,v′ is

the path joining v and v′. This contradicts the requirement 2. Therefore up and u2

are not adjacent to the same tree in F . Let us define Di by (4).

By the definition of Di, immediately the following fact holds.

Fact 4. If E[Ci, F ] 6= ∅, then for any ul ∈ IntDi
(Di), dG(ul) ≥ 3. Especially if Ci

is not an odd cycle, then dCi
(ul) = 2s for some s ≥ 2.

Let ri be the number of components in Di and {Z1
i , Z

2
i , . . . , Zri

i } the set of all

the components in Di for i ≤ α. By the definition of Di, V (Di) = V (Ci) and

ri ≤
|Ci|

2
(5)

because each component Zj
i contains at least two vertices.

Claim 2. |E[Zj
i , Fk]| ≤ 1 for any component Zj

i in Di and k ≤ β.

Proof. Suppose |E[Zj
i , Fk]| ≥ 2, and let ua, ub ∈ N

Z
j
i
(Fk) and Qua,ub

a path in Zj
i

joining ua and ub. By Claim 1, Qua,ub
is not an edge, and so Ci is not a cycle by the
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definition of Di. Therefore, for any ul ∈ IntQua,ub
(Qua,ub

)(⊂ IntDi
(Di)), dCi

(ul) = 2m

for some m ≥ 2 by Fact 4. Hence, for va ∈ NFk
(ua) and vb ∈ NFk

(ub) and the path

Pva,vb
in Fk joining va and vb, the subgraph

C ′ = C ∪ {uava, ubvb} ∪ Pva,vb
\ E(Qua,ub

)

is a set of circuits containing V (C)∪V (Pva,vb
) because for any ul ∈ IntQua,ub

(Qua,ub
),

dC′(ul) = dC(ul)−2 is a positive even number and for any ul ∈ V (C)\IntQua,ub
(Qua,ub

),

dC′(ul) = dC(ul). This contradicts the requirement 2 of C.

Let D =
⋃
i≤α Di and H the graph obtained from F ∪E[F, C]∪D by contracting

all edges in E(F ) ∪ E(D).

Claim 3. H is a forest.

Proof. Let zji and fk be vertices in H corresponding to Zj
i and Fk, respectively, and

VZ = {zji | i ≤ α and j ≤ ri} and VF = {fk | k ≤ β}.

By the definition of H , H is a bipartite graph with partite sets VZ and VF and there

is an edge zji fk ∈ E(H) if and only if E[Zj
i , Fk] 6= ∅. By Claim 2, there is no multiple

edges in H .

Suppose there is a cycle. By symmetry, we may assume the cycle is

f1z
ψ(1)
ϕ(1)f2z

ψ(2)
ϕ(2) · · · frz

ψ(r)
ϕ(r)f1.

Let

e1
i = v1

i u
1
ϕ(i) ∈ E[Fi, Z

ψ(i)
ϕ(i) ] and e2

i = u2
ϕ(i)v

2
i+1 ∈ E[Z

ψ(i)
ϕ(i) , Fi+1]

corresponding to fiz
ψ(i)
ϕ(i) and z

ψ(i)
ϕ(i)fi+1, respectively, where i ≤ r and fr+1 = f1. Let

{
Pi be the path joining v2

i and v1
i in Fi

Qϕ(i) be a path joining u1
ϕ(i) and u2

ϕ(i) in Z
ψ(i)
ϕ(i) ,

where i ≤ r and v2
0 = v2

r . Let

C̃ = {
⋃

i≤r

(Cϕ(i) ∪ {e1
i , e

2
i } ∪ Pi)} \ {

⋃

i≤r

E(Qϕ(i))}.

As V (C̃) ⊂ V (
⋃
i≤r(Cϕ(i) ∪ Fi)),

C̃ is vertex-disjoint to Cl for all l 6= ϕ(1), ϕ(2), . . . , ϕ(r).
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Moreover, it holds that





d eC(v) = 2 for v ∈ V (
⋃
i≤r Pi)

d eC(ul) = dC(ul) for ul ∈ V (
⋃
i≤r Cϕ(i)) \ {

⋃
i≤r IntQϕ(i)

(Qϕ(i))}.
d eC(ul) = dC(ul) − 2 for ul ∈

⋃
i≤r IntQϕ(i)

(Qϕ(i)).

If there exists ul ∈ IntQϕ(i)
(Qϕ(i)) such that dC(ul) − 2 = 0, then, by Fact 4 and the

definition of Dϕ(i), the circuit Cϕ(i) is an odd cycle and Qϕ(i) is the component in

Dϕ(i) of length two. As Dϕ(i) has only one such a component,

M = {ul ∈
⋃

i≤r

IntQϕ(i)
(Qϕ(i)) | d eC(ul) = dC(ul) − 2 = 0}

contains at most r vertices. Because dG(ul) ≥ 3 for all ul ∈ M by Fact 4,

C ′ = (C̃ \ M) ∪
⋃

i6=ϕ(1),ϕ(2),... ,ϕ(r)

Ci

is a set of circuits satisfying the requirement 1 of C. Since
∑

i≤r |Pi| ≥ r and

|M | ≤ r,

|C̃ \ M | =
∑

i≤r

(|Cϕ(i)| + |Pi|) − |M | ≥
∑

i≤r

|Cϕ(i)|,

and so

|C ′| ≥ |C|.

If |M | < r or |Pi| ≥ 2 for some i ≤ r, then |C̃ \M | >
∑

i≤r |Cϕ(i)|, and so |C ′| > |C|.

This contradicts the requirement 2 of C.

If |M | = r and |Pi| = 1 for all i ≤ r, then |C ′| = |C| and Cϕ(i) is an odd cycle

and Qϕ(i) is the component in Dϕ(i) of length two for any i ≤ r. As Dϕ(i) has only

one such a component,

Cϕ(i) 6= Cϕ(j) if i 6= j.

Hence, the number of the components in
⋃
i≤r Cϕ(i) is r and C̃ \ M is a cycle. See

Figure 6. Therefore, the number of the components in C ′ is α − r + 1 < α. This

contradicts the requirement 3 of C.

Next, we calculate |E[F, C]|. Let k ≤ β and let pl(k) = |{v ∈ V (Fk) | dFk
(v) =

l}|. Since Fk is a tree,

p1(k) =
∑

i≥3

(i − 2)pi(k) + 2.
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Figure 6:

Because dG(v) ≥ 3 for any v ∈ V (Fk) by the requirement 1 of C,

|E[Fk, C]| ≥ 2p1(k) + p2(k)

= p1(k) + p2(k) +
∑

i≥3

(i − 2)pi(k) + 2

≥
∑

i≥1

pi(k) + 2

= |Fk| + 2.

Hence

|E[F, C]| =
∑

i≤β

|E[Fi, C]| ≥
∑

i≤β

(|Fi| + 2) = |F | + 2β. (6)

Because H is a forest with partite sets VZ and VF , there is a set R of at most

|VF | − 1 = β − 1 edges such that H \ R is a set of vertex-disjoint stars whose

central vertices are contained in VF . Let R be the set of all the edges in E[F, C]

corresponding to edges in R and L = E[F, C] \ R. Then

|L| ≥ |F | + β + 1 ≥ |F | + 2 and (7)

|E[Zj
i , F ] ∩ L| ≤ 1 for all Zj

i . (8)

Let

γj = |{Ci | |E[Ci, F ] ∩ L| = j}|.

Then

∑

j≥0

γj = α and
∑

j≥0

jγj =
∑

j≥1

jγj = |L|. (9)

If there are j edges incident to Ci in L, then ri ≥ j by (8), and so

|Ci| ≥ 2ri ≥ 2j
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by (5). Because any circuit has at least three vertices, (9) implies

n − |F | = |C|

≥ 3γ0 + 3γ1 + 2
∑

j≥2

jγj

= 3γ0 + γ1 + 2
∑

j≥1

jγj

= 3γ0 + γ1 + 2|L|. (10)

And also by (9),

|L| =
∑

j≥1

jγj

=
∑

j≥2

jγj + γ1

≥ 2
∑

j≥2

γj + γ1

= 2
∑

j≥0

γj − 2γ0 − γ1

= 2α − 2γ0 − γ1. (11)

Taking sum of (3), (7), (10) and (11), we obtain

|F | + |L| + n − |F | + |L| >
n − 6

4
+ |F | + 2 + 3γ0 + γ1 + 2|L| + 2α − 2γ0 − γ1

=⇒ n >
n − 6

4
+ |F | + 2 + γ0 + 2α.

Therefore,

2α + |F | < n −
n − 6

4
− 2 − γ0

≤
3n − 2

4
− γ0

. ≤
3n − 2

4
,

which implies

α + |X | ≤ α +
|F |

2
<

3n − 2

8
.

Now the proof is completed.
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isfying the Chvàtal-Erdös condition, J. Graph theory 43, 269-279 (2003)

[13] H.-J. Lai, On the hamiltonian index, Discrete Math. 69 (1988) 43-53.

[14] L. Xiong, H.J. Broersma, X. Li and M. Li, The hamiltonian index of a graph
and its branch-bonds, Discrete Math. 285 (2004) 279-288

[15] L. Xiong and Z. Liu, Hamiltonian iterated line graphs, Discrete Math. 256
(2002) 407-422.

12


