A 2-factor in which each cycle contains a vertex in a specified stable set

Shuya Chiba^{1*}

Yoshimi Egawa¹ Kiyoshi Yoshimoto^{2†}

¹Department of Mathematical Information Science, Tokyo University of Science, Tokyo 162-8601, Japan ²Department of Mathematics, Collage of Science and Technology Nihon University, Tokyo 101-8308, Japan

Abstract

Let G be a graph with order n, and let k be an integer with $1 \le k \le n/3$. In this article, we show that if $\sigma_2(G) \ge n+k-1$, then for any stable set $S \subseteq V(G)$ with |S| = k, there exists a 2-factor with precisely k cycles C_1, \ldots, C_k such that $|V(C_i) \cap S| = 1$ for all $1 \le i \le k$ and at most one of the cycles C_i has length strictly greater than three. The lower bound on σ_2 is best possible.

1 Introduction

All graphs considered are simple and finite. We refer to the number of vertices of G as the order of G and denote it by |G|. If there is no ambiguity, we let n denote the order of the graph G under consideration. A 2-factor is a spanning subgraph in which every component is a cycle. Let H_1, H_2, \ldots, H_p be pairwise vertex-disjoint subgraphs of G, i.e., $V(H_i) \cap V(H_j) = \emptyset$ for all $i \neq j$. In this article, we always omit the word "pairwise" and simply say that H_1, \ldots, H_p are vertex-disjoint. Notation and terminology not explained in this article can be found in [2].

^{*}j1107704@ed.kagu.tus.ac.jp

[†]yosimoto@math.cst.nihon-u.ac.jp

Ore [8] proved that a graph G of order $n \ge 3$ with $\sigma_2(G) := \min\{d(x) + d(y) | x \ne y, xy \notin E(G)\} \ge n$ is hamiltonian and, as an extension of it, Brandt et al. [1] showed that a graph G with $\sigma_2(G) \ge n$ has a 2-factor with precisely k cycles for any integer $k \le n/4$. Furthermore, if the minimum degree is at least n/2, then for any set S of $k(\le (n+3)/6)$ vertices, G contains a 2-factor with precisely k cycles each of which contains a vertex in S (see [4]). However, the natural σ_2 -version of this statement does not hold. Let

$$H = K_{2k-1} + (K_k \cup K_{n-(3k-1)}) \text{ and } S = V(K_k)$$
(1.1)

(here K_m denotes the complete graph of order m and, for two graphs G_1, G_2 with $V(G_1) \cap V(G_2) = \emptyset$, we let $G_1 \cup G_2$ denote the union of G_1 and G_2 , and let $G_1 + G_2$ denote the join of G_1 and G_2 , i.e., the graph obtained from $G_1 \cup G_2$ by joining each vertex in $V(G_1)$ to all vertices in $V(G_2)$). Then it is easy to check that $\sigma_2(H) = n + 2(k - 1) - 1$ and there is no desired 2-factor. But this is the upper bound of σ_2 for graphs which do not have such a 2-factor. Actually, a much stronger fact holds.

Theorem A ([6]) Let G be a graph with order n, let k be an integer with $2 \le k \le (n+1)/4$, and suppose that $\sigma_2(G) \ge n+2(k-1)$. Then for any independent edges e_1, e_2, \ldots, e_k , there exists a 2-factor with precisely k cycles C_1, C_2, \ldots, C_k such that $e_i \in E(C_i)$ for all $1 \le i \le k$.

The lower bound on σ_2 is best possible. This can be seen from (1.1) by letting e_1, e_2, \ldots, e_k be independent edges joining the K_{2k-1} part and the K_k part.

Ishigami and Wang [7] gave an alternative proof of Theorem A by showing that if G is a graph with order n, k is an integer with $2 \le k \le (n+1)/4$, and $\sigma_2(G) \ge$ n+2(k-1), then for any independent edges e_1, e_2, \ldots, e_k , there exists a 2-factor with precisely k cycles C_1, C_2, \ldots, C_k such that $e_i \in E(C_i)$ for all $1 \le i \le k$ and at most one of the cycles C_i has length strictly greater than four, unless $\overline{K_{2k}} +$ $(K_p \cup K_{n-(2k+p)}) \subseteq G \subseteq K_{2k} + (K_p \cup K_{n-(2k+p)})$ for some integer p (2(k-1)<math>n - 4(k-1) - 2).

We have already mentioned that (1.1) shows that even for a specified vertex set, the lower bound n + 2(k - 1) on σ_2 is best possible. However, Dong showed that the situation is different if we assume that the specified set S is stable, i.e., $xy \notin E(G)$ for any $x, y \in S$. He proved the following three theorems.

Theorem B (Dong [3]) Let G be a graph of order n, and let k be an integer with $1 \le k \le n/3$. Suppose that $\sigma_2(G) \ge n + k - 1$, and let S be a stable set of vertices

with |S| = k. Then G has a 2-factor consisting of precisely k cycles C_1, C_2, \ldots, C_k such that $|V(C_i) \cap S| = 1$ for all $1 \le i \le k$ and $|C_i| \le 4$ for all $1 \le i \le k - 1$.

Theorem C (Dong [3]) Let G be a graph of order n, and let k be an integer with $1 \le k \le n/3$. Suppose that $\sigma_2(G) \ge n + k - 1$, and let S be a stable set of vertices with |S| = k. Then there exist k vertex-disjoint cycles C_1, \ldots, C_k such that $|V(C_i) \cap S| = 1$ and $|C_i| \le 4$ for all $1 \le i \le k$.

Theorem D (Dong [4]) Let G be a graph of order n, and let k be an integer with $1 \le k \le n/3$. Suppose that $\sigma_2(G) \ge n + k - 1$, and let S be a stable set of vertices with |S| = k. Suppose further that there exist vertex-disjoint triangles D_1, \ldots, D_k

such that
$$|V(D_i) \cap S| = 1$$
 for all $1 \le i \le k$. (1.2)

Then G has a 2-factor consisting of precisely k cycles C_1, \ldots, C_k such that $|V(C_i) \cap S| = 1$ for all $1 \le i \le k$ and $|C_i| = 3$ for all $1 \le i \le k - 1$.

In Theorems B and D, the lower bound on σ_2 is best possible. To see this, let $H = \overline{K_k} + (K_1 \cup K_{n-k-1})$ and $S = V(\overline{K_k})$. Then $\sigma_2(H) = n + k - 2$, but there is no desired 2-factor.

The purpose of this article is to prove a result which is a common refinement of Theorems B and C and, at the same time, implies that the conclusion of Theorem D holds even if we drop the assumption (1.2). Specifically, we prove the following theorem.

Theorem 1 Let G be a graph of order n, and let k be an integer with $1 \le k \le n/3$. Suppose that $\sigma_2(G) \ge n + k - 1$, and let S be a stable set of vertices with |S| = k. Then one of the following holds:

- (i) there exist k vertex-disjoint triangles C_1, \ldots, C_k such that $|V(C_i) \cap S| = 1$ for all $1 \le i \le k$; or
- (ii) there exist k-1 vertex-disjoint triangles C_1, \ldots, C_{k-1} such that $|V(C_i) \cap S| = 1$ for all $1 \le i \le k-1$, and such that if we let $H = G - \bigcup_{1 \le i \le k-1} V(C_i)$ and write $S \cap V(H) = \{v_0\}$, then $|H| \ge 4$, $d_H(x) \ge 2$ for all $x \in V(H)$, and H contains a vertex a with $a \ne v_0$ which has the property that $d_H(x) + d_H(y) \ge |H|$ for any $x, y \in V(H) \setminus \{a\}$ with $x \ne y$ and $xy \notin E(H)$.

In Thereom 1, the lower bound on σ_2 is best possible. Assume that n + k is even, and let $G' = K_{k-2} + K_{(n-k+2)/2,(n-k+2)/2}$ (here $K_{l,m}$ denotes the complete bipartite graph with partite sets having cardinalities l and m). Then $\sigma_2(G') = n + k - 2$, and G' does not contain k - 1 vertex-disjoint triangles. Thus neither (i) nor (ii) holds.

In view of Theorem D, we obtain the following two corollaries as consequences of Thereom 1 (see Section 3). Note that Corollaries 2 and 3 are refinements of Theorems B and C, respectively, and Corollary 2 also shows that in Theorem D, the assumption (1.2) is not necessary.

Corollary 2 Let G be a graph of order n, and let k be an integer with $1 \le k \le n/3$. Suppose that $\sigma_2(G) \ge n + k - 1$, and let S be a stable set of vertices with |S| = k. Then G has a 2-factor consisting of precisely k cycles C_1, \ldots, C_k such that $|V(C_i) \cap S| = 1$ for all $1 \le i \le k$ and $|C_i| = 3$ for all $1 \le i \le k - 1$.

Corollary 3 Let G be a graph of order n, and let k be an integer with $1 \le k \le n/3$. Suppose that $\sigma_2(G) \ge n + k - 1$, and let S be a stable set of vertices with |S| = k. Then there exist k vertex-disjoint cycles C_1, \ldots, C_k such that $|V(C_i) \cap S| = 1$ for all $1 \le i \le k$, $|C_i| = 3$ for all $1 \le i \le k - 1$, and $|C_k| = 3$ or 4.

We establish Theorem 1 in Section 2 by proving the following two propositions (note that the graph H in Proposition 4 (ii) satisfies the conditions stated in (ii) of Theorem 1).

Proposition 4 Let G be a graph of order n, and let k be an integer with $1 \le k \le n/3$. Suppose that $\sigma_2(G) \ge n + k - 1$, and let S be a stable set of vertices with |S| = k. Suppose further that each $v \in S$ is contained in a triangle. Then one of the following holds:

- (i) there exist k vertex-disjoint triangles C_1, \ldots, C_k such that $|V(C_i) \cap S| = 1$ for all $1 \le i \le k$; or
- (ii) n + k is odd, d(v) = (n + k 1)/2 for all $v \in S$, and there exist k 1 vertexdisjoint triangles C_1, \ldots, C_{k-1} such that $|V(C_i) \cap S| = 1$ for all $1 \le i \le k - 1$, and such that if we let $H = G - \bigcup_{1 \le i \le k-1} V(C_i)$, then $|H| \ge 4$ and H contains a spanning subgraph isomorphic to $K_{(n-3(k-1))/2,(n-3(k-1))/2}$.

Proposition 5 Let G be a graph of order n, and let k be an integer with $1 \le k \le n/3$. Suppose that $\sigma_2(G) \ge n + k - 1$, and let S be a stable set of vertices with |S| = k. Suppose further that there exists $v_0 \in S$ such that v_0 is not contained in a triangle. Then there exist k - 1 vertex-disjoint triangles C_1, \ldots, C_{k-1} such that

 $|V(C_i) \cap S| = 1$ for all $1 \leq i \leq k-1$, and such that if we let $H = G - \bigcup_{1 \leq i \leq k-1} V(C_i)$, then $|H| \geq 4$, $d_H(x) \geq 2$ for all $x \in V(H)$, and H contains a vertex a with $a \neq v_0$ which has the property that $d_H(x) + d_H(y) \geq |H|$ for any $x, y \in V(H) \setminus \{a\}$ with $x \neq y$ and $xy \notin E(H)$.

In the rest of this section, we prepare notations which we use in subsequent sections. The set of all neighbours of a vertex x in a graph G is denoted by $N_G(x)$, or simply by N(x), and its cardinality is denoted by $d_G(x)$ or d(x). For a subgraph Hof G, we denote $N_G(x) \cap V(H)$ by $N_H(x)$ and its cardinality by $d_H(x)$. For simplicity, we denote |V(H)| by |H|, and G - V(H) by G - H. Also we write " $u \in H$ " to mean that $u \in V(H)$.

2 **Proof of Propositions**

We first prove Proposition 4. Let n, k, G, S be an in Proposition 4. We proceed by induction on k. If k = 1, (i) clearly holds. Thus let $k \ge 2$, and assume that the proposition holds for k - 1. We may assume (i) does not hold. Let S' be a subset of S with cardinality k - 1. Note that if $k \ge 3$, then by the assumption that $\sigma_2(G) \ge n + k - 1$, it is not possible that d(v) = (n + (k - 1) - 1)/2 for all $v \in S'$, and hence it follows from the induction assumption that there exist k - 1 vertex-disjoint triangles C_1, \ldots, C_{k-1} such that $|V(C_i) \cap S'| = 1$ for all $1 \le i \le k - 1$; if k = 2, then |S'| = 1, and hence there exists a triangle C_1 such that $|V(C_1) \cap S'| = |S'| = 1$. Write $S = \{v_1, \ldots, v_k\}$ so that $d(v_1) \le d(v_2) \le \cdots \le d(v_k)$. Note that if there exists $v \in S$ with $v \ne v_1$ such that d(v) = (n + k - 1)/2, then we also have $d(v_1) = (n + k - 1)/2$ by the assumption that $\sigma_2(G) \ge n - k + 1$. Thus the proposition follows if we prove the following lemma.

Lemma 2.1 Let $n, k, G, S, v_1, \ldots, v_k$ be as above, and suppose that (i) does not hold. Fix i_0 with $2 \leq i_0 \leq k$, and set $S' = S \setminus \{v_0\}$. Further let C_1, \ldots, C_{k-1} be vertex-disjoint triangles such that $|V(C_i) \cap S'| = 1$ for all $1 \leq i \leq k-1$, and set $H = \bigcup_{1 \leq i \leq k-1} C_i$. Then n+k is odd, $d(v_{i_0}) = (n+k-1)/2$, $|H| \geq 4$, and H contains a spanning subgraph isomorphic to $K_{(n-3(k-1))/2,(n-3(k-1))/2}$.

Proof of Lemma 2.1. Recall that S is stable. Thus $d_{C_i}(v_{i_0}) \leq 2$ for every $1 \leq i \leq k-1$. Since $d_G(v_1) \leq d_G(v_{i_0})$, we also have

$$d_G(v_{i_0}) \ge (n+k-1)/2. \tag{2.1}$$

Hence

$$d_H(v_{i_0}) \ge d_G(v_{i_0}) - 2(k-1) \ge (n-3(k-1))/2 = |H|/2.$$
(2.2)

In particular, $d_H(v_{i_0}) \ge 2$. Note that from the assumption that (i) does not hold, it follows that $N_H(v_{i_0})$ is stable. Hence

$$N_H(x) \cap N_H(v_{i_0}) = \emptyset \text{ for all } x \in N_H(v_{i_0}), \qquad (2.3)$$

which implies

$$d_H(x) + d_H(v_{i_0}) \le |H|$$
 for all $x \in N_H(v_{i_0})$. (2.4)

Take $x_1, x_2 \in N_H(x)$ with $x_1 \neq x_2$. If there exists i with $1 \leq i \leq k-1$ such that $d_{C_i}(x_1) + d_{C_i}(x_2) + d_{C_i}(v_{i_0}) \geq 7$, then in the subgraph induced by $V(C_i) \cup \{v_{i_0}, x_1, x_2\}$, we can easily find two disjoint triangles C'_i and D such that $V(C'_i) \cap S' = V(C_i) \cap S'$ and $v_{i_0} \in D$, which contradicts the assumption that (i) does not hold. Thus $d_{C_i}(x_1) + d_{C_i}(x_2) + d_{C_i}(v_{i_0}) \leq 6$ for every $1 \leq i \leq k-1$. Consequently it follows from (2.1) that

$$d_H(x_1) + d_H(x_2) + d_H(v_{i_0}) \ge \frac{3}{2}(n+k-1) - 6(k-1)$$

= $\frac{3}{2}(n-3(k-1)) = \frac{3}{2}|H|.$

On the other hand, since it follows from (2.2) and (2.4) that $d_H(x_1) \leq |H|/2$, we get $d_H(x_1) + d_H(x_2) + d_H(v_{i_0}) \leq |H|/2 + |H|$ by (2.4). Since x_1 and x_2 are arbitrary, this means that equality holds in (2.2) and (2.4). Therefore |H| is even, $d_H(v_{i_0}) = |H|/2$, and $d_H(x) = |H|/2$ for all $x \in N_H(v_{i_0})$. In view of (2.3), this implies that H contains a spanning subgraph isomorphic to $K_{|H|/2,|H|/2} \cong K_{(n-3(k-1))/2),(n-3(k-1))/2}$. Since $|H| = n - 3(k - 1) \geq 3$ and |H| is even, it follows that $|H| \geq 4$ and n + k is odd. Finally the equality in (2.2) together with (2.1) implies $d_G(v_{i_0}) = (n + k - 1)/2$.

Thus Lemma 2.1 is proved, and this completes the proof of Proposition 4.

We proceed to the proof of Proposition 5. Let n, k, G, S, v_0 be as in Proposition 5. If k = 1, then the proposition clearly holds because the assumption $\sigma_2(G) \ge n$ implies that $d(x) \ge 2$ for all $x \in G$. Thus assume $k \ge 2$. From the assumption that v_0 is not contained in a triangle, it follows that $N(v_0)$ is stable. Hence

$$d(x) + d(y) \ge n + k - 1 \text{ for all } x, y \in N(v_0) \text{ with } x \neq y.$$

$$(2.5)$$

In particular, there exists $a \in N_G(v_0)$ such that

$$d(x) \ge (n+k-1)/2 \text{ for all } x \in N(v_0) \setminus \{a\}.$$
 (2.6)

Thus

$$d(v_0) \le (n - (k - 1))/2. \tag{2.7}$$

This implies that for each $v \in S \setminus \{v_0\}$, $d(v) \ge (n+3(k-1))/2$ and v is contained in a triangle. Hence applying Proposition 4 with k and S replaced by k-1 and $S \setminus \{v_0\}$, we see that there exist k-1 vertex-disjoint triangles C_1, \ldots, C_{k-1} such that $|V(C_i) \cap S| = 1$ for all $1 \le i \le k-1$. We choose C_1, \ldots, C_{k-1} so that the number p of edges joining v_0 and $\bigcup_{1 \le i \le k-1} V(C_i)$ is as large as possible. Set $H = G - \bigcup_{1 \le i \le k-1} C_i$. We have $|H| = n - 3(k-1) \ge 3$. By (2.7),

$$d_G(w) \ge \frac{n+3(k-1)}{2} \text{ for all } w \in V(G) \setminus N_G(v_0),$$

and hence

$$d_H(w) \ge d_G(w) - 3(k-1) \ge (n - 3(k-1))/2 = |H|/2$$

for all $w \in V(H) \setminus N_H(v_0).$ (2.8)

From the fact that $N_G(v_0)$ is stable, it follows that $|N_{C_i}(v_0)| \leq 1$ for every $1 \leq i \leq k-1$. Hence

$$d_H(v_0) + d_H(w) \ge \sigma_2(G) - 4(k-1) \ge n - 3(k-1) = |H|$$

for all $w \in V(H) \setminus N_H(v_0)$. (2.9)

Since $|H| \ge 3$, (2.9) in particular implies $d_H(v_0) \ge 2$. Take $x \in N_H(v_0)$. Suppose that there exists i with $1 \le i \le k - 1$ such that $d_{C_i}(x) = 3$. Write $C_i = vu_1u_2$ with $v \in S$. Since $N_G(v_0)$ is stable, we have $d_{C_i}(v_0) = 0$. But then replacing C_i by the triangle vu_1x , we get a contradiction to that maximality of p. Thus $d_{C_i}(x) \le 2$ for each $x \in N_H(v_0)$ and each $1 \le i \le k - 1$. Therefore it follows from (2.5) and (2.6) that

$$d_H(x) + d_H(y) \ge d_G(x) + d_G(y) - 4(k-1) \ge n - 3(k-1) = |H|$$

for all $x, y \in N_H(v_0)$ with $x \ne y$, (2.10)

and

$$d_H(x) \ge d_G(x) - 2(k-1) \ge (n - 3(k-1))/2 = |H|/2$$

for all $x \in N_H(v_0) \setminus \{a\}$ (2.11)

(it is possible that $a \notin H$). Recall that $d_H(v_0) \ge 2$. Thus (2.10) in particular implies that $d_H(x) \ge 2$ for all $x \in N_H(v_0)$. Consequently we see from (2.8) that $d_H(x) \ge 2$ for all $x \in V(H)$. Since v_0 is not contained in a triangle, this implies $|H| \ge 4$. Finally, combining (2.8), (2.9) and (2.11), we see that $d_H(x) + d_H(y) \ge |H|$ for any $x, y \in V(H) \setminus \{a\}$ with $x \neq y$ and $xy \notin E(G)$.

This completes the proof of Proposition 5.

3 A Lemma

For completeness, we here include the proof of the following lemma, which shows that Theorem 1 implies Corollaries 2 and 3.

Lemma 3.1 Let H be a graph such that $|H| \ge 4$, and $d_H(x) \ge 2$ for all $x \in H$. Let $a \in H$, and suppose that $d_H(x) + d_H(y) \ge |H|$ for any $x, y \in V(H) \setminus \{a\}$ with $x \ne y$ and $xy \notin E(H)$. Then the following hold.

(1) H is hamiltonian.

(2) For each $v \in V(H) \setminus \{a\}$, there exists a cycle C such that $v \in C$ and |C| = 4.

Proof. We first prove (1). Take a path P such that $a \in P$ and a is not an endvertex of P. We choose P so that |P| is as large as possible. Write $P = x_1 x_2 \dots x_l$. Then $N_H(x_1), N_H(x_l) \subseteq V(P)$. This implies that if $x_1 x_l \notin E(H)$, then there exists i with $2 \leq i \leq l$ such that $x_{i-1}x_l, x_1x_i \in E(H)$. Thus H contains a cycle D with V(D) = V(P). Since H is connected by the assumption of the lemma, it follows from the maximality of |P| that V(P) = V(H), and hence D is a hamiltonian cycle of H, as desired. We now prove (2). If |H| = 4, the desired conclusion follows from (1). Thus we may assume $|H| \ge 5$. Let $v \in V(H) \setminus \{a\}$. First assume $d_H(v) \leq |H| - 3$, and take $x \in V(H) \setminus (\{v\} \cup N_H(v) \cup \{a\})$. Then $d_H(v) + d_H(x) \geq |H|$, which implies $|N_H(v) \cap N_H(x)| \ge 2$. Hence v, x and two vertices in $N_H(v) \cap N_H(x)$ form a cycle with the desired properties. Next assume $d_H(v) = |H| - 2$, and write $V(H)\setminus(\{v\}\cup N_H(v))=\{x\}$. Then $|N_H(v)\cap N_H(x)|=|N_H(x)|\geq 2$, and hence we can again find a desired cycle. Finally assume $d_H(v) = |H| - 1$. Then $|N_H(v) - \{a\}| =$ $|H| - 2 \geq 3$. Hence if $N_H(v) - \{a\}$ induces a complete graph, then the desired conclusion clearly holds. Thus we may assume there exist $x, y \in N_H(v) - \{a\}$ with $x \neq y$ such that $xy \notin E(H)$. Then $|N_H(x) \cap N_H(y)| \geq 2$. Consequently v, x, y and a vertex in $(N_H(x) \cap N_H(y)) \setminus \{v\}$ form a desired cycle.

References

- S. Brandt, G. Chen, R. J. Faudree, R. J. Gould, and L. Lesniak, Degree conditions for 2-factors, J. Graph Theory, 24 (1997), 165–173.
- [2] R. Diestel, "Graph Theory" (3rd edition), Graduate Texts in Mathematics 173, Springer (2005).
- [3] J. Dong, A 2-factor with short cycles passing through specified independent vertices in graph, preprint.
- [4] J. Dong, k disjoint cycles containing specified independent vertices, preprint.
- [5] Y. Egawa, H. Enomoto, R. J. Faudree, H. Li and I. Schiermeyer, Two-factors each component of which contains a specified vertex, J. Graph Theory, 43 (2003), 188–198.
- [6] Y. Egawa, R. J. Faudree, E. Gyori, Y. Ishigami, R. H. Schelp, and H. Wang, Vertex-disjoint cycles containing specified edges, Graphs and Combin. 16 (2000), 81–92.
- [7] Y. Ishigami, and H. Wang, An extension of a theorem on cycles containing specified independent edges, Discrete Math. 245 (2002), 127–137.
- [8] O. Ore, Note on hamiltonian circuits, American Mathematical Monthly 67 (1960), 55.