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Abstract

Let G be a simple graph with order n and minimum degree at least two. In
this paper, we prove that if every odd branch-bond in G has an edge-branch,
then its line graph has a 2-factor with at most 3"8_ 2 components. For a simple
graph with minimum degree at least three also, the same conclusion holds.

Introduction

We consider only simple graphs G and the order is denoted by n and the minimum

degree by 6 throughout this article. The length of a path is defined by the number

of edges on the path, and the K ,, is called a star. A circuit is a connected graph

with at least three vertices in which every vertex has even degree.
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There are various results about the number of the components in a 2-factor which

a 2-regular spanning subgraph, see [1],[2],[7],[10],[12]. In this article, we study the

upper bound of the number of cycles in 2-factors in a line graph. By results of

Egawa and Ota [6] and Choudum and Paulraj [4], the line graph of a graph with

1)
st

> 3 has a 2-factor. In general, if there is a family S of edge-disjoint circuits and

ars with at least three edges in a graph G such that:

every edge in E(G) \ U E(S) is incident to a circuit in S,
Ses
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then obviously the line graph L(G) has a 2-factor in which every component is
induced by an element in S or a circuit in S together with some edges in E(G) \
UsesF(S). Gould and Hynds [9] showed the above condition is a necessary and
sufficient one for the existence of a 2-factor with |S| components in L(G). Let us
call the family S a k-system that dominates G (or simply k-system), where k = |S].

A branch in a graph G is a nontrivial path such that all of the internal vertices
have degree two and neither of the ends have degree two. Especially, a branch of
length one is called an edge-branch. A set B of branches is called a branch cut if
the graph obtained from G \ | gz E(B) by deleting all the internal vertices in the
branches has more components than G. A branch-bond is a minimal branch cut.
Some results about hamiltonicity of L(G) and branches or branch-bonds have been
known, see [3],[13],[14],[15].

A branch-bond is called odd if it consists of an odd number of branches. If the
maximum number [(G) of the lengths of shortest branches in all odd branch-bonds
in GG is at least three, then obviously G has no k-system for any k. In the case of
[(G) = 2, also there exist many graphs without a k-system. For example, the line

graph of the 2-connected graph G in Figure 1 has no 2-factor, while [(G) < 2 since

Figure 1:

the subgraph obtained by removing the internal vertices in all branches of length
three is connected. However, if I[(G) = 1, i.e., all odd branch-bonds have an edge-
branch, and 6 > 2, then its line graph contains a 2-factor. We show the following
fact in this paper.

Theorem 1. Let G be a simple graph of order n > 4 and minimum degree 6 > 2.

If every odd branch-bond in G has an edge-branch, then its line graph has a 2-factor

3n

with at most 8_2

cycles.



If a graph has minimum degree at least three, then all branches are edges, and
so the same conclusion holds.

The upper bound in Theorem 1 is best possible as follows. Let P,,, be a path
of length 2m — 1. We add 2m + 2 edges to Py, U (2m + 2) K3 as in Figure 2. Then
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Figure 2:

the resultant graph Hs,, 3 has order 8m + 6, and so (3|V (Ham3)| —2)/8 = 3m + 2.
Because the edges on P, are covered only by exactly m stars and each cycle K3
is covered only by itself, Hs,, 3 does not have a k-system for k& < m + (2m + 2).
Moreover, the graph obtained by removing all the triangles which are adjacent to
the ends of P,,, has no k-system for any k. Hence we can not relax the minimum
degree condition also.

In general, the following conjecture seems to hold.

Conjecture 2. If G is a simple graph with order n and minimum degree 6 (> 3),

then its line graph has a 2-factor with at most %(< %) cycles.

If this conjecture is true, then the upper bound of the number of cycles is almost
best possible by the graph obtained from Hs,, 3 by replacing each K3 adjacent to
internal vertices of P, by (6 — 2)Ksy1 and by replacing each 2K3 adjacent to the
ends by (0 — 1)Ks,1. See Figure 3.
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Notice that in [10], it was shown that: if a claw-free graph with order n’ and
minimum degree ¢’ has an integer k such that n'/§ <k < {’/W, then the graph
has a 2-factor with at most k cycles. However, this fact implies neither of Theorem 1
nor Conjecture 2 because if a graph G has an edge whose ends have degree J, then
its line graph has no integer k satisfying the condition of the statement. Actually,
n' =|E(G)| > §|V(G)|/2 and &' = 2(§ — 1) implies § > |V (G)]?/2.

Finally we give some additional definitions and notation. The set of all the
neighbours of a vertex = € V(G) is denoted by Ng(z) or simply N(z), and its
cardinality by dg(z) or d(z). For a subgraph H of G, we denote Ng(z) NV (H) by
Npg(z) and its cardinality by dg(z). For simplicity, we denote |V (H)| by |H| and
“ui € V(H)” by “u; € H”. The set of neighbours (J,., Na(v) \ V(H) is written by
Ng(H) or N(H), and for a subgraph F' C G, Ng(H)NV/(F) is denoted by Ng(H).
For vertex-disjoint subgraphs H, H', we denote the set of all the edges joining H
and H' by E[H, H'|. For subgraphs H C F, let IntpH = {u € V(H) | dp(u) # 1}.

We use [5] for notation and terminology not explained here.

2 Proof of Theorem 1

The following lemma implies the existence of a 2-factor in L(G).

Lemma 3. A graph G has a set of vertex-disjoint circuits containing all vertices of

degree two if every odd branch-bond in G has an edge-branch.

Proof. Let Cy,Cy, ... ,C; be vertex-disjoint circuits in G such that C = |, C; con-
tains vertices of degree two as many as possible. Let F' = G — V(C'), and suppose
F' contains a vertex x of degree two. Notice that every vertex in G of degree two
is contained in a branch or a cycle in which all but one vertex have degree two.
It follows from the choice of C7, Cs, ... ,C) that z is contained in a branch, say P.
Since Intg(P) C V(F), E(P) C E(G)\ E(C). Let T be a maximal tree such that
P CT and

if there is an edge in T N C', then neither of the ends have degree two. (1)

If we remove all the internal vertices of P from 7', then two trees 77 and T, are
remained. Let B be a branch-bond joining 77 and G — V(T3) U Intg(P) in which P

is one of branches.



We choose a branch B in B as follows. If B\ P has a branch which is edge-disjoint
to C, then let B be the branch. In the case that B\ P has no such a branch, B is an
odd branch-bond, and so B has an edge-branch. We choose the edge-branch as B.
Notice that if E(B)N E(C) # 0, then B is an edge-branch and neither of the ends
have degree two by the definition of a branch. In either case, as the maximality of

T, B is joining 77 and 75, and so T'U B contains a cycle D. Then
C'=(CUD)\ E(CND)—Intcnp(C N D)

is a set of circuits. Because P C C' and Intenp(C N D) does not contain a vertex
of degree two by (1), the set C” of the circuits contains more vertices of degree two

than C', a contradiction. O

Proof of Theorem 1

By Lemma 3, we can choose vertex-disjoint circuits Cy, Cs, ... ,C, in G such that:
1. € = ;<. Ci contains all the vertices of degree two;
2. Subject to 1, |V(C)| is maximal;

3. Subject to the above, « is as small as possible.

Then F' = G — V(C) is a forest. Let Fy, Fy, ..., Fjg be the components of F'. As F
is a bipartite graph, there are partite sets X and Y of V(F'). Suppose |X| < |Y],
and for each z € X, let S(x) be the star {zu; | u; € Ng(x)}. Since dg(v) > 3 for
every v € V(F), S(z) has at least three ends for all x € X. As F is a forest, every

edge in G is contained in C' or J,cy S(z) or incident to C'. Therefore
S={C,Cy, ... ,CoL}U{S(x) |z € X}
is an (a + | X|)-system that dominates G. We prove the number a + | X| is at most
(3n — 2)/8.
First suppose that |F| < (n — 6)/4, then

|F| _n—|F| |F| 2n+|F| _3n-2
Xl < — < - = < . 2
a+ | X|<a+ 5 <3 + 5 5 <3 (2)

Next suppose that F' = (). Then (2) holds for n > 6. In case of n = 4 or 5, since we
cannot take two vertex disjoint circuits in G, o = 1. Therefore a+ | X| < (3n—2)/8
holds.



Hence we may assume that F' # ) and

n—~6
. Q

|F| >
Claim 1. |Ele, Fi]| <1 for any edge e € E(C) and any k < 3.

Proof. Suppose there is an edge e € E(C;) such that |Ele, Fi]| > 2. Let uv,uv' €
Ele, Fy] be different edges, where u,u’ € V(e), and P,, be the path in Fj joining
vand v'. If u =4, then v # ¢" as G is simple. Hence C' U {uv,uv'} U P,/ is the
set of circuits containing V(C') and V (P, /). This contradicts the requirement 2 of

C. See Figure 4i. Similarly if u # «’, then C'U {uv, w'v'} U P, v \ {uu'} is the set of

Figure 4:

circuits containing V(C') and V(P,.). See Figure 4ii. O

Let C; = uqus ... upuy. Using Claim 1, we define D; C C; such that V(D;) =
V(C;) and E[Z, Fy] < 1 for any component Z of D; and any k < (3, as follows.
1. If p is even, say 2m, then let

Di = {Ugjfl’Uzj ‘ 1 Sj < m}
In Figure 5i, the spanning subgraph determined by heavy edges is D;.

h0;
\ F,

@ C (i)

Figure 5:



2. Suppose p is odd, say 2m + 1. Assume C; is an odd cycle. If E[C;, F] = 0,
then let

Di = {upu1u2} U {UQj,ﬂLQj | 2 S] S m} (4)

Suppose E[C;, F] # 0. By symmetry, we may assume Ng(u;) # 0. If u, and uy are
not adjacent to the same tree, then we define D; by (4).

Assume both of u, and uy have neighbours on the same tree Fj,. Now we prove
that u; and ug are not adjacent to the same tree in F. If both of u; and wus also
are adjacent to the same tree Fj/, then k # k' and uw, ¢ N(Fi) by Claim 1. As
ug € N(Fy), us # up, and so G[C; U Fi, U Fy/] contains a circuit longer than C;. See

Figure 5ii. Therefore u; and uz are not adjacent to the same tree. Thus we define
Di = {UllLQUg} U {Ung2j+1 | 2 S] S m}

Note that dg(usz) > 3.

Assume C; is not an odd cycle. Then there is a vertex of which the degree is at
least four in C;. By symmetry, we can suppose u; is such a vertex. If both of u, and
uy are adjacent to some tree Fy, then C'U {u,v, usv'} U P, v \ {upur, uius} is a set
of circuits containing V' (C') U V (P, ), where v € Ng, (u,),v" € Np, (u2) and P, is
the path joining v and v’. This contradicts the requirement 2. Therefore u, and s
are not adjacent to the same tree in F. Let us define D; by (4).

By the definition of D;, immediately the following fact holds.

Fact 4. If E[C;, F] # 0, then for any w, € Intp,(D;), dg(w) > 3. Especially if C;

is not an odd cycle, then dc,(u;) = 2s for some s > 2.
Let r; be the number of components in D; and {Z}!, Z? ..., Z!"} the set of all
the components in D; for i < a. By the definition of D;, V(D;) = V(C;) and

i < K;" (5)

because each component Z7 contains at least two vertices.
Claim 2. |E[Z], F,)| <1 for any component Z! in D; and k < 3.

Proof. Suppose |E[Z], Fi]| > 2, and let u,,uy € N,i(Fy) and Q,, ., a path in Z/

joining u, and u,. By Claim 1, @, ., is not an edge, and so C; is not a cycle by the



definition of D;. Therefore, for any u; € Intq,, . (Qu,w,)(C Intp,(D;)), dc, (w) = 2m
for some m > 2 by Fact 4. Hence, for v, € Np, (u,) and v, € Np, (up) and the path
P,, v, in Fj, joining v, and vy, the subgraph

C' = C U {ugVa, upvp} U Py, v, \ E(Quy.y)

is a set of circuits containing V(C)UV (P, ,,) because for any w; € Intg,, ., (Qua.u,);
der(ur) = de(wr)—2 is a positive even number and for any u; € V/(C)\Intg,, .., (Qua.u,);
der(u;) = de(uy). This contradicts the requirement 2 of C'. O

Let D = U, Di and H the graph obtained from F'UE[F, C]UD by contracting
all edges in E(F) U E(D).

Claim 3. H is a forest.

Proof. Let zlj and f; be vertices in H corresponding to Zij and Fy, respectively, and
Vz={z|i<aand j<r}and Ve = {fi | k <G}

By the definition of H, H is a bipartite graph with partite sets V; and Vr and there
is an edge 2/ f, € E(H) if and only if E[Z/, F;] # 0. By Claim 2, there is no multiple
edges in H.

Suppose there is a cycle. By symmetry, we may assume the cycle is
(1) ¢ Y(2) ¥(r)
hzgiy faZe(a) - frzpm 1
Let
el = v} uw(l) € E[E,Z ] and e? = u? (1)Uz+1 € E[Zw(() Fi ]

corresponding to fZ i ) and z le, respectively, where ¢ < r and f,,1 = f1. Let

P; be the path joining v? and v} in F;
Qi) be a path joining u,, (@) and '%(z in ZZ((Z))

where @ < r and v3 = v2. Let

C={U(Cop U el et U PN AU E(Quiw)}

i<r i<r
As V(C) € V(Uig, (Co) U F)),
C is vertex-disjoint to C; for all I # (1), 0(2), ..., (r).
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Moreover, it holds that

ds(v) =2 for v € V(Uig P)
dc(ul) for u; € V(Uz‘gr C%J(i)) \ {Uigr Inth(i)(Qw(i))}-
de(w) = do(u) =2 for wy € U, Intg, ;) (Qpm))-

If there exists u; € Intq_, (Qu@;)) such that do(u;) —2 = 0, then, by Fact 4 and the

9
(o)
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definition of D), the circuit C,;) is an odd cycle and Q,; is the component in

D) of length two. As D, ;) has only one such a component,

M = {u; € | JIntg,, (Quw) | da(u) = do(w) — 2 =0}

i<r

contains at most r vertices. Because dg(u;) > 3 for all w; € M by Fact 4,

C'=(C\M)u U C
i#(1),p(2),0-,p(r)
is a set of circuits satisfying the requirement 1 of C. Since ), |F| > r and
M| <,

[C\NM| =Y (1Cow] +1B1) = [M] =) 1Copi].

i<r i<r
and so

¢ = 1C.

If |M| < r or | B > 2 for some i < r, then |C'\ M| > > i<y [Cp(@]; and so [C'] > [C].
This contradicts the requirement 2 of C'.

If [M| =7 and || =1 for all i < r, then |C"| = |C] and Cy, is an odd cycle
and Qy(;) is the component in D, ;) of length two for any ¢ < r. As D, has only

one such a component,
Coti) # Coi) i1 # 5.
Hence, the number of the components in |, < Uy 18 7 and C \ M is a cycle. See

Figure 6. Therefore, the number of the components in C’ is « — r + 1 < «. This

contradicts the requirement 3 of C'. O

Next, we calculate |E[F,C]|. Let k£ < 8 and let p;(k) = |[{v € V(F) | dp,(v) =

[}|. Since Fj is a tree,

pr(k) = (i = 2)p;(k) +2.

1>3



Figure 6:

Because dg(v) > 3 for any v € V(Fy) by the requirement 1 of C,

|E[F, C)| > 2pi(k) + palk)
= puk) +pa(k) + D (i = 2)pi(k) +2

i>3
> > pilk) +2

i>1
= |Fy| + 2.

Hence

|[BIE.C]l =) _|E[F,Cll 2 Y (IF|+2) = |F| + 25.

i<pB i<B

(6)

Because H is a forest with partite sets V; and Vg, there is a set R of at most

[Ve| — 1 = 8 — 1 edges such that H \ R is a set of vertex-disjoint stars whose
central vertices are contained in V. Let R be the set of all the edges in E[F,C]

corresponding to edges in R and L = E[F,C]\ R. Then
|L| > |F|+/+1>|F|+2 and
|E[Z], F]N L| <1 for all Z/.

Let
v = [{Ci | |E[C;, F1N L] = j}].

Then

Z*yj =a and Zj%' = ijyj = |L|.

J=0 J=0 j=21

If there are j edges incident to C; in L, then r; > j by (8), and so
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by (5). Because any circuit has at least three vertices, (9) implies

n—|F| = |C
> 3y +3n+2) i
j>2
30+ 71 +2) v
j>1

= 3’}/04—’}/1—0—2’[/’. (10)

And also by (9),

Ll = ) v

j=21

= ) jutm

Jj=2

> 22%’"‘71

Jj=2

= 2) 1-2%-m
Jj=0
= 2a—2v%—m. (11)
Taking sum of (3), (7), (10) and (11), we obtain
-6
[F|+ |Ll+ n = |F| 4 L] > == + [F| + 2437 + 71 + 2|L] + 20— 290 —

n—=6
— n>T+|F|+2+%+2a.

Therefore,
-6
20+ |F| < n—n4 —2—-"
3n — 2
> 1 Yo
3n — 2
— 4 Y
which implies

F 3n — 2
&+|X\§04+%< n8 .

Now the proof is completed.
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