Claw-Free Graphs and 2-Factors that Separate Independent Vertices

Ralph J. Faudree ${ }^{1}$, Colton Magnant ${ }^{2}$, Kenta Ozeki ${ }^{34}$, Kiyoshi Yoshimoto ${ }^{56}$
The authors would like to dedicate this paper to our friend and mathematical colleague Richard H. Schelp

Abstract

In this article, we prove that a line graph with minimum degree $\delta \geq 7$ has a spanning subgraph in which every component is a clique of order at least three. This implies that if G is a line graph with $\delta \geq 7$, then for any independent set S there is a 2 -factor of G such that each cycle contains at most one vertex of S. This supports the conjecture that $\delta \geq 5$ is sufficient to imply the existence of such a 2 -factor in the larger class of claw-free graphs.

It is also shown that if G is a claw-free graph of order n and independence number α with $\delta \geq 2 n / \alpha-2$ and $n \geq 3 \alpha^{3} / 2$, then for any maximum independent set S, G has a 2 -factor with α cycles such that each cycle contains one vertex of S. This is in support of a conjecture that $\delta \geq n / \alpha \geq 5$ is sufficient to imply the existence of a 2 -factor with α cycles, each containing one vertex of a maximum independent set.

1 Introduction

In this paper, we consider finite graphs. If no ambiguity can arise, we denote simply the order $|G|$ of G by n, the minimum degree $\delta(G)$ by δ and the independence number $\alpha(G)$ by α. All notation and terminology not explained in this paper is given in [2].

A 2-factor of a graph G is a spanning 2-regular subgraph of G. It is a well known conjecture that every 4 -connected claw-free graph is hamiltonian ([14]). Since a

[^0]hamilton cycle is a connected 2-factor, there are many results on 2-factors of clawfree graphs. For instance, a sufficient condition for the existence of 2 -factors was given by Choudum and Paulraj [4] and by Egawa and Ota [6], (i.e., it holds that every claw-free graph with $\delta \geq 4$ has a 2 -factor) and Ryjáček, Saito and Schelp [17] proved that a claw-free graph G has a 2 -factor with at most k cycles if and only if $c l(G)$ has a 2-factor with at most k cycles, where $\operatorname{cl}(G)$ is the Ryjáček closure [15] of G. In this paper, we study the existence of a maximum independent set and a 2-factor of a claw-free graph G which together dominate G in some sense.

First, we begin with the following question.

Question A. What is the lower bound of minimum degrees such that for any independent set S, there exists a 2-factor in which each cycle contains at most one vertex of S ?

For this question, we will show the following result in Section 2.

Theorem 1. A line graph with $\delta \geq 7$ has a spanning subgraph in which every component is a clique of order at least three.

This implies the following immediately.

Theorem 2. If G is a line graph with $\delta \geq 7$, then for any independent set S, G has a 2-factor such that each cycle contains at most one vertex in S.

Ryjáček [16] pointed out that the minimum degree condition in Theorem 1 is best possible by showing that the line graph of $K_{7}-E\left(C_{7}\right)$ has no desired 2-factors, where C_{7} is a hamilton cycle of the complete graph K_{7} of order seven. For Theorem 2, we can construct a line graph with $\delta=4$ of a multigraph and choose a maximum independent set S such that the graph has no 2 -factor in which every cycle contains at most one vertex of S. The example will be explained at the end of this section. Hence we propose the following conjecture.

Conjecture 1. If G is a claw-free graph with $\delta \geq 5$, then for any independent set S, there exists a 2-factor such that each cycle contains at most one vertex in S.

Next we consider the existence of a 2 -factor and a maximum independent set S such that every cycle of the 2 -factor contains exactly one vertex of S, i.e., the following is our question.

Question B. Which degree conditions guarantee the existence of a maximum independent set S and a 2-factor with α cycles such that each cycle contains one vertex of S ?

For this question, we have to look for a 2 -factor with α cycles. For the number of cycles, we know the following result.

Theorem 3 (Broersma, Paulusma and Yoshimoto [3]). A claw-free graph with $\delta \geq 4$ has a 2-factor with at most $\max \left\{\frac{n-3}{\delta-1}, 1\right\}$ cycles.

In this result, if $\alpha \geq \frac{n-3}{\delta-1}$, then we can replace the upper bound by α. Hence the following corollary holds immediately.

Corollary 4. A claw-free graph with $\delta \geq \frac{n-3}{\alpha}+1$ has a 2-factor with at most α cycles.

On the other hand, the fourth author of this paper constructed an infinite family of line graphs in which every 2-factor contains more than n / δ cycles in [18]. By considering these, we can obtain the following fact, which will be shown in Section 4.

Fact 5. For any positive integer d with $\frac{n}{\alpha}-\frac{1}{2 d}<d<\frac{n}{\alpha}$, there exists an infinite family of claw-free graphs with minimum degree d such that every 2-factor contains more than α cycles.

Furthermore, Ryjáček [16] constructed claw-free graphs with $3 \leq \delta \leq 4$ and $\delta>n / \alpha$ in which any 2 -factor contains fewer than α cycles. Therefore, we propose the following conjecture.

Conjecture 2. A claw-free graph with $\delta \geq \frac{n}{\alpha} \geq 5$ has a 2-factor with α cycles. Possibly a stronger statement might hold.

Conjecture 3. If G is a claw-free graph with $\delta \geq \frac{n}{\alpha} \geq 5$, then there exist a maximum independent set S and a 2-factor with α cycles such that each cycle contains a vertex of S.

In Section 3, we show the following result.
Theorem 6. If G is a claw-free graph with $\delta \geq \frac{2 n}{\alpha}-2$ and $n \geq \frac{3 \alpha^{3}}{2}$, then for any maximum independent set S, G has a 2-factor with α cycles such that each cycle contains one vertex in S.

Notice that it is well known that the minimum degree of a claw-free graph is at most $2 n / \alpha-2$ (for instance, see Fact 8 in Section 3), and so the minimum degree condition of the above theorem is maximal. However, the conclusion is stronger than Conjecture 3 because we show the existence of a desired 2-factor for any maximum independent set. Accordingly, the following question is proposed.

Question C. What is the lower bound of minimum degrees such that for any maximum independent set S, there exists a 2-factor with α cycles in which each cycle contains one vertex of S ?

For this third question, we can construct the following examples. Let R_{i} be the complete graph of order r_{i} where

$$
r_{i} \geq \begin{cases}\lceil(p-1) / 2\rceil & \text { if } i \text { is odd } \tag{1}\\ \lfloor(p-1) / 2\rfloor & \text { if } i \text { is even }\end{cases}
$$

for $1 \leq i \leq \alpha$ and for some integer p. Let R be the graph obtained from $\bigcup_{i=1}^{\alpha} R_{i}$ by joining all pairs of R_{i} and R_{i+1} for all $1 \leq i \leq \alpha(\bmod \alpha)$, (i.e., the resultant graph R is like a torus). Let $R_{0} \simeq K_{\alpha}$ and $t_{1}, t_{2}, \ldots, t_{\alpha}$ be the vertices, and $S=$ $\left\{s_{1}, s_{2}, \ldots, s_{\alpha}\right\}$. The example R^{*} is constructed from $R_{0} \cup S \cup R$ by joining s_{i} and all vertices in $\left\{t_{i}\right\} \cup V\left(R_{i}\right) \cup V\left(R_{i+1}\right)$ for all $i(\bmod \alpha)$. See Figure 1. Notice that R^{*} is a line graph of a multigraph.

If the equality holds for all i in (1), then the resultant graph is denoted by $R^{*}(\alpha, p)$. Obviously any cycle passing through a vertex in R_{0} either contains no vertex in S or at least two vertices in S. Furthermore:

$$
\delta\left(R^{*}\right)=\min \left\{r_{1}+r_{2}+1, r_{2}+r_{3}+1, \ldots, r_{\alpha}+r_{1}+1, \alpha\right\} \geq \min \{p, \alpha\}
$$

Figure 1:
and the order is

$$
\left|R^{*}\right|=\sum_{i=1}^{\alpha} r_{i}+2 \alpha \geq \frac{(p-1) \alpha}{2}+2 \alpha
$$

if α is even. Especially, if $p \geq \alpha$, then

$$
\delta\left(R^{*}\right)=\alpha \text { and }\left|R^{*}\right| \geq \frac{\alpha^{2}}{2}+\frac{3 \alpha}{2} .
$$

Therefore, we need the condition that $\delta \geq \alpha+1$ for our third question. If $\delta \geq \alpha+1$, then for any vertex $u \in V(G) \backslash S$, there is a cycle C such that $u \in C$ and $|C \cap S|=1$. Indeed, if there is an edge joining a vertex in $N_{G}(u) \cap S$ and a vertex in $N_{G}(u)-S$, then these two vertices and u induce a triangle. Suppose there is no edge between $S \cap N(u)$ and $N(u) \backslash S$. Since $|N(u) \backslash S| \geq \delta-|S \cap N(u)| \geq \alpha+1-|S \cap N(u)|=$ $|S \backslash N(u)|+1$ and $S \backslash N(u)$ has to dominate $N(u) \backslash S$, there are two vertices v, v^{\prime} in $N(u) \backslash S$ which are adjacent to some vertex $w \in S \backslash N(u)$. The cycle $u v w v^{\prime} u$ is a desired cycle. Does this fact suggest the existence of a desired 2-factor?

Conjecture 4. A claw-free graph with $\delta \geq \alpha+1$ has a 2-factor with α cycles.
Conjecture 5. If G is a claw-free graph with $\delta \geq \alpha+1$, then for any maximum independent set S, there exists a 2-factor with α cycles such that each cycle contains a vertex in S.

Notice that if $p \geq 5$ and if we choose the independent set $S^{\prime}=\left(S \backslash\left\{s_{1}\right\}\right) \cup\left\{t_{1}\right\}$, then there is a 2 -factor with α cycles in $R^{*}(\alpha, p)$ such that each cycle contains a vertex
in S^{\prime}. Especially $R^{*}(\alpha, 4)$ has no 2 -factor in which every cycle contains at most one vertex in S. Therefore $R^{*}(\alpha, 4)$ is an extremal graph for Conjecture 1.

2 Proof of Theorem 1

The edge degree of an edge $u v$ in G is defined by the number of edges joining $u v$ and $G-\{u, v\}$. For a multigraph, we call a subgraph S a star if S consists of a vertex (called a center) and edges incident with the center. So a star in this paper is not necessarily a tree. It is enough to show the following lemma because the subgraph in $L(H)$ induced by the vertices corresponding to edges in a star is a clique.

Lemma 7. A multigraph H with minimum edge degree at least seven has a set \mathcal{S} of edge-disjoint stars with at least three edges such that $E(H)=\bigcup_{S \in \mathcal{S}} E(S)$.

Proof. Suppose that H is a multigraph with the minimum edge degree at least 7. We look for a set \mathcal{S} of edge-disjoint stars with at least three edges such that $E(H)=\bigcup_{S \in \mathcal{S}} E(S)$. In the following, a desired set \mathcal{S} is called a star-cover of H. For $i \geq 0$, let $V_{i}(H)$ and $V_{\geq i}(H)$ be the set of vertices whose degree in H are exactly i and at least i, respectively. By the minimum edge degree condition, we have $N_{H}(u) \subset V_{\geq 9-i}(H)$ for any $u \in V_{i}(H)$ and $1 \leq i \leq 6$. In particular the following claim holds.

Claim 1. $\bigcup_{i=1}^{4} V_{i}(H)$ is independent.
Let $u \in V_{i}(H)$ with $i \geq 2$ and $N_{H}(u) \cap V_{1}(H)=\emptyset$, and let $N_{H}(u)=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$. Now we consider the following operation; Replace u with i vertices $u_{1}, u_{2}, \ldots, u_{i}$ and replace i edges $u v_{1}, \ldots, u v_{i}$ with $u_{1} v_{1}, \ldots, u_{i} v_{i}$, respectively. We call the graph obtained by this operation a division of H at u. (See Figure 2). Note that the division of H at u does not change the number of edges and the degree of vertices other than u. Since $N_{H}(u) \cap V_{1}(H)=\emptyset$, the division of H at u does not have a component consisting of only one edge.

Let $H^{0}=H, H^{1}, \ldots, H^{l}$ be a graph sequence such that for any $0 \leq j \leq l-1$, H^{j+1} is the division of H^{j} at u for some $u \in V_{i}\left(H^{j}\right)(2 \leq i \leq 4)$. By Claim 1,

Figure 2: A division of H at u.
$N_{H^{j}}(v) \cap V_{1}\left(H^{j}\right)=\emptyset$ for any $v \in \bigcup_{i=2}^{4} V_{i}\left(H^{j}\right)$ and for any j, and hence we can perform the operation until the vertices with degree 2,3 or 4 disappear. Notice that the operation strictly decreases the number of vertices of degree 2 or 3 or 4 .

Again we take a graph sequence $H^{l}, H^{l+1}, \ldots, H^{p}$ so that for any $l \leq j \leq p-1$, H^{j+1} is the division of H^{j} at u for some $u \in V_{\geq 5}\left(H^{j}\right)$ with $N_{H^{j}}(u) \cap V_{1}\left(H^{j}\right)=\emptyset$. We perform this operation consecutively as many times as possible and let $H_{1}:=H^{p}$. By the choice of H_{1}, we have the following claim.

Claim 2. $V_{i}\left(H_{1}\right)=\emptyset$ for any $2 \leq i \leq 4$, and $N_{H_{1}}(u) \cap V_{1}\left(H_{1}\right) \neq \emptyset$ for any $u \in V_{\geq 5}\left(H_{1}\right)$. Moreover, $V_{1}\left(H_{1}\right)$ is an independent set.

We will find a mapping $\varphi: E\left(H_{1}\right) \longrightarrow V\left(H_{1}\right)$ so that
(i) $\varphi(e)=x$ or $\varphi(e)=y$ for any $e=x y \in E\left(H_{1}\right)$,
(ii) $\left|\varphi^{-1}(u)\right|=0$ for any $u \in V_{1}\left(H_{1}\right)$,
(iii) $\left|\varphi^{-1}(u)\right| \geq 3$ for any $u \in V_{\geq 5}\left(H_{1}\right)$.

If we can find such a mapping $\varphi, \mathcal{F}:=\left\{C_{u}: u \in V_{\geq 5}\left(H_{1}\right)\right\}$ is a star-cover of H_{1}, where C_{u} is a star consisting of a vertex u (as a center) and the edges in $\varphi^{-1}(u)$. Moreover, a star-cover of H_{1} corresponds to a star-cover of H, because the edge set of H is the same as that of H_{1}. Thus, it suffices to show the existence of a mapping φ satisfying the conditions (i)-(iii).

Suppose $e=x y \in E\left(H_{1}\right)$ with $x \in V_{1}\left(H_{1}\right)$. By Claim 2, $y \in V_{\geq_{5}}\left(H_{1}\right)$. Let $\varphi(e)=y$. This implies φ satisfies the condition (ii).

Let $H_{2}:=H_{1} \backslash V_{1}\left(H_{1}\right)$ and let $o\left(H_{2}\right)$ be the set of vertices whose degree in H_{2} are odd. Since the number of vertices of odd degree is even in each component of H_{2}, there exists a collection of paths P_{1}, \ldots, P_{q} such that each vertex in $o\left(H_{2}\right)$ appears in the set of end vertices of them exactly once. Note that $q=\left|o\left(H_{2}\right)\right| / 2$. By considering the symmetric difference of them, we may assume that P_{1}, \ldots, P_{q} are pairwise edge disjoint. Let $P_{i}:=x_{0}^{i} x_{1}^{i} x_{2}^{i} \ldots$ and let $e_{j}^{i}=x_{j-1}^{i} x_{j}^{i} \in E\left(P_{i}\right)$. Then we define $\varphi\left(e_{j}^{i}\right)=x_{j}^{i}$.

Let $H_{3}=H_{2} \backslash \bigcup_{i=1}^{q} E\left(P_{i}\right)$. By the definition of P_{1}, \ldots, P_{q}, we have $o\left(H_{3}\right)=\emptyset$, and hence the edges of H_{3} can be covered by cycles. For each cycle, written by $y_{0} y_{1} y_{2} \ldots y_{r-1} y_{r}\left(=y_{0}\right)$, we define $\varphi\left(e_{j}\right)=y_{j}$, where $e_{j}=y_{j-1} y_{j}$ for $1 \leq j \leq r$.

We can easily check that this definition of φ satisfies the condition (i). Let $u \in V_{\geq 5}\left(H_{1}\right)$ and let $h=\left|N_{H_{1}}(u) \cap V_{1}\left(H_{1}\right)\right|$. By Claim 2, $h \geq 1$. Then

$$
\begin{aligned}
\left|\varphi^{-1}(u)\right| & \geq h+\frac{d_{H_{2}}(u)-1}{2} \\
& =h+\frac{d_{H_{1}}(u)-h-1}{2} \\
& =\frac{d_{H_{1}}(u)+h-1}{2} \\
& \geq \frac{5}{2}
\end{aligned}
$$

because $d_{H_{1}}(u) \geq 5$. Since $\left|\varphi^{-1}(u)\right|$ is an integer, we obtain the condition (iii).

3 Proof of Theorem 6

3.1 Lemmas for the proof

Before giving the proof of Theorem 6, we first prove some lemmas which will be useful in the proof. For a vertex subset A of a graph G, the quantity $\min \left\{d_{G}(v) \mid v \in A\right\}$ is denoted by $\delta(A)$.

Fact 8. If G is a claw-free graph, then for any maximum independent set S of G, $\delta(S) \leq \frac{2 n}{\alpha}-2$.

Proof. Note that $\left|N_{G}(u) \cap S\right| \leq 2$ for any $u \in V(G) \backslash S$, because otherwise we can find a claw with center u. Thus, $e(V(G) \backslash S, S) \leq 2|V(G) \backslash S|=2(n-\alpha)$. On the
other hand, $e(S, V(G) \backslash S) \geq \alpha \cdot \delta(S)$, and hence $\alpha \cdot \delta(S) \leq 2|V(G) \backslash S|=2(n-\alpha)$, or $\delta(S) \leq \frac{2 n}{\alpha}-2$.

Lemma 9. Let G be a claw-free graph with $\delta \geq \frac{2 n}{\alpha}-2$ and S be a maximum independent set of G. Then for any $v \in V(G) \backslash S,\left|N_{G}(v) \cap S\right|=2$.

Proof. Suppose that there exists a vertex $v \in V(G) \backslash S$ such that $\left|N_{G}(v) \cap S\right| \neq 2$. Note that $\left|N_{G}(u) \cap S\right| \leq 2$ for any $u \in V(G) \backslash S$. So, $\left|N_{G}(v) \cap S\right| \leq 1$ and hence, $e(V(G) \backslash S, S) \leq \sum_{u \in V(G) \backslash S}\left|N_{G}(u) \cap S\right| \leq 2|V(G) \backslash S|-1=2(n-\alpha)-1$. On the other hand, since S is an independent set and $\delta(G) \geq \frac{2 n}{\alpha}-2$, we obtain $e(S, V(G) \backslash S) \geq \alpha\left(\frac{2 n}{\alpha}-2\right)=2 n-2 \alpha$, a contradiction.

Lemma 10. Let G be a claw-free graph with $\delta \geq 6$ and let S be an independent set of order r in G. Then there exists r vertex-disjoint triangles $C_{1}, C_{2}, \ldots, C_{r}$ such that $\left|S \cap C_{i}\right|=1$ for any $1 \leq i \leq r$.

Note that this implies each vertex of S is in a triangle.
Proof. Let $S=\left\{s_{1}, s_{2}, \ldots, s_{r}\right\}$. We will find r sets $T_{1}, T_{2}, \ldots, T_{r}$ such that (i) $\left|T_{i}\right|=3$, (ii) $T_{i} \subset N_{G}\left(s_{i}\right)$ and (iii) $T_{i} \cap T_{j}=\emptyset$ for any $1 \leq i \neq j \leq r$. Suppose that a set T_{i} satisfies (i) and (ii). Since G is claw-free, there exists at least one edge connecting two vertices in T_{i}, and hence we find a triangle containing s_{i} in $\left\{s_{i}\right\} \cup T_{i}$. Furthermore if r sets $T_{1}, T_{2}, \ldots, T_{r}$ satisfy (iii), such triangles are pairwise disjoint. Hence it suffices to show that G has r sets satisfying (i)-(iii).

We construct a bipartite graph H as follows; one partite set of H is the union of three copies of S, say \widetilde{S}, and the other is $\bigcup_{i=1}^{r} N_{G}\left(s_{i}\right)$. For $\widetilde{s} \in \widetilde{S}$ and $x \in$ $\bigcup_{i=1}^{r} N_{G}\left(s_{i}\right)$, we let $\widetilde{s} x \in E(H)$ if and only if $s x \in E(G)$, where s is the vertex in S corresponding to \widetilde{s}.

We will find a matching in H covering \widetilde{S}. Let $\widetilde{X} \subset \widetilde{S}$. Note that $d_{H}(\widetilde{s}) \geq 6$ for any $\widetilde{s} \in \widetilde{S}$, because $\delta(G) \geq 6$. This implies that

$$
e\left(\widetilde{X}, N_{H}(\widetilde{X})\right) \geq 6|\widetilde{X}| .
$$

On the other hand, we have $d_{H}(x) \leq 6$ for any $x \in \bigcup_{i=1}^{r} N_{G}\left(s_{i}\right)$, because otherwise $\left|N_{G}(x) \cap S\right| \geq 3$, and hence we can find a claw with center x in G. This implies that

$$
e\left(N_{H}(\widetilde{X}), \widetilde{X}\right) \leq 6\left|N_{H}(\widetilde{X})\right| .
$$

It follows from these two inequalities that $\left|N_{H}(\widetilde{X})\right| \geq|\widetilde{X}|$. By Hall's Theorem, H has a matching M covering \widetilde{S}.

For $1 \leq i \leq r$, let $T_{i}:=\left\{x \in N_{M}\left(\widetilde{s_{i}}\right): \widetilde{s_{i}}\right.$ is a vertex corresponding to $\left.s_{i}\right\}$. By the definition of H, T_{i} satisfies (i): $\left|T_{i}\right|=3$ and (ii): $T_{i} \subset N_{G}\left(s_{i}\right)$ for any $1 \leq i \leq r$. Moreover $T_{1}, T_{2}, \ldots, T_{r}$ satisfy (iii) because M is a matching in H. This completes the proof of Lemma 10.

For the sake of the next lemma, we define some more notation. An end block of a graph G is a block that has at most one cut vertex of G. Let C be a cycle of a graph G. We give an orientation to C and denote the oriented cycle by \vec{C}. The directed cycle with reverse orientation is denoted by \overleftarrow{C}. For $x \in V(C)$, let x^{+}be a successor vertex of x along \vec{C}.

The following lemma is shown in [1, Lemma 2] and [5, Lemma 5].
Lemma 11. Let B be an end block of a graph G. For any $u, v \in B(u \neq v)$, there exists a path in B connecting u and v of order at least $\delta(B)+1$.

3.2 Proof of Theorem 6

If G is a complete graph, there is nothing to prove. Thus, we may assume that $\alpha \geq 2$. Let \mathcal{C} be a set of disjoint cycles such that each cycle in \mathcal{C} has exactly one vertex in S. By Lemma 10 and by the fact $\delta \geq \frac{2 n}{\alpha}-2 \geq 3 \alpha^{2}-2 \geq 10$, we can take such a set \mathcal{C}. Take such a set of cycles \mathcal{C} so that $\sum_{C \in \mathcal{C}}|C|$ is as large as possible. Let $H:=G \backslash \bigcup_{C \in \mathcal{C}} V(C)$. Suppose that there exists a vertex v in H such that $d_{C}(v) \geq \alpha$ for some cycle $C \in \mathcal{C}$. Let $R:=\left\{x^{+}: x \in N_{C}(v)\right\}$. Since $|R \cup\{v\}| \geq \alpha+1, R \cup\{v\}$ is not an independent set. Let $D:=v x^{+} \vec{C} x v$ if $v x^{+} \in E(G)$ for some $x \in N_{C}(v)$; otherwise let $D:=v x_{2} \overleftarrow{C} x_{1}^{+} x_{2}^{+} \vec{C} x_{1} v$, where $x_{1}^{+} x_{2}^{+} \in E(G)$ with $x_{1}, x_{2} \in N_{C}(v)$. This contradicts the maximality of \mathcal{C}. So, $d_{C}(v) \leq \alpha-1$ for any vertex $v \in V(H)$ and for
any cycle $C \in \mathcal{C}$. Thus, for any $v \in V(H), d_{H}(v) \geq \delta(G)-\alpha(\alpha-1) \geq \frac{2 n}{\alpha}-2-\alpha(\alpha-1)$. Note that $|H| \geq 2$ because $n \geq \frac{3 \alpha^{3}}{2}$ and $\alpha \geq 2$.

Let B be an end block of H and let $v_{1} v_{2} \in E(B)$. By Lemma 9, there exist $s, s^{\prime} \in S$ such that $s, s^{\prime} \in N_{G}\left(v_{1}\right)$. If $s v_{2} \notin E(G)$ and $s^{\prime} v_{2} \notin E(G)$, then $\left\{v_{1}, s, s^{\prime}, v_{2}\right\}$ induces a claw, a contradiction. Thus, we may assume that $s \in N_{G}\left(v_{2}\right)$. By Lemma 11, there exists a path P in B connecting v_{1} and v_{2} of order at least $\delta(H)+1 \geq$ $\frac{2 n}{\alpha}-1-\alpha(\alpha-1)$. Rename $s_{1}:=s$ and let C_{1} be a cycle in \mathcal{C} containing s_{1}. Let u_{1}, u_{2} be neighbors of s_{1} in C_{1}. If $u_{1} u_{2} \notin E(G)$, then $v_{2} u_{1} \in E(G)$ or $v_{2} u_{2} \in E(G)$, because otherwise we can find an induced claw. We may assume that $v_{2} u_{1} \in E(G)$. Then when we consider a cycle $s_{1} v_{1} P v_{2} u_{1} \vec{C} u_{2} s_{1}$, this contradicts the maximality of \mathcal{C}. So $u_{1} u_{2} \in E(G)$, and hence $C_{1} \backslash\left\{s_{1}\right\}$ has a hamilton cycle.

Let $C_{1}, C_{2}, \ldots, C_{j}$ be j cycles in \mathcal{C} and let s_{i} be the vertex in S contained in C_{i}. We call $\left(C_{1}, C_{2}, \ldots, C_{j}\right)$ a cycle system of order j, if for any $1 \leq i \leq j$, there exist j cycles $D_{1}^{i}, D_{2}^{i}, \ldots, D_{j}^{i}$ such that

$$
\begin{equation*}
\bigcup_{r=1}^{j} V\left(D_{r}^{i}\right)=\left(\bigcup_{r=1}^{j} V\left(C_{r}\right) \backslash V\left(C_{i}\right)\right) \cup V(P) \cup\left\{s_{i}\right\}, \tag{S1}
\end{equation*}
$$

(S2) $s_{r} \in V\left(D_{r}^{i}\right)$ for any $1 \leq r \leq j$,
(S3) $C_{i} \backslash\left\{s_{i}\right\}$ has a hamilton cycle.

Note that $\left(C_{1}\right)$ is a cycle system of order 1 .
Claim 3. Let $\left(C_{1}, C_{2}, \ldots, C_{j}\right)$ be a cycle system of order j. Then for any $1 \leq i \leq j$, $\left|C_{i}\right| \geq \frac{2 n}{\alpha}-\alpha(\alpha-1)$.

Proof. By the definition of a cycle system, for any $1 \leq i \leq j$, there exists j cycles $D_{1}^{i}, D_{2}^{i}, \ldots, D_{j}^{i}$ satisfying (S1)-(S3). Let $\mathcal{D}:=\left(\mathcal{C} \backslash\left\{C_{1}, \ldots, C_{j}\right\}\right) \cup\left\{D_{1}^{i}, \ldots, D_{j}^{i}\right\}$. By (S1), we obtain $\sum_{D \in \mathcal{D}}|D|=\sum_{C \in \mathcal{C}}|C|-\left|C_{i}\right|+|P|+1 \geq \sum_{C \in \mathcal{C}}|C|-\left|C_{i}\right|+\frac{2 n}{\alpha}-$ $\alpha(\alpha-1)$, and hence $\left|C_{i}\right| \geq \frac{2 n}{\alpha}-\alpha(\alpha-1)$, by the maximality of \mathcal{C}.

Claim 4. For any $1 \leq j \leq \alpha$, there exists a cycle system of order j.

Proof. We will prove Claim 4 using induction on j. Since $\left(C_{1}\right)$ is a cycle system of order 1, we may assume that $j \geq 2$. Suppose that there exists a cycle system $\left(C_{1}, \ldots, C_{j-1}\right)$ of order $j-1$.

First we will show that there exist a vertex $s \in S \backslash\left\{s_{1}, \ldots, s_{j-1}\right\}$ and a cycle C_{l} with $1 \leq l \leq j-1$ such that $d_{C_{l}}(s) \geq \alpha$. Suppose that for any $s \in S \backslash\left\{s_{1}, \ldots, s_{j-1}\right\}$ and for any C_{l} with $1 \leq l \leq j-1$, we have $d_{C_{l}}(s) \leq \alpha-1$. Then

$$
\begin{aligned}
e\left(S \backslash\left\{s_{1}, \ldots, s_{j-1}\right\}, \bigcup_{l=1}^{j-1}\left(V\left(C_{l}\right) \backslash\left\{s_{l}\right\}\right)\right) & \leq(\alpha-j+1)(j-1)(\alpha-1), \\
\text { and } \quad e\left(\left\{s_{1}, \ldots, s_{j-1}\right\}, \bigcup_{l=1}^{j-1}\left(V\left(C_{l}\right) \backslash\left\{s_{l}\right\}\right)\right) & \leq \sum_{r=1}^{j-1} d_{G}\left(s_{r}\right) \\
& =(j-1)\left(\frac{2 n}{\alpha}-2\right),
\end{aligned}
$$

because $d_{G}\left(s_{r}\right)=\frac{2 n}{\alpha}-2$ for every $s_{r} \in S$ by Fact 8 . Thus,

$$
e\left(S, \bigcup_{l=1}^{j-1}\left(V\left(C_{l}\right) \backslash\left\{s_{l}\right\}\right)\right) \leq(\alpha-j+1)(j-1)(\alpha-1)+(j-1)\left(\frac{2 n}{\alpha}-2\right)
$$

On the other hand, it follows from Lemma 9 and Claim 3 that

$$
\begin{aligned}
e\left(\bigcup_{l=1}^{j-1}\left(V\left(C_{l}\right) \backslash\left\{s_{l}\right\}\right), S\right) & =2 \sum_{l=1}^{j-1}\left(\left|C_{l}\right|-1\right) \\
& \geq 2(j-1) \frac{2 n}{\alpha}-2(j-1) \alpha(\alpha-1)-2(j-1)
\end{aligned}
$$

These two inequalities and the fact that $j \geq 2$ imply that

$$
\begin{aligned}
& (\alpha-j+1)(j-1)(\alpha-1)+(j-1)\left(\frac{2 n}{\alpha}-2\right) \\
& \geq 2(j-1) \frac{2 n}{\alpha}-2(j-1) \alpha(\alpha-1)-2(j-1) \\
\text { or } \quad n & \leq \frac{3 \alpha^{3}-2 \alpha^{2}-j \alpha(\alpha-1)-\alpha}{2} \leq \frac{3 \alpha^{3}-4 \alpha^{2}+\alpha}{2}<\frac{3 \alpha^{3}}{2},
\end{aligned}
$$

contradicting the assumption " $n \geq \frac{3 \alpha^{3}}{2}$ ". So, there exist a vertex $s \in S \backslash\left\{s_{1}, \ldots, s_{j-1}\right\}$ and a cycle C_{l} with $1 \leq l \leq j-1$ such that $d_{C_{l}}(s) \geq \alpha$. Take such a vertex s and rename $s_{j}:=s$ and let C_{j} be the cycle in \mathcal{C} that contains s_{j}. Next, we shall prove that $\left(C_{1}, C_{2}, \ldots, C_{j}\right)$ is a cycle system of order j.

Fix an integer i with $1 \leq i \leq j-1$. Since $\left(C_{1}, C_{2}, \ldots, C_{j-1}\right)$ is a cycle system of order $j-1$, there exist $j-1$ cycles $D_{1}^{i}, D_{2}^{i}, \ldots, D_{j-1}^{i}$ satisfying (S1)-(S3). Let $D_{j}^{i}:=C_{j}$. Then j cycles $D_{1}^{i}, D_{2}^{i}, \ldots, D_{j}^{i}$ satisfy (S1): $\bigcup_{r=1}^{j} V\left(D_{r}^{i}\right)=\left(\bigcup_{r=1}^{j-1} V\left(C_{r}\right) \backslash\right.$ $\left.V\left(C_{i}\right)\right) \cup V(P) \cup\left\{s_{i}\right\} \cup V\left(C_{j}\right)=\left(\bigcup_{r=1}^{j} V\left(C_{r}\right) \backslash V\left(C_{i}\right)\right) \cup V(P) \cup\left\{s_{i}\right\},(\mathrm{S} 2): s_{r} \in V\left(D_{r}^{i}\right)$ for any $1 \leq r \leq j$, and (S3): $C_{i} \backslash\left\{s_{i}\right\}$ has a hamilton cycle. So for any $1 \leq i \leq j-1$, there exist j cycles $D_{1}^{i}, D_{2}^{i}, \ldots, D_{j}^{i}$ satisfying (S1)-(S3).

Therefore it suffices to show that for $i=j$, there exists j cycles $D_{1}^{j}, D_{2}^{j}, \ldots, D_{j}^{j}$ satisfying (S1)-(S3). Again since $\left(C_{1}, C_{2}, \ldots, C_{j-1}\right)$ is a cycle system of order $j-1$, there exist $j-1$ cycles $D_{1}^{l}, D_{2}^{l}, \ldots, D_{j-1}^{l}$ satisfying (S1)-(S3). Recall that l be the index satisfying $d_{C_{l}}\left(s_{j}\right) \geq \alpha$.

Let C_{l}^{\prime} be a hamilton cycle of $C_{l} \backslash\left\{s_{l}\right\}$. Since $s_{j} s_{l} \notin E(G), d_{C_{l}^{\prime}}\left(s_{j}\right)=d_{C_{l}}\left(s_{j}\right) \geq \alpha$. Let $R:=\left\{x^{+}: x \in N_{C_{l}}\left(s_{j}\right)\right\}$. Since $\left|R \cup\left\{s_{j}\right\}\right| \geq \alpha+1$, there exists an edge between two vertices of $R \cup\left\{s_{j}\right\}$. Let $D_{r}^{j}:=D_{r}^{l}$ for any $1 \leq r \leq j-1$. Let $D_{j}^{j}:=s_{j} x^{+} \vec{C}_{l} x s_{j}$ if $s_{j} x_{1}^{+} \in E(G)$ for some $x_{1} \in N_{C_{l}}\left(s_{j}\right)$; otherwise let $D_{j}^{j}:=s_{j} x_{2} \overleftarrow{C}_{l} x_{1}^{+} x_{2}^{+} \vec{C}_{l} x_{1} s_{j}$, where $x_{1}^{+} x_{2}^{+} \in E(G)$ with $x_{1}, x_{2} \in N_{C_{l}}\left(s_{j}\right)$.

Then $D_{1}^{j}, \ldots, D_{j}^{j}$ satisfy (S1) and (S2), because

$$
\begin{aligned}
\bigcup_{r=1}^{j} V\left(D_{r}^{j}\right) & =\left(\bigcup_{r=1}^{j-1} V\left(C_{r}\right) \backslash V\left(C_{l}\right)\right) \cup V(P) \cup\left\{s_{l}\right\} \cup V\left(D_{j}^{j}\right) \\
& =\left(\bigcup_{r=1}^{j-1} V\left(C_{r}\right) \backslash V\left(C_{l}\right)\right) \cup V(P) \cup\left\{s_{l}\right\} \cup V\left(C_{l}^{\prime}\right) \cup\left\{s_{j}\right\} \\
& =\left(\bigcup_{r=1}^{j} V\left(C_{r}\right) \backslash V\left(C_{j}\right)\right) \cup V(P) \cup\left\{s_{j}\right\} .
\end{aligned}
$$

Let u_{1}, u_{2} be neighbors of s_{j} in C_{j}. Suppose that $u_{1} u_{2} \notin E(G)$. Since G is a claw-free graph, $x_{1} u_{1} \in E(G)$ or $x_{1} u_{2} \in E(G)$, by the symmetry, we may assume that $x_{1} u_{1} \in E(G)$. Then $D_{j}^{\prime}:=s_{j} \overrightarrow{D_{j}^{j}} x_{1} u_{1} \overrightarrow{C_{j}} s_{j}$ is a cycle containing s_{j}. Then $\mathcal{D}:=\mathcal{C} \backslash\left\{C_{1}, C_{2}, \ldots, C_{j}\right\} \cup\left\{D_{1}^{j}, \ldots, D_{j-1}^{j}, D_{j}^{\prime}\right\}$ is a set of disjoint cycles such that each cycle in \mathcal{D} has exactly one vertex in S and $\sum_{D \in \mathcal{D}}|D|=\sum_{C \in \mathcal{C}}|C|+|P|$, contradicting the maximality of \mathcal{C}. So $u_{1} u_{2} \in E(G)$, and hence (S3) $C_{j} \backslash\left\{s_{j}\right\}$ has a hamilton cycle $u_{1} \overrightarrow{C_{j}} u_{2} u_{1}$. Therefore for $i=j$, there exists j cycles satisfying (S1)-(S3). Hence there exists a cycle system $\left(C_{1}, C_{2}, \ldots, C_{j}\right)$ of order j.

By Claim 4, there exists a cycle system $\left(C_{1}, C_{2}, \ldots, C_{\alpha}\right)$ of order α. It follows from Claim 3 that $\left|C_{i}\right| \geq \frac{2 n}{\alpha}-\alpha(\alpha-1)$ for any $1 \leq i \leq \alpha$. Thus,

$$
\begin{aligned}
n & >\sum_{i=1}^{\alpha}\left|C_{i}\right| \\
& \geq \alpha\left(\frac{2 n}{\alpha}-\alpha(\alpha-1)\right) \\
& =2 n-\alpha^{2}(\alpha-1), \\
\text { or } \quad n & <\alpha^{3}-\alpha^{2}<\alpha^{3},
\end{aligned}
$$

contradicting $n \geq \frac{3 \alpha^{3}}{2}$. This completes the proof of Theorem 6 .

4 Proof of Fact 5

Let $d \geq 4$ be an integer and R_{d} be the graph obtained from $K_{2} \cup(d-1) K_{1, d}$ by adding $d-1$ edges joining a specified vertex in K_{2} and the center of each $K_{1, d}$. We define a tree $H_{m, d}^{*}$ from the path P_{m} of length $m-1$ and a number of R_{d} as follows. For each inner vertex of P_{m}, we add $(d-2) R_{d}$ and $d-2$ edges joining the inner vertex and the top of each R_{d} as in Figure 3, and for each end of P_{m}, we add

Figure 3: $H_{m, d}^{*}$
$(d-1) R_{d}$ and $d-1$ edges. The order n and the minimum number f_{2} of cycles of 2-factors of $L\left(H_{m, d}^{*}\right)$ are:

$$
n=\left(d^{3}-2 d^{2}+d-1\right) m+2 d^{2}+1 \text { and } f_{2}=\left(d^{2}-2 d+1\right) m+2 d
$$

See [18]. It is easy to check the independence number α of $L\left(H_{m, d}^{*}\right)$ is:

$$
\alpha=f_{2}-\left\lceil\frac{m}{2}\right\rceil \geq \frac{\left(2 d^{2}-4 d+1\right) m+4 d-1}{2} .
$$

Therefore

$$
0<\frac{(d-2) m+2}{\left(2 d^{2}-4 d+1\right) m+4 d} \leq \frac{n}{\alpha}-d \leq \frac{(d-2) m+2}{\left(2 d^{2}-4 d+1\right) m+4 d-1}<\frac{1}{2 d} .
$$

Since the minimum degree of $L\left(H_{m, d}^{*}\right)$ is d, we obtain

$$
\frac{n}{\alpha}-\frac{1}{2 d}<d<\frac{n}{\alpha} .
$$

Acknowledgements

We would like to express our sincere gratitude to Professor Zdenek Ryjáček for his helpful comments.

References

[1] J.A. Bondy and B. Jackson, Long paths between specified vertices of a block, Annals of Discrete Mathematics 27 (1985), 195-200.
[2] Bondy, J.A.; Murty, U.S.R.: Graph Theory with Applications. Macmillan, London and Elsevier, New York, 1976.
[3] H.J. Broersma, D. Paulusma and K. Yoshimoto, Sharp upper bounds on the minimum number of components of 2-factors in claw-free graphs, Graphs and Combin. 25 (2009) 427-460.
[4] S.A. Choudum and M.S. Paulraj, Regular factors in $K_{1,3}-$ free graphs, Journal of Graph Theory 15 (1991) 259-265.
[5] Y. Egawa, R. Glas and S. Locke, Cycles and paths through specified vertices in k-connected graphs, Journal of Combinatorial Theory, Series B 52 (1991) 20-29.
[6] Y. Egawa and K. Ota, Regular factors in $K_{1, n}$-free graphs, Journal of Graph Theory 15 (1991) 337-344.
[7] R.J. Faudree, O. Favaron, E. Flandrin, H. Li, and Z. Liu, On 2-factors in clawfree graphs, Discrete Mathematics 206 (1999) 131-137.
[8] R. Faudree, E. Flandrin, and Z. Ryjáček Claw-free graphs-a survey, Discrete Mathematics 164 (1997) 87-147.
[9] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2-factors of line graphs, Discrete Mathematics 307 (2007) 2775-2785.
[10] B. Jackson and K. Yoshimoto, Spanning Even Subgraphs of 3-edge-connected Graphs, J. Graph Theory 62 (2009) 37-47.
[11] R.J. Gould and E. Hynds, A note on cycles in 2-factors of line graphs, Bulletin of the ICA 26 (1999) 46-48.
[12] R.J. Gould and M.S. Jacobson, Two-factors with few cycles in claw-free graphs, Discrete Mathematics 231 (2001) 191-197.
[13] F. Harary and C. St. J.A. Nash-Williams On eulerian and hamiltonian graphs and line graphs, Canadian Mathematical Bulletin 8 (1965) 701-710.
[14] M. M. Matthews and D. P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, Journal of Graph Theory 8 (1984) 139-146.
[15] Z. Ryjáček, On a closure concept in claw-free graphs, Journal of Combinatorial Theory, Series B 70 (1997) 217-224.
[16] Z. Ryjáček, private communication.
[17] Z. Ryjáček, A. Saito, and R.H. Schelp, Closure, 2-factors, and cycle coverings in claw-free graphs, Journal of Graph Theory 32 (1999) 109-117.
[18] K. Yoshimoto, On the number of components in 2-factors of claw-free graphs, Discrete Mathematics 307 (2007) 2808-2819.

[^0]: ${ }^{1}$ Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
 ${ }^{2}$ Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA
 ${ }^{3}$ National Institute of Informatics, Tokyo 101-8430, Japan
 ${ }^{4}$ Research Fellow of the Japan Society for the Promotion of Science
 ${ }^{5}$ Department of Mathematics, Nihon University, Tokyo 101-8308, Japan
 ${ }^{6}$ Research supported by JSPS. KAKENHI (14740087)

