A 2-factor in which each cycle contains a vertex in a specified stable set

Shuya Chiba ${ }^{1 *}$
Yoshimi Egawa ${ }^{1}$
Kiyoshi Yoshimoto ${ }^{2 \dagger}$
${ }^{1}$ Department of Mathematical Information Science, Tokyo University of Science, Tokyo 162-8601, Japan
${ }^{2}$ Department of Mathematics, Collage of Science and Technology
Nihon University, Tokyo 101-8308, Japan

Abstract

Let G be a graph with order n, and let k be an integer with $1 \leq k \leq n / 3$. In this article, we show that if $\sigma_{2}(G) \geq n+k-1$, then for any stable set $S \subseteq V(G)$ with $|S|=k$, there exists a 2 -factor with precisely k cycles C_{1}, \ldots, C_{k} such that $\left|V\left(C_{i}\right) \cap S\right|=1$ for all $1 \leq i \leq k$ and at most one of the cycles C_{i} has length strictly greater than three. The lower bound on σ_{2} is best possible.

1 Introduction

All graphs considered are simple and finite. We refer to the number of vertices of G as the order of G and denote it by $|G|$. If there is no ambiguity, we let n denote the order of the graph G under consideration. A 2-factor is a spanning subgraph in which every component is a cycle. Let $H_{1}, H_{2}, \ldots, H_{p}$ be pairwise vertex-disjoint subgraphs of G, i.e., $V\left(H_{i}\right) \cap V\left(H_{j}\right)=\emptyset$ for all $i \neq j$. In this article, we always omit the word "pairwise" and simply say that H_{1}, \ldots, H_{p} are vertex-disjoint. Notation and terminology not explained in this article can be found in [2].

[^0]Ore [8] proved that a graph G of order $n \geq 3$ with $\sigma_{2}(G):=\min \{d(x)+d(y) \mid x \neq$ $y, x y \notin E(G)\} \geq n$ is hamiltonian and, as an extension of it, Brandt et al. [1] showed that a graph G with $\sigma_{2}(G) \geq n$ has a 2-factor with precisely k cycles for any integer $k \leq n / 4$. Furthermore, if the minimum degree is at least $n / 2$, then for any set S of $k(\leq(n+3) / 6)$ vertices, G contains a 2 -factor with precisely k cycles each of which contains a vertex in S (see [4]). However, the natural σ_{2}-version of this statement does not hold. Let

$$
\begin{equation*}
H=K_{2 k-1}+\left(K_{k} \cup K_{n-(3 k-1)}\right) \text { and } S=V\left(K_{k}\right) \tag{1.1}
\end{equation*}
$$

(here K_{m} denotes the complete graph of order m and, for two graphs G_{1}, G_{2} with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$, we let $G_{1} \cup G_{2}$ denote the union of G_{1} and G_{2}, and let $G_{1}+G_{2}$ denote the join of G_{1} and G_{2}, i.e., the graph obtained from $G_{1} \cup G_{2}$ by joining each vertex in $V\left(G_{1}\right)$ to all vertices in $\left.V\left(G_{2}\right)\right)$. Then it is easy to check that $\sigma_{2}(H)=$ $n+2(k-1)-1$ and there is no desired 2-factor. But this is the upper bound of σ_{2} for graphs which do not have such a 2 -factor. Actually, a much stronger fact holds.

Theorem A ([6]) Let G be a graph with order n, let k be an integer with $2 \leq k \leq$ $(n+1) / 4$, and suppose that $\sigma_{2}(G) \geq n+2(k-1)$. Then for any independent edges $e_{1}, e_{2}, \ldots, e_{k}$, there exists a 2 -factor with precisely k cycles $C_{1}, C_{2}, \ldots, C_{k}$ such that $e_{i} \in E\left(C_{i}\right)$ for all $1 \leq i \leq k$.

The lower bound on σ_{2} is best possible. This can be seen from (1.1) by letting $e_{1}, e_{2}, \ldots, e_{k}$ be independent edges joining the $K_{2 k-1}$ part and the K_{k} part.

Ishigami and Wang [7] gave an alternative proof of Theorem A by showing that if G is a graph with order n, k is an integer with $2 \leq k \leq(n+1) / 4$, and $\sigma_{2}(G) \geq$ $n+2(k-1)$, then for any independent edges $e_{1}, e_{2}, \ldots, e_{k}$, there exists a 2 -factor with precisely k cycles $C_{1}, C_{2}, \ldots, C_{k}$ such that $e_{i} \in E\left(C_{i}\right)$ for all $1 \leq i \leq k$ and at most one of the cycles C_{i} has length strictly greater than four, unless $\overline{K_{2 k}}+$ $\left(K_{p} \cup K_{n-(2 k+p)}\right) \subseteq G \subseteq K_{2 k}+\left(K_{p} \cup K_{n-(2 k+p)}\right)$ for some integer $p(2(k-1)<p<$ $n-4(k-1)-2)$.

We have already mentioned that (1.1) shows that even for a specified vertex set, the lower bound $n+2(k-1)$ on σ_{2} is best possible. However, Dong showed that the situation is different if we assume that the specified set S is stable, i.e., $x y \notin E(G)$ for any $x, y \in S$. He proved the following three theorems.

Theorem B (Dong [3]) Let G be a graph of order n, and let k be an integer with $1 \leq k \leq n / 3$. Suppose that $\sigma_{2}(G) \geq n+k-1$, and let S be a stable set of vertices
with $|S|=k$. Then G has a 2-factor consisting of precisely k cycles $C_{1}, C_{2}, \ldots, C_{k}$ such that $\left|V\left(C_{i}\right) \cap S\right|=1$ for all $1 \leq i \leq k$ and $\left|C_{i}\right| \leq 4$ for all $1 \leq i \leq k-1$.

Theorem C (Dong [3]) Let G be a graph of order n, and let k be an integer with $1 \leq k \leq n / 3$. Suppose that $\sigma_{2}(G) \geq n+k-1$, and let S be a stable set of vertices with $|S|=k$. Then there exist k vertex-disjoint cycles C_{1}, \ldots, C_{k} such that $\left|V\left(C_{i}\right) \cap S\right|=1$ and $\left|C_{i}\right| \leq 4$ for all $1 \leq i \leq k$.

Theorem D (Dong [4]) Let G be a graph of order n, and let k be an integer with $1 \leq k \leq n / 3$. Suppose that $\sigma_{2}(G) \geq n+k-1$, and let S be a stable set of vertices with $|S|=k$. Suppose further that there exist vertex-disjoint triangles D_{1}, \ldots, D_{k}

$$
\begin{equation*}
\text { such that }\left|V\left(D_{i}\right) \cap S\right|=1 \text { for all } 1 \leq i \leq k \tag{1.2}
\end{equation*}
$$

Then G has a 2 -factor consisting of precisely k cycles C_{1}, \ldots, C_{k} such that $\mid V\left(C_{i}\right) \cap$ $S \mid=1$ for all $1 \leq i \leq k$ and $\left|C_{i}\right|=3$ for all $1 \leq i \leq k-1$.

In Theorems B and D , the lower bound on σ_{2} is best possible. To see this, let $H=\overline{K_{k}}+\left(K_{1} \cup K_{n-k-1}\right)$ and $S=V\left(\overline{K_{k}}\right)$. Then $\sigma_{2}(H)=n+k-2$, but there is no desired 2-factor.

The purpose of this article is to prove a result which is a common refinement of Theorems B and C and, at the same time, implies that the conclusion of Theorem D holds even if we drop the assumption (1.2). Specifically, we prove the following theorem.

Theorem 1 Let G be a graph of order n, and let k be an integer with $1 \leq k \leq n / 3$. Suppose that $\sigma_{2}(G) \geq n+k-1$, and let S be a stable set of vertices with $|S|=k$. Then one of the following holds:
(i) there exist k vertex-disjoint triangles C_{1}, \ldots, C_{k} such that $\left|V\left(C_{i}\right) \cap S\right|=1$ for all $1 \leq i \leq k$; or
(ii) there exist $k-1$ vertex-disjoint triangles C_{1}, \ldots, C_{k-1} such that $\left|V\left(C_{i}\right) \cap S\right|=1$ for all $1 \leq i \leq k-1$, and such that if we let $H=G-\bigcup_{1 \leq i \leq k-1} V\left(C_{i}\right)$ and write $S \cap V(H)=\left\{v_{0}\right\}$, then $|H| \geq 4, d_{H}(x) \geq 2$ for all $x \in V(H)$, and H contains a vertex a with $a \neq v_{0}$ which has the property that $d_{H}(x)+d_{H}(y) \geq|H|$ for any $x, y \in V(H) \backslash\{a\}$ with $x \neq y$ and $x y \notin E(H)$.

In Thereom 1, the lower bound on σ_{2} is best possible. Assume that $n+k$ is even, and let $G^{\prime}=K_{k-2}+K_{(n-k+2) / 2,(n-k+2) / 2}$ (here $K_{l, m}$ denotes the complete bipartite
graph with partite sets having cardinalities l and m). Then $\sigma_{2}\left(G^{\prime}\right)=n+k-2$, and G^{\prime} does not contain $k-1$ vertex-disjoint triangles. Thus neither (i) nor (ii) holds.

In view of Theorem D , we obtain the following two corollaries as consequences of Thereom 1 (see Section 3). Note that Corollaries 2 and 3 are refinements of Theorems B and C, respectively, and Corollary 2 also shows that in Theorem D, the assumption (1.2) is not necessary.

Corollary 2 Let G be a graph of order n, and let k be an integer with $1 \leq k \leq$ $n / 3$. Suppose that $\sigma_{2}(G) \geq n+k-1$, and let S be a stable set of vertices with $|S|=k$. Then G has a 2 -factor consisting of precisely k cycles C_{1}, \ldots, C_{k} such that $\left|V\left(C_{i}\right) \cap S\right|=1$ for all $1 \leq i \leq k$ and $\left|C_{i}\right|=3$ for all $1 \leq i \leq k-1$.

Corollary 3 Let G be a graph of order n, and let k be an integer with $1 \leq k \leq n / 3$. Suppose that $\sigma_{2}(G) \geq n+k-1$, and let S be a stable set of vertices with $|S|=k$. Then there exist k vertex-disjoint cycles C_{1}, \ldots, C_{k} such that $\left|V\left(C_{i}\right) \cap S\right|=1$ for all $1 \leq i \leq k,\left|C_{i}\right|=3$ for all $1 \leq i \leq k-1$, and $\left|C_{k}\right|=3$ or 4 .

We establish Theorem 1 in Section 2 by proving the following two propositions (note that the graph H in Proposition 4 (ii) satisfies the conditions stated in (ii) of Theorem 1).

Proposition 4 Let G be a graph of order n, and let k be an integer with $1 \leq k \leq$ $n / 3$. Suppose that $\sigma_{2}(G) \geq n+k-1$, and let S be a stable set of vertices with $|S|=k$. Suppose further that each $v \in S$ is contained in a triangle. Then one of the following holds:
(i) there exist k vertex-disjoint triangles C_{1}, \ldots, C_{k} such that $\left|V\left(C_{i}\right) \cap S\right|=1$ for all $1 \leq i \leq k$; or
(ii) $n+k$ is odd, $d(v)=(n+k-1) / 2$ for all $v \in S$, and there exist $k-1$ vertexdisjoint triangles C_{1}, \ldots, C_{k-1} such that $\left|V\left(C_{i}\right) \cap S\right|=1$ for all $1 \leq i \leq k-1$, and such that if we let $H=G-\bigcup_{1 \leq i \leq k-1} V\left(C_{i}\right)$, then $|H| \geq 4$ and H contains a spanning subgraph isomorphic to $K_{(n-3(k-1)) / 2,(n-3(k-1)) / 2}$.

Proposition 5 Let G be a graph of order n, and let k be an integer with $1 \leq k \leq$ $n / 3$. Suppose that $\sigma_{2}(G) \geq n+k-1$, and let S be a stable set of vertices with $|S|=k$. Suppose further that there exists $v_{0} \in S$ such that v_{0} is not contained in a triangle. Then there exist $k-1$ vertex-disjoint triangles C_{1}, \ldots, C_{k-1} such that
$\left|V\left(C_{i}\right) \cap S\right|=1$ for all $1 \leq i \leq k-1$, and such that if we let $H=G-\bigcup_{1 \leq i \leq k-1} V\left(C_{i}\right)$, then $|H| \geq 4, d_{H}(x) \geq 2$ for all $x \in V(H)$, and H contains a vertex a with $a \neq v_{0}$ which has the property that $d_{H}(x)+d_{H}(y) \geq|H|$ for any $x, y \in V(H) \backslash\{a\}$ with $x \neq y$ and $x y \notin E(H)$.

In the rest of this section, we prepare notations which we use in subsequent sections. The set of all neighbours of a vertex x in a graph G is denoted by $N_{G}(x)$, or simply by $N(x)$, and its cardinality is denoted by $d_{G}(x)$ or $d(x)$. For a subgraph H of G, we denote $N_{G}(x) \cap V(H)$ by $N_{H}(x)$ and its cardinality by $d_{H}(x)$. For simplicity, we denote $|V(H)|$ by $|H|$, and $G-V(H)$ by $G-H$. Also we write " $u \in H$ " to mean that $u \in V(H)$.

2 Proof of Propositions

We first prove Proposition 4. Let n, k, G, S be an in Proposition 4. We proceed by induction on k. If $k=1$, (i) clearly holds. Thus let $k \geq 2$, and assume that the proposition holds for $k-1$. We may assume (i) does not hold. Let $S^{\prime \prime}$ be a subset of S with cardinality $k-1$. Note that if $k \geq 3$, then by the assumption that $\sigma_{2}(G) \geq n+k-1$, it is not possible that $d(v)=(n+(k-1)-1) / 2$ for all $v \in S^{\prime}$, and hence it follows from the induction assumption that there exist $k-1$ vertex-disjoint triangles C_{1}, \ldots, C_{k-1} such that $\left|V\left(C_{i}\right) \cap S^{\prime}\right|=1$ for all $1 \leq i \leq k-1$; if $k=2$, then $\left|S^{\prime}\right|=1$, and hence there exists a triangle C_{1} such that $\left|V\left(C_{1}\right) \cap S^{\prime}\right|=\left|S^{\prime}\right|=1$. Write $S=\left\{v_{1}, \ldots, v_{k}\right\}$ so that $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{k}\right)$. Note that if there exists $v \in S$ with $v \neq v_{1}$ such that $d(v)=(n+k-1) / 2$, then we also have $d\left(v_{1}\right)=(n+k-1) / 2$ by the assumption that $\sigma_{2}(G) \geq n-k+1$. Thus the proposition follows if we prove the following lemma.

Lemma 2.1 Let $n, k, G, S, v_{1}, \ldots, v_{k}$ be as above, and suppose that (i) does not hold. Fix i_{0} with $2 \leq i_{0} \leq k$, and set $S^{\prime}=S \backslash\left\{v_{0}\right\}$. Further let C_{1}, \ldots, C_{k-1} be vertex-disjoint triangles such that $\left|V\left(C_{i}\right) \cap S^{\prime}\right|=1$ for all $1 \leq i \leq k-1$, and set $H=\bigcup_{1 \leq i \leq k-1} C_{i}$. Then $n+k$ is odd, $d\left(v_{i_{0}}\right)=(n+k-1) / 2,|H| \geq 4$, and H contains a spanning subgraph isomorphic to $K_{(n-3(k-1)) / 2,(n-3(k-1)) / 2}$.

Proof of Lemma 2.1. Recall that S is stable. Thus $d_{C_{i}}\left(v_{i_{0}}\right) \leq 2$ for every $1 \leq i \leq$ $k-1$. Since $d_{G}\left(v_{1}\right) \leq d_{G}\left(v_{i_{0}}\right)$, we also have

$$
\begin{equation*}
d_{G}\left(v_{i_{0}}\right) \geq(n+k-1) / 2 . \tag{2.1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
d_{H}\left(v_{i_{0}}\right) \geq d_{G}\left(v_{i_{0}}\right)-2(k-1) \geq(n-3(k-1)) / 2=|H| / 2 . \tag{2.2}
\end{equation*}
$$

In particular, $d_{H}\left(v_{i_{0}}\right) \geq 2$. Note that from the assumption that (i) does not hold, it follows that $N_{H}\left(v_{i_{0}}\right)$ is stable. Hence

$$
\begin{equation*}
N_{H}(x) \cap N_{H}\left(v_{i_{0}}\right)=\emptyset \text { for all } x \in N_{H}\left(v_{i_{0}}\right), \tag{2.3}
\end{equation*}
$$

which implies

$$
\begin{equation*}
d_{H}(x)+d_{H}\left(v_{i_{0}}\right) \leq|H| \text { for all } x \in N_{H}\left(v_{i_{0}}\right) . \tag{2.4}
\end{equation*}
$$

Take $x_{1}, x_{2} \in N_{H}(x)$ with $x_{1} \neq x_{2}$. If there exists i with $1 \leq i \leq k-1$ such that $d_{C_{i}}\left(x_{1}\right)+d_{C_{i}}\left(x_{2}\right)+d_{C_{i}}\left(v_{i_{0}}\right) \geq 7$, then in the subgraph induced by $V\left(C_{i}\right) \cup\left\{v_{i_{0}}, x_{1}, x_{2}\right\}$, we can easily find two disjoint triangles C_{i}^{\prime} and D such that $V\left(C_{i}^{\prime}\right) \cap S^{\prime}=V\left(C_{i}\right) \cap S^{\prime}$ and $v_{i_{0}} \in D$, which contradicts the assumption that (i) does not hold. Thus $d_{C_{i}}\left(x_{1}\right)+$ $d_{C_{i}}\left(x_{2}\right)+d_{C_{i}}\left(v_{i_{0}}\right) \leq 6$ for every $1 \leq i \leq k-1$. Consequently it follows from (2.1) that

$$
\begin{aligned}
d_{H}\left(x_{1}\right)+d_{H}\left(x_{2}\right)+d_{H}\left(v_{i_{0}}\right) & \geq \frac{3}{2}(n+k-1)-6(k-1) \\
& =\frac{3}{2}(n-3(k-1))=\frac{3}{2}|H| .
\end{aligned}
$$

On the other hand, since it follows from (2.2) and (2.4) that $d_{H}\left(x_{1}\right) \leq|H| / 2$, we get $d_{H}\left(x_{1}\right)+d_{H}\left(x_{2}\right)+d_{H}\left(v_{i_{0}}\right) \leq|H| / 2+|H|$ by (2.4). Since x_{1} and x_{2} are arbitrary, this means that equality holds in (2.2) and (2.4). Therefore $|H|$ is even, $d_{H}\left(v_{i_{0}}\right)=|H| / 2$, and $d_{H}(x)=|H| / 2$ for all $x \in N_{H}\left(v_{i_{0}}\right)$. In view of (2.3), this implies that H contains a spanning subgraph isomorphic to $K_{|H| / 2,|H| / 2} \cong K_{(n-3(k-1)) / 2),(n-3(k-1)) / 2}$. Since $|H|=n-3(k-1) \geq 3$ and $|H|$ is even, it follows that $|H| \geq 4$ and $n+k$ is odd. Finally the equality in (2.2) together with (2.1) implies $d_{G}\left(v_{i_{0}}\right)=(n+k-1) / 2$.

Thus Lemma 2.1 is proved, and this completes the proof of Proposition 4.

We proceed to the proof of Proposition 5. Let n, k, G, S, v_{0} be as in Proposition 5. If $k=1$, then the proposition clearly holds because the assumption $\sigma_{2}(G) \geq n$ implies that $d(x) \geq 2$ for all $x \in G$. Thus assume $k \geq 2$. From the assumption that v_{0} is not contained in a triangle, it follows that $N\left(v_{0}\right)$ is stable. Hence

$$
\begin{equation*}
d(x)+d(y) \geq n+k-1 \text { for all } x, y \in N\left(v_{0}\right) \text { with } x \neq y \tag{2.5}
\end{equation*}
$$

In particular, there exists $a \in N_{G}\left(v_{0}\right)$ such that

$$
\begin{equation*}
d(x) \geq(n+k-1) / 2 \text { for all } x \in N\left(v_{0}\right) \backslash\{a\} . \tag{2.6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
d\left(v_{0}\right) \leq(n-(k-1)) / 2 \tag{2.7}
\end{equation*}
$$

This implies that for each $v \in S \backslash\left\{v_{0}\right\}, d(v) \geq(n+3(k-1)) / 2$ and v is contained in a triangle. Hence applying Proposition 4 with k and S replaced by $k-1$ and $S \backslash\left\{v_{0}\right\}$, we see that there exist $k-1$ vertex-disjoint triangles C_{1}, \ldots, C_{k-1} such that $\left|V\left(C_{i}\right) \cap S\right|=1$ for all $1 \leq i \leq k-1$. We choose C_{1}, \ldots, C_{k-1} so that the number p of edges joining v_{0} and $\bigcup_{1 \leq i \leq k-1} V\left(C_{i}\right)$ is as large as possible. Set $H=G-\bigcup_{1 \leq i \leq k-1} C_{i}$. We have $|H|=n-3(k-1) \geq 3$. By (2.7),

$$
d_{G}(w) \geq \frac{n+3(k-1)}{2} \text { for all } w \in V(G) \backslash N_{G}\left(v_{0}\right)
$$

and hence

$$
\begin{align*}
& d_{H}(w) \geq d_{G}(w)-3(k-1) \geq(n-3(k-1)) / 2=|H| / 2 \tag{2.8}\\
& \quad \text { for all } w \in V(H) \backslash N_{H}\left(v_{0}\right) .
\end{align*}
$$

From the fact that $N_{G}\left(v_{0}\right)$ is stable, it follows that $\left|N_{C_{i}}\left(v_{0}\right)\right| \leq 1$ for every $1 \leq i \leq$ $k-1$. Hence

$$
\begin{align*}
d_{H}\left(v_{0}\right)+d_{H}(w) \geq \sigma_{2}(G)-4(k-1) & \geq n-3(k-1)=|H| \tag{2.9}\\
& \text { for all } w \in V(H) \backslash N_{H}\left(v_{0}\right) .
\end{align*}
$$

Since $|H| \geq 3$, (2.9) in particular implies $d_{H}\left(v_{0}\right) \geq 2$. Take $x \in N_{H}\left(v_{0}\right)$. Suppose that there exists i with $1 \leq i \leq k-1$ such that $d_{C_{i}}(x)=3$. Write $C_{i}=v u_{1} u_{2}$ with $v \in S$. Since $N_{G}\left(v_{0}\right)$ is stable, we have $d_{C_{i}}\left(v_{0}\right)=0$. But then replacing C_{i} by the triangle $v u_{1} x$, we get a contradiction to that maximality of p. Thus $d_{C_{i}}(x) \leq 2$ for each $x \in N_{H}\left(v_{0}\right)$ and each $1 \leq i \leq k-1$. Therefore it follows from (2.5) and (2.6) that

$$
\begin{array}{r}
d_{H}(x)+d_{H}(y) \geq d_{G}(x)+d_{G}(y)-4(k-1) \geq n-3(k-1)=|H| \tag{2.10}\\
\text { for all } x, y \in N_{H}\left(v_{0}\right) \text { with } x \neq y
\end{array}
$$

and

$$
\begin{align*}
& d_{H}(x) \geq d_{G}(x)-2(k-1) \geq(n-3(k-1)) / 2=|H| / 2 \tag{2.11}\\
& \quad \text { for all } x \in N_{H}\left(v_{0}\right) \backslash\{a\}
\end{align*}
$$

(it is possible that $a \notin H$). Recall that $d_{H}\left(v_{0}\right) \geq 2$. Thus (2.10) in particular implies that $d_{H}(x) \geq 2$ for all $x \in N_{H}\left(v_{0}\right)$. Consequently we see from (2.8) that $d_{H}(x) \geq 2$ for all $x \in V(H)$. Since v_{0} is not contained in a triangle, this implies $|H| \geq 4$. Finally, combining (2.8), (2.9) and (2.11), we see that $d_{H}(x)+d_{H}(y) \geq|H|$ for any $x, y \in V(H) \backslash\{a\}$ with $x \neq y$ and $x y \notin E(G)$.

This completes the proof of Proposition 5.

3 A Lemma

For completeness, we here include the proof of the following lemma, which shows that Theorem 1 implies Corollaries 2 and 3.

Lemma 3.1 Let H be a graph such that $|H| \geq 4$, and $d_{H}(x) \geq 2$ for all $x \in H$. Let $a \in H$, and suppose that $d_{H}(x)+d_{H}(y) \geq|H|$ for any $x, y \in V(H) \backslash\{a\}$ with $x \neq y$ and $x y \notin E(H)$. Then the following hold.
(1) H is hamiltonian.
(2) For each $v \in V(H) \backslash\{a\}$, there exists a cycle C such that $v \in C$ and $|C|=4$.

Proof. We first prove (1). Take a path P such that $a \in P$ and a is not an endvertex of P. We choose P so that $|P|$ is as large as possible. Write $P=x_{1} x_{2} \ldots x_{l}$. Then $N_{H}\left(x_{1}\right), N_{H}\left(x_{l}\right) \subseteq V(P)$. This implies that if $x_{1} x_{l} \notin E(H)$, then there exists i with $2 \leq i \leq l$ such that $x_{i-1} x_{l}, x_{1} x_{i} \in E(H)$. Thus H contains a cycle D with $V(D)=V(P)$. Since H is connected by the assumption of the lemma, it follows from the maximality of $|P|$ that $V(P)=V(H)$, and hence D is a hamiltonian cycle of H, as desired. We now prove (2). If $|H|=4$, the desired conclusion follows from (1). Thus we may assume $|H| \geq 5$. Let $v \in V(H) \backslash\{a\}$. First assume $d_{H}(v) \leq|H|-3$, and take $x \in V(H) \backslash\left(\{v\} \cup N_{H}(v) \cup\{a\}\right)$. Then $d_{H}(v)+d_{H}(x) \geq|H|$, which implies $\left|N_{H}(v) \cap N_{H}(x)\right| \geq 2$. Hence v, x and two vertices in $N_{H}(v) \cap N_{H}(x)$ form a cycle with the desired properties. Next assume $d_{H}(v)=|H|-2$, and write $V(H) \backslash\left(\{v\} \cup N_{H}(v)\right)=\{x\}$. Then $\left|N_{H}(v) \cap N_{H}(x)\right|=\left|N_{H}(x)\right| \geq 2$, and hence we can again find a desired cycle. Finally assume $d_{H}(v)=|H|-1$. Then $\left|N_{H}(v)-\{a\}\right|=$ $|H|-2 \geq 3$. Hence if $N_{H}(v)-\{a\}$ induces a complete graph, then the desired conclusion clearly holds. Thus we may assume there exist $x, y \in N_{H}(v)-\{a\}$ with $x \neq y$ such that $x y \notin E(H)$. Then $\left|N_{H}(x) \cap N_{H}(y)\right| \geq 2$. Consequently v, x, y and a vertex in $\left(N_{H}(x) \cap N_{H}(y)\right) \backslash\{v\}$ form a desired cycle.

References

[1] S. Brandt, G. Chen, R. J. Faudree, R. J. Gould, and L. Lesniak, Degree conditions for 2-factors, J. Graph Theory, 24 (1997), 165-173.
[2] R. Diestel, "Graph Theory" (3rd edition), Graduate Texts in Mathematics 173, Springer (2005).
[3] J. Dong, A 2-factor with short cycles passing through specified independent vertices in graph, preprint.
[4] J. Dong, k disjoint cycles containing specified independent vertices, preprint.
[5] Y. Egawa, H. Enomoto, R. J. Faudree, H. Li and I. Schiermeyer, Two-factors each component of which contains a specified vertex, J. Graph Theory, 43 (2003), 188-198.
[6] Y. Egawa, R. J. Faudree, E. Gyori, Y. Ishigami, R. H. Schelp, and H. Wang, Vertex-disjoint cycles containing specified edges, Graphs and Combin. 16 (2000), 81-92.
[7] Y. Ishigami, and H. Wang, An extension of a theorem on cycles containing specified independent edges, Discrete Math. 245 (2002), 127-137.
[8] O. Ore, Note on hamiltonian circuits, American Mathematical Monthly 67 (1960), 55.

[^0]: *j1107704@ed.kagu.tus.ac.jp
 †yosimoto@math.cst.nihon-u.ac.jp

