
October 13, 2010

Claw-Free Graphs and 2-Factors that Separate
Independent Vertices

Ralph J. Faudree1, Colton Magnant2,
Kenta Ozeki34, Kiyoshi Yoshimoto56

The authors would like to dedicate this paper to our friend and mathematical
colleague Richard H. Schelp

Abstract

In this article, we prove that a line graph with minimum degree δ ≥ 7 has a
spanning subgraph in which every component is a clique of order at least three.
This implies that if G is a line graph with δ ≥ 7, then for any independent set
S there is a 2-factor of G such that each cycle contains at most one vertex of
S. This supports the conjecture that δ ≥ 5 is sufficient to imply the existence
of such a 2-factor in the larger class of claw-free graphs.

It is also shown that if G is a claw-free graph of order n and independence
number α with δ ≥ 2n/α−2 and n ≥ 3α3/2, then for any maximum indepen-
dent set S, G has a 2-factor with α cycles such that each cycle contains one
vertex of S. This is in support of a conjecture that δ ≥ n/α ≥ 5 is sufficient
to imply the existence of a 2-factor with α cycles, each containing one vertex
of a maximum independent set.

1 Introduction

In this paper, we consider finite graphs. If no ambiguity can arise, we denote simply

the order |G| of G by n, the minimum degree δ(G) by δ and the independence

number α(G) by α. All notation and terminology not explained in this paper is

given in [2].

A 2-factor of a graph G is a spanning 2-regular subgraph of G. It is a well known

conjecture that every 4-connected claw-free graph is hamiltonian ([14]). Since a

1Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
2Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA
3National Institute of Informatics, Tokyo 101-8430, Japan
4Research Fellow of the Japan Society for the Promotion of Science
5Department of Mathematics, Nihon University, Tokyo 101-8308, Japan
6Research supported by JSPS. KAKENHI (14740087)

1



hamilton cycle is a connected 2-factor, there are many results on 2-factors of claw-

free graphs. For instance, a sufficient condition for the existence of 2-factors was

given by Choudum and Paulraj [4] and by Egawa and Ota [6], (i.e., it holds that

every claw-free graph with δ ≥ 4 has a 2-factor) and Ryjáček, Saito and Schelp [17]

proved that a claw-free graph G has a 2-factor with at most k cycles if and only if

cl(G) has a 2-factor with at most k cycles, where cl(G) is the Ryjáček closure [15]

of G. In this paper, we study the existence of a maximum independent set and a

2-factor of a claw-free graph G which together dominate G in some sense.

First, we begin with the following question.

Question A. What is the lower bound of minimum degrees such that for any in-

dependent set S, there exists a 2-factor in which each cycle contains at most one

vertex of S?

For this question, we will show the following result in Section 2.

Theorem 1. A line graph with δ ≥ 7 has a spanning subgraph in which every

component is a clique of order at least three.

This implies the following immediately.

Theorem 2. If G is a line graph with δ ≥ 7, then for any independent set S, G has

a 2-factor such that each cycle contains at most one vertex in S.

Ryjáček [16] pointed out that the minimum degree condition in Theorem 1 is best

possible by showing that the line graph ofK7−E(C7) has no desired 2-factors, where

C7 is a hamilton cycle of the complete graph K7 of order seven. For Theorem 2,

we can construct a line graph with δ = 4 of a multigraph and choose a maximum

independent set S such that the graph has no 2-factor in which every cycle contains

at most one vertex of S. The example will be explained at the end of this section.

Hence we propose the following conjecture.

Conjecture 1. If G is a claw-free graph with δ ≥ 5, then for any independent set

S, there exists a 2-factor such that each cycle contains at most one vertex in S.
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Next we consider the existence of a 2-factor and a maximum independent set

S such that every cycle of the 2-factor contains exactly one vertex of S, i.e., the

following is our question.

Question B. Which degree conditions guarantee the existence of a maximum inde-

pendent set S and a 2-factor with α cycles such that each cycle contains one vertex

of S?

For this question, we have to look for a 2-factor with α cycles. For the number of

cycles, we know the following result.

Theorem 3 (Broersma, Paulusma and Yoshimoto [3]). A claw-free graph with δ ≥ 4

has a 2-factor with at most max

{
n− 3

δ − 1
, 1

}
cycles.

In this result, if α ≥ n− 3

δ − 1
, then we can replace the upper bound by α. Hence the

following corollary holds immediately.

Corollary 4. A claw-free graph with δ ≥ n− 3

α
+ 1 has a 2-factor with at most α

cycles.

On the other hand, the fourth author of this paper constructed an infinite family

of line graphs in which every 2-factor contains more than n/δ cycles in [18]. By

considering these, we can obtain the following fact, which will be shown in Section 4.

Fact 5. For any positive integer d with
n

α
− 1

2d
< d <

n

α
, there exists an infinite

family of claw-free graphs with minimum degree d such that every 2-factor contains

more than α cycles.

Furthermore, Ryjáček [16] constructed claw-free graphs with 3 ≤ δ ≤ 4 and

δ > n/α in which any 2-factor contains fewer than α cycles. Therefore, we propose

the following conjecture.

Conjecture 2. A claw-free graph with δ ≥ n

α
≥ 5 has a 2-factor with α cycles.

Possibly a stronger statement might hold.
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Conjecture 3. If G is a claw-free graph with δ ≥ n

α
≥ 5, then there exist a maxi-

mum independent set S and a 2-factor with α cycles such that each cycle contains

a vertex of S.

In Section 3, we show the following result.

Theorem 6. If G is a claw-free graph with δ ≥ 2n

α
− 2 and n ≥ 3α3

2
, then for any

maximum independent set S, G has a 2-factor with α cycles such that each cycle

contains one vertex in S.

Notice that it is well known that the minimum degree of a claw-free graph is at

most 2n/α − 2 (for instance, see Fact 8 in Section 3), and so the minimum degree

condition of the above theorem is maximal. However, the conclusion is stronger than

Conjecture 3 because we show the existence of a desired 2-factor for any maximum

independent set. Accordingly, the following question is proposed.

Question C. What is the lower bound of minimum degrees such that for any max-

imum independent set S, there exists a 2-factor with α cycles in which each cycle

contains one vertex of S?

For this third question, we can construct the following examples. Let Ri be the

complete graph of order ri where

ri ≥
{
⌈(p− 1)/2⌉ if i is odd
⌊(p− 1)/2⌋ if i is even

(1)

for 1 ≤ i ≤ α and for some integer p. Let R be the graph obtained from
∪α

i=1Ri

by joining all pairs of Ri and Ri+1 for all 1 ≤ i ≤ α (mod α), (i.e., the resultant

graph R is like a torus). Let R0 ≃ Kα and t1, t2, . . . , tα be the vertices, and S =

{s1, s2, . . . , sα}. The example R∗ is constructed from R0 ∪ S ∪ R by joining si and

all vertices in {ti} ∪ V (Ri) ∪ V (Ri+1) for all i (mod α). See Figure 1. Notice that

R∗ is a line graph of a multigraph.

If the equality holds for all i in (1), then the resultant graph is denoted by

R∗(α, p). Obviously any cycle passing through a vertex in R0 either contains no

vertex in S or at least two vertices in S. Furthermore:

δ(R∗) = min{r1 + r2 + 1, r2 + r3 + 1, . . . , rα + r1 + 1, α} ≥ min{p, α}
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Figure 1:

and the order is

|R∗| =
α∑

i=1

ri + 2α ≥ (p− 1)α

2
+ 2α

if α is even. Especially, if p ≥ α, then

δ(R∗) = α and |R∗| ≥ α2

2
+

3α

2
.

Therefore, we need the condition that δ ≥ α+1 for our third question. If δ ≥ α+1,

then for any vertex u ∈ V (G)\S, there is a cycle C such that u ∈ C and |C∩S| = 1.

Indeed, if there is an edge joining a vertex in NG(u)∩S and a vertex in NG(u)−S,

then these two vertices and u induce a triangle. Suppose there is no edge between

S ∩N(u) and N(u) \ S. Since |N(u) \ S| ≥ δ − |S ∩N(u)| ≥ α+ 1− |S ∩N(u)| =

|S \N(u)| + 1 and S \N(u) has to dominate N(u) \ S, there are two vertices v, v′

in N(u) \ S which are adjacent to some vertex w ∈ S \N(u). The cycle uvwv′u is

a desired cycle. Does this fact suggest the existence of a desired 2-factor?

Conjecture 4. A claw-free graph with δ ≥ α+ 1 has a 2-factor with α cycles.

Conjecture 5. If G is a claw-free graph with δ ≥ α + 1, then for any maximum

independent set S, there exists a 2-factor with α cycles such that each cycle contains

a vertex in S.

Notice that if p ≥ 5 and if we choose the independent set S ′ = (S \{s1})∪{t1}, then

there is a 2-factor with α cycles in R∗(α, p) such that each cycle contains a vertex
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in S ′. Especially R∗(α, 4) has no 2-factor in which every cycle contains at most one

vertex in S. Therefore R∗(α, 4) is an extremal graph for Conjecture 1.

2 Proof of Theorem 1

The edge degree of an edge uv in G is defined by the number of edges joining uv and

G− {u, v}. For a multigraph, we call a subgraph S a star if S consists of a vertex

(called a center) and edges incident with the center. So a star in this paper is not

necessarily a tree. It is enough to show the following lemma because the subgraph

in L(H) induced by the vertices corresponding to edges in a star is a clique.

Lemma 7. A multigraph H with minimum edge degree at least seven has a set S

of edge-disjoint stars with at least three edges such that E(H) =
∪

S∈S E(S).

Proof. Suppose that H is a multigraph with the minimum edge degree at least

7. We look for a set S of edge-disjoint stars with at least three edges such that

E(H) =
∪

S∈S E(S). In the following, a desired set S is called a star-cover of H.

For i ≥ 0, let Vi(H) and V≥i(H) be the set of vertices whose degree in H are exactly

i and at least i, respectively. By the minimum edge degree condition, we have

NH(u) ⊂ V≥9−i(H) for any u ∈ Vi(H) and 1 ≤ i ≤ 6. In particular the following

claim holds.

Claim 1.
∪4

i=1 Vi(H) is independent.

Let u ∈ Vi(H) with i ≥ 2 andNH(u)∩V1(H) = ∅, and letNH(u) = {v1, v2, . . . , vi}.

Now we consider the following operation; Replace u with i vertices u1, u2, . . . , ui and

replace i edges uv1, . . . , uvi with u1v1, . . . , uivi, respectively. We call the graph ob-

tained by this operation a division of H at u. (See Figure 2). Note that the division

of H at u does not change the number of edges and the degree of vertices other than

u. Since NH(u) ∩ V1(H) = ∅, the division of H at u does not have a component

consisting of only one edge.

Let H0 = H,H1, . . . , H l be a graph sequence such that for any 0 ≤ j ≤ l − 1,

Hj+1 is the division of Hj at u for some u ∈ Vi(H
j) (2 ≤ i ≤ 4). By Claim 1,
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Figure 2: A division of H at u.

NHj(v) ∩ V1(H
j) = ∅ for any v ∈

∪4
i=2 Vi(H

j) and for any j, and hence we can

perform the operation until the vertices with degree 2, 3 or 4 disappear. Notice that

the operation strictly decreases the number of vertices of degree 2 or 3 or 4.

Again we take a graph sequence H l, H l+1, . . . , Hp so that for any l ≤ j ≤ p− 1,

Hj+1 is the division of Hj at u for some u ∈ V≥5(H
j) with NHj(u)∩V1(H

j) = ∅. We

perform this operation consecutively as many times as possible and let H1 := Hp.

By the choice of H1, we have the following claim.

Claim 2. Vi(H1) = ∅ for any 2 ≤ i ≤ 4, and NH1(u) ∩ V1(H1) ̸= ∅ for any

u ∈ V≥5(H1). Moreover, V1(H1) is an independent set.

We will find a mapping φ : E(H1) −→ V (H1) so that

(i) φ(e) = x or φ(e) = y for any e = xy ∈ E(H1),

(ii) |φ−1(u)| = 0 for any u ∈ V1(H1),

(iii) |φ−1(u)| ≥ 3 for any u ∈ V≥5(H1).

If we can find such a mapping φ, F := {Cu : u ∈ V≥5(H1)} is a star-cover of H1,

where Cu is a star consisting of a vertex u (as a center) and the edges in φ−1(u).

Moreover, a star-cover of H1 corresponds to a star-cover of H, because the edge set

of H is the same as that of H1. Thus, it suffices to show the existence of a mapping

φ satisfying the conditions (i)–(iii).

Suppose e = xy ∈ E(H1) with x ∈ V1(H1). By Claim 2, y ∈ V≥5(H1). Let

φ(e) = y. This implies φ satisfies the condition (ii).
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Let H2 := H1 \ V1(H1) and let o(H2) be the set of vertices whose degree in H2

are odd. Since the number of vertices of odd degree is even in each component

of H2, there exists a collection of paths P1, . . . , Pq such that each vertex in o(H2)

appears in the set of end vertices of them exactly once. Note that q = |o(H2)|/2.

By considering the symmetric difference of them, we may assume that P1, . . . , Pq

are pairwise edge disjoint. Let Pi := xi
0x

i
1x

i
2 . . . and let eij = xi

j−1x
i
j ∈ E(Pi). Then

we define φ(eij) = xi
j.

Let H3 = H2 \
∪q

i=1E(Pi). By the definition of P1, . . . , Pq, we have o(H3) = ∅,

and hence the edges of H3 can be covered by cycles. For each cycle, written by

y0y1y2 . . . yr−1yr(= y0), we define φ(ej) = yj, where ej = yj−1yj for 1 ≤ j ≤ r.

We can easily check that this definition of φ satisfies the condition (i). Let

u ∈ V≥5(H1) and let h = |NH1(u) ∩ V1(H1)|. By Claim 2, h ≥ 1. Then

|φ−1(u)| ≥ h+
dH2(u)− 1

2

= h+
dH1(u)− h− 1

2

=
dH1(u) + h− 1

2

≥ 5

2
,

because dH1(u) ≥ 5. Since |φ−1(u)| is an integer, we obtain the condition (iii).

3 Proof of Theorem 6

3.1 Lemmas for the proof

Before giving the proof of Theorem 6, we first prove some lemmas which will be useful

in the proof. For a vertex subset A of a graph G, the quantity min{dG(v) | v ∈ A}

is denoted by δ(A).

Fact 8. If G is a claw-free graph, then for any maximum independent set S of G,

δ(S) ≤ 2n

α
− 2.

Proof. Note that |NG(u) ∩ S| ≤ 2 for any u ∈ V (G) \ S, because otherwise we can

find a claw with center u. Thus, e(V (G) \ S, S) ≤ 2|V (G) \ S| = 2(n− α). On the

8



other hand, e(S, V (G) \S) ≥ α · δ(S), and hence α · δ(S) ≤ 2|V (G) \S| = 2(n−α),

or δ(S) ≤ 2n
α
− 2.

Lemma 9. Let G be a claw-free graph with δ ≥ 2n

α
− 2 and S be a maximum

independent set of G. Then for any v ∈ V (G) \ S, |NG(v) ∩ S| = 2.

Proof. Suppose that there exists a vertex v ∈ V (G) \ S such that |NG(v) ∩ S| ̸= 2.

Note that |NG(u) ∩ S| ≤ 2 for any u ∈ V (G) \ S. So, |NG(v) ∩ S| ≤ 1 and

hence, e(V (G) \ S, S) ≤
∑

u∈V (G)\S |NG(u) ∩ S| ≤ 2|V (G) \ S| − 1 = 2(n − α) − 1.

On the other hand, since S is an independent set and δ(G) ≥ 2n
α
− 2, we obtain

e(S, V (G) \ S) ≥ α
(
2n
α
− 2

)
= 2n− 2α, a contradiction.

Lemma 10. Let G be a claw-free graph with δ ≥ 6 and let S be an independent

set of order r in G. Then there exists r vertex-disjoint triangles C1, C2, . . . , Cr such

that |S ∩ Ci| = 1 for any 1 ≤ i ≤ r.

Note that this implies each vertex of S is in a triangle.

Proof. Let S = {s1, s2, . . . , sr}. We will find r sets T1, T2, . . . , Tr such that (i)

|Ti| = 3, (ii) Ti ⊂ NG(si) and (iii) Ti ∩ Tj = ∅ for any 1 ≤ i ̸= j ≤ r. Suppose

that a set Ti satisfies (i) and (ii). Since G is claw-free, there exists at least one edge

connecting two vertices in Ti, and hence we find a triangle containing si in {si}∪Ti.

Furthermore if r sets T1, T2, . . . , Tr satisfy (iii), such triangles are pairwise disjoint.

Hence it suffices to show that G has r sets satisfying (i)–(iii).

We construct a bipartite graph H as follows; one partite set of H is the union

of three copies of S, say S̃, and the other is
∪r

i=1 NG(si). For s̃ ∈ S̃ and x ∈∪r
i=1NG(si), we let s̃x ∈ E(H) if and only if sx ∈ E(G), where s is the vertex in S

corresponding to s̃.

We will find a matching in H covering S̃. Let X̃ ⊂ S̃. Note that dH(s̃) ≥ 6 for

any s̃ ∈ S̃, because δ(G) ≥ 6. This implies that

e
(
X̃,NH(X̃)

)
≥ 6|X̃|.
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On the other hand, we have dH(x) ≤ 6 for any x ∈
∪r

i=1NG(si), because otherwise

|NG(x)∩S| ≥ 3, and hence we can find a claw with center x in G. This implies that

e
(
NH(X̃), X̃

)
≤ 6|NH(X̃)|.

It follows from these two inequalities that |NH(X̃)| ≥ |X̃|. By Hall’s Theorem, H

has a matching M covering S̃.

For 1 ≤ i ≤ r, let Ti := {x ∈ NM(s̃i) : s̃i is a vertex corresponding to si}. By

the definition of H, Ti satisfies (i): |Ti| = 3 and (ii): Ti ⊂ NG(si) for any 1 ≤ i ≤ r.

Moreover T1, T2, . . . , Tr satisfy (iii) because M is a matching in H. This completes

the proof of Lemma 10.

For the sake of the next lemma, we define some more notation. An end block of

a graph G is a block that has at most one cut vertex of G. Let C be a cycle of a

graph G. We give an orientation to C and denote the oriented cycle by
−→
C . The

directed cycle with reverse orientation is denoted by
←−
C . For x ∈ V (C), let x+ be a

successor vertex of x along
−→
C .

The following lemma is shown in [1, Lemma 2] and [5, Lemma 5].

Lemma 11. Let B be an end block of a graph G. For any u, v ∈ B (u ̸= v), there

exists a path in B connecting u and v of order at least δ(B) + 1.

3.2 Proof of Theorem 6

If G is a complete graph, there is nothing to prove. Thus, we may assume that

α ≥ 2. Let C be a set of disjoint cycles such that each cycle in C has exactly one

vertex in S. By Lemma 10 and by the fact δ ≥ 2n
α
− 2 ≥ 3α2 − 2 ≥ 10, we can take

such a set C. Take such a set of cycles C so that
∑

C∈C |C| is as large as possible. Let

H := G\
∪

C∈C V (C). Suppose that there exists a vertex v in H such that dC(v) ≥ α

for some cycle C ∈ C. Let R := {x+ : x ∈ NC(v)}. Since |R∪ {v}| ≥ α+1, R∪ {v}

is not an independent set. Let D := vx+−→Cxv if vx+ ∈ E(G) for some x ∈ NC(v);

otherwise let D := vx2

←−
Cx+

1 x
+
2

−→
Cx1v, where x

+
1 x

+
2 ∈ E(G) with x1, x2 ∈ NC(v). This

contradicts the maximality of C. So, dC(v) ≤ α−1 for any vertex v ∈ V (H) and for

10



any cycle C ∈ C. Thus, for any v ∈ V (H), dH(v) ≥ δ(G)−α(α−1) ≥ 2n
α
−2−α(α−1).

Note that |H| ≥ 2 because n ≥ 3α3

2
and α ≥ 2.

Let B be an end block of H and let v1v2 ∈ E(B). By Lemma 9, there exist

s, s′ ∈ S such that s, s′ ∈ NG(v1). If sv2 ̸∈ E(G) and s′v2 ̸∈ E(G), then {v1, s, s′, v2}

induces a claw, a contradiction. Thus, we may assume that s ∈ NG(v2). By Lemma

11, there exists a path P in B connecting v1 and v2 of order at least δ(H) + 1 ≥
2n
α
− 1 − α(α − 1). Rename s1 := s and let C1 be a cycle in C containing s1. Let

u1, u2 be neighbors of s1 in C1. If u1u2 ̸∈ E(G), then v2u1 ∈ E(G) or v2u2 ∈ E(G),

because otherwise we can find an induced claw. We may assume that v2u1 ∈ E(G).

Then when we consider a cycle s1v1Pv2u1

−→
Cu2s1, this contradicts the maximality of

C. So u1u2 ∈ E(G), and hence C1 \ {s1} has a hamilton cycle.

Let C1, C2, . . . , Cj be j cycles in C and let si be the vertex in S contained in Ci.

We call (C1, C2, . . . , Cj) a cycle system of order j, if for any 1 ≤ i ≤ j, there exist j

cycles Di
1, D

i
2, . . . , D

i
j such that

(S1)
∪j

r=1 V (Di
r) =

(∪j
r=1 V (Cr) \ V (Ci)

)
∪ V (P ) ∪ {si},

(S2) sr ∈ V (Di
r) for any 1 ≤ r ≤ j,

(S3) Ci \ {si} has a hamilton cycle.

Note that (C1) is a cycle system of order 1.

Claim 3. Let (C1, C2, . . . , Cj) be a cycle system of order j. Then for any 1 ≤ i ≤ j,

|Ci| ≥ 2n
α
− α(α− 1).

Proof. By the definition of a cycle system, for any 1 ≤ i ≤ j, there exists j cycles

Di
1, D

i
2, . . . , D

i
j satisfying (S1)–(S3). Let D :=

(
C \ {C1, . . . , Cj}

)
∪ {Di

1, . . . , D
i
j}.

By (S1), we obtain
∑

D∈D |D| =
∑

C∈C |C| − |Ci|+ |P |+1 ≥
∑

C∈C |C| − |Ci|+ 2n
α
−

α(α− 1), and hence |Ci| ≥ 2n
α
− α(α− 1), by the maximality of C.

Claim 4. For any 1 ≤ j ≤ α, there exists a cycle system of order j.
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Proof. We will prove Claim 4 using induction on j. Since (C1) is a cycle system

of order 1, we may assume that j ≥ 2. Suppose that there exists a cycle system

(C1, . . . , Cj−1) of order j − 1.

First we will show that there exist a vertex s ∈ S \ {s1, . . . , sj−1} and a cycle Cl

with 1 ≤ l ≤ j− 1 such that dCl
(s) ≥ α. Suppose that for any s ∈ S \ {s1, . . . , sj−1}

and for any Cl with 1 ≤ l ≤ j − 1, we have dCl
(s) ≤ α− 1. Then

e
(
S \ {s1, . . . , sj−1},

j−1∪
l=1

(
V (Cl) \ {sl}

))
≤ (α− j + 1)(j − 1)(α− 1),

and e
(
{s1, . . . , sj−1},

j−1∪
l=1

(
V (Cl) \ {sl}

))
≤

j−1∑
r=1

dG(sr)

= (j − 1)
(2n
α
− 2

)
,

because dG(sr) =
2n
α
− 2 for every sr ∈ S by Fact 8. Thus,

e
(
S,

j−1∪
l=1

(
V (Cl) \ {sl}

))
≤ (α− j + 1)(j − 1)(α− 1) + (j − 1)

(2n
α
− 2

)
.

On the other hand, it follows from Lemma 9 and Claim 3 that

e
( j−1∪

l=1

(
V (Cl) \ {sl}

)
, S

)
= 2

j−1∑
l=1

(
|Cl| − 1

)
≥ 2(j − 1)

2n

α
− 2(j − 1)α(α− 1)− 2(j − 1).

These two inequalities and the fact that j ≥ 2 imply that

(α− j + 1)(j − 1)(α− 1) + (j − 1)
(2n
α
− 2

)
≥ 2(j − 1)

2n

α
− 2(j − 1)α(α− 1)− 2(j − 1)

or n ≤ 3α3 − 2α2 − jα(α− 1)− α

2
≤ 3α3 − 4α2 + α

2
<

3α3

2
,

contradicting the assumption “n ≥ 3α3

2
”. So, there exist a vertex s ∈ S\{s1, . . . , sj−1}

and a cycle Cl with 1 ≤ l ≤ j − 1 such that dCl
(s) ≥ α. Take such a vertex s and

rename sj := s and let Cj be the cycle in C that contains sj. Next, we shall prove

that (C1, C2, . . . , Cj) is a cycle system of order j.
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Fix an integer i with 1 ≤ i ≤ j − 1. Since (C1, C2, . . . , Cj−1) is a cycle system

of order j − 1, there exist j − 1 cycles Di
1, D

i
2, . . . , D

i
j−1 satisfying (S1)–(S3). Let

Di
j := Cj. Then j cycles Di

1, D
i
2, . . . , D

i
j satisfy (S1):

∪j
r=1 V (Di

r) =
(∪j−1

r=1 V (Cr) \

V (Ci)
)
∪V (P )∪{si}∪V (Cj) =

(∪j
r=1 V (Cr)\V (Ci)

)
∪V (P )∪{si}, (S2): sr ∈ V (Di

r)

for any 1 ≤ r ≤ j, and (S3): Ci \{si} has a hamilton cycle. So for any 1 ≤ i ≤ j−1,

there exist j cycles Di
1, D

i
2, . . . , D

i
j satisfying (S1)–(S3).

Therefore it suffices to show that for i = j, there exists j cycles Dj
1, D

j
2, . . . , D

j
j

satisfying (S1)–(S3). Again since (C1, C2, . . . , Cj−1) is a cycle system of order j − 1,

there exist j − 1 cycles Dl
1, D

l
2, . . . , D

l
j−1 satisfying (S1)–(S3). Recall that l be the

index satisfying dCl
(sj) ≥ α.

Let C ′
l be a hamilton cycle of Cl \{sl}. Since sjsl ̸∈ E(G), dC′

l
(sj) = dCl

(sj) ≥ α.

Let R := {x+ : x ∈ NCl
(sj)}. Since |R∪{sj}| ≥ α+1, there exists an edge between

two vertices of R∪{sj}. Let Dj
r := Dl

r for any 1 ≤ r ≤ j−1. Let Dj
j := sjx

+−→Clxsj if

sjx
+
1 ∈ E(G) for some x1 ∈ NCl

(sj); otherwise let Dj
j := sjx2

←−
Clx

+
1 x

+
2

−→
Clx1sj, where

x+
1 x

+
2 ∈ E(G) with x1, x2 ∈ NCl

(sj).

Then Dj
1, . . . , D

j
j satisfy (S1) and (S2), because

j∪
r=1

V (Dj
r) =

( j−1∪
r=1

V (Cr) \ V (Cl)
)
∪ V (P ) ∪ {sl} ∪ V (Dj

j)

=
( j−1∪
r=1

V (Cr) \ V (Cl)
)
∪ V (P ) ∪ {sl} ∪ V (C ′

l) ∪ {sj}

=
( j∪
r=1

V (Cr) \ V (Cj)
)
∪ V (P ) ∪ {sj}.

Let u1, u2 be neighbors of sj in Cj. Suppose that u1u2 ̸∈ E(G). Since G is a

claw-free graph, x1u1 ∈ E(G) or x1u2 ∈ E(G), by the symmetry, we may assume

that x1u1 ∈ E(G). Then D′
j := sj

−→
Dj

jx1u1
−→
Cjsj is a cycle containing sj. Then

D := C \ {C1, C2, . . . , Cj} ∪ {Dj
1, . . . , D

j
j−1, D

′
j} is a set of disjoint cycles such that

each cycle in D has exactly one vertex in S and
∑

D∈D |D| =
∑

C∈C |C| + |P |,

contradicting the maximality of C. So u1u2 ∈ E(G), and hence (S3) Cj \ {sj} has

a hamilton cycle u1
−→
Cju2u1. Therefore for i = j, there exists j cycles satisfying

(S1)–(S3). Hence there exists a cycle system (C1, C2, . . . , Cj) of order j.
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By Claim 4, there exists a cycle system (C1, C2, . . . , Cα) of order α. It follows

from Claim 3 that |Ci| ≥ 2n
α
− α(α− 1) for any 1 ≤ i ≤ α. Thus,

n >

α∑
i=1

|Ci|

≥ α
(2n
α
− α(α− 1)

)
= 2n− α2(α− 1),

or n < α3 − α2 < α3,

contradicting n ≥ 3α3

2
. This completes the proof of Theorem 6.

4 Proof of Fact 5

Let d ≥ 4 be an integer and Rd be the graph obtained from K2 ∪ (d − 1)K1,d by

adding d − 1 edges joining a specified vertex in K2 and the center of each K1,d.

We define a tree H∗
m,d from the path Pm of length m − 1 and a number of Rd as

follows. For each inner vertex of Pm, we add (d− 2)Rd and d− 2 edges joining the

inner vertex and the top of each Rd as in Figure 3, and for each end of Pm, we add

……
d - 1

d - 2

KdKd

.... d-1

....KdKd

.... d-1

....KdKd

.... d-1

.... KdKd

.... d-1

....

……

Figure 3: H∗
m,d

(d − 1)Rd and d − 1 edges. The order n and the minimum number f2 of cycles of

2-factors of L(H∗
m,d) are:

n = (d3 − 2d2 + d− 1)m+ 2d2 + 1 and f2 = (d2 − 2d+ 1)m+ 2d
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See [18]. It is easy to check the independence number α of L(H∗
m,d) is:

α = f2 − ⌈
m

2
⌉ ≥ (2d2 − 4d+ 1)m+ 4d− 1

2
.

Therefore

0 <
(d− 2)m+ 2

(2d2 − 4d+ 1)m+ 4d
≤ n

α
− d ≤ (d− 2)m+ 2

(2d2 − 4d+ 1)m+ 4d− 1
<

1

2d
.

Since the minimum degree of L(H∗
m,d) is d, we obtain

n

α
− 1

2d
< d <

n

α
.
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