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Abstract. Given a fixed positive integer k ≥ 2, let G be a simple graph of order n ≥ 6k. It is
proved that if the minimum degree of G is at least n/2 + 1, then for every pair of vertices x and
y, there exists a Hamiltonian cycle such that the distance between x and y along that cycle is
precisely k.
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1. INTRODUCTION

We deal only with finite simple graphs and our notation generally follows the notation
of Chartrand and Lesniak in [1]. Given an ordered set of vertices S = {x1, x2, · · · , xk}
in a graph, there are a series of results giving minimum degree conditions that imply
the existence of a Hamiltonian cycle such that the vertices in S are located in order on
the cycle with restrictions on the distance between consecutive vertices of S. Examples
include results by Kaneko and Yoshimoto [6], Sárközy and Selkow [9], and Faudree, Gould,
Jacobson, and Magnant [4].

Here we will consider only a pair of vertices, and will require the distance between the
vertices on the Hamiltonian cycle to be precise. For a Hamiltonian cycle C, and distinct
vertices x and y, let dC(x, y) denote the length of x and y along C. The minimum degree
of G is denoted by δ(G).

It was conjectured by Enomoto [3] that if G is a graph of order n ≥ 3 and δ(G) ≥
n/2+1, then for any x, y, there is a Hamiltonian cycle C of G such that dC(x, y) = bn/2c.
The following natural generalization of Enomoto’s conjecture was stated and investigated
by Faudree and Hao Li [5].

Conjecture 1 ([5]) If G is a graph of order n with δ(G) ≥ n/2 + 1, then for any integer
2 ≤ k ≤ n/2 and any vertices x and y, there is a Hamiltonian cycle C of G such that
dC(x, y) = k.

In [5] the cases k = 2 and 3 have been answered in the affirmative, and Conjecture 1
was supported by solving the case when k was fixed and n was sufficiently large. Along
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the same line in the present note we will show that if G is a graph of order n ≥ 6k and
δ(G) ≥ n/2 + 1, then for any vertices x and y, G has a Hamiltonian cycle C such that
dC(x, y) = k.

We will use a classical result of Nash-Williams [8] on dominating cycles, and a result
on panconnected graphs due to Williamson [11]. A cycle C is called a dominating cycle
in G if G− V (C) is an independent set.

Theorem 1 ([8]) Let G be a 2-connected graph on n vertices with δ(G) ≥ (n + 2)/3.
Then every longest cycle of G is a dominating cycle.

Theorem 2 ([11]) If G is a graph of order n with δ(G) ≥ n/2 + 1, then for any 2 ≤ k ≤
n− 1 and for any vertices x and y, G has an x, y-path of length k.

The minimum degree condition in Theorem 2 for panconnectivity is sharp, thus it is
obviously sharp in Conjecture 1 as well. Our main result supports further the conjecture,
but leaves open the range n/6 < k ≤ n/2. In the next section we prove the following
theorem.

Theorem 3 Let k ≥ 2 be a fixed positive integer. If G is a graph of order n ≥ 6k and
δ(G) ≥ n/2 + 1, then for any vertices x and y, G has a Hamiltonian cycle C such that
dC(x, y) = k.

2. PROOF

Let κ(G) be the vertex connectivity of G, that is the minimum number of vertices in a
cut set, and let α(G) be the independence number of G, that is the maximum number of
vertices in an independent set. The lemma below will be useful in the proof of Theorem 3.

Lemma 1 If G is a graph of order n with δ(G) ≥ n/2 + 1, then κ(G) ≥ α(G).

Proof: Let κ(G) = s, and let S be a minimum cut set of G, so that |S| = s. Let H1

and H2 be connected components of G − S, with h1 and h2 vertices, respectively. Let
H∗i be the subgraph spanned by Hi ∪ S, for i = 1, 2. Any independent set in H∗i with a
vertex in Hi will have at most hi +s− (n/2+1) vertices. Hence, any independent set in G
containing a vertex in H1 or H2 will have at most h1 +h2 +2s−2(n/2+1) = s−2 vertices.
Since S cannot contain an independent set with more than s vertices, α(G) ≤ s = κ(G)
follows.

In the proof of Theorem 3 additional standard terminology will be used as follows. For
the vertex set V (G) and for the edge set E(G) of a graph G we will eventually use just
G whenever the context is clear. The set of all adjacencies of a vertex v ∈ G in S ⊂ G is
denoted by NS(v), and we set dS(v) = |NS(v)|.

A cycle (or path) with an ordered set of vertices {x1, x2, · · · , xk} will be denoted by
(x1, x2, · · · , xk). If xi is a vertex of a cycle (path) then x+

i will denote the successor xi+1,
and if S is a subset of its vertices, then S+ will denote the set of all successors of the
vertices of S. The set S− of predecessors is defined similarly.

In the proof we fix an integer k and a pair of vertices x, y ∈ G. An x, y-path of length k
will be called a good x, y-path of G. We assume that G has n ≥ 6k vertices and that every
vertex has at least n/2 + 1 neighbors. Then, by Theorem 2, G contains good x, y-paths.
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A cycle containing a good x, y-path will be called a good cycle of G. Assume that the
required good Hamiltonian cycle does not exist for x, y; we will show that this leads to a
contradiction. We may assume that k ≥ 4, since in [5], Conjecture 1 was solved for k = 2
and 3. Furthermore, the minimum degree condition δ(G) ≥ n/2 + 1 implies easily that
the connectivity κ(G) ≥ 4.

Claim 1: There is a good cycle for x, y that has length at least n− k + 1.

Step 1. First we shall find a good path P such that G′ = G − V (P ) is 2-connected.
If κ(G) ≥ k + 3, then this is obviously true for any good x, y-path P , guaranteed by
Theorem 2.

Next we consider the case when κ(G) < k + 3. Then G has a minimum cutset S of
order s, 4 ≤ s ≤ k + 2. The condition s ≤ k + 2 < n/3 and δ(G) ≥ n/2 + 1 imply that
G− S has two connected components H1, H2. Since δ(H1), δ(H2) ≥ n/2 + 1− s, we have
n/2 + 2− s ≤ |H1| ≤ |H2| ≤ n/2− 2.

Consider the case where x, y ∈ H2. The other cases for locations of x and y, such as
both in H1 or in S or split between the sets H1, H2, and S can be handled in the same
way with the same results.

Since s ≤ k + 2 and k ≤ n/6, it follows that

δ(H2) ≥ n/2 + 1− s ≥ n/2− k − 1 ≥ (n/2− 2)/2 + 1 ≥ |H2|/2 + 1

is true. Thus H2 is panconnected by Theorem 2 (and so is the possibly denser H1). Let
P be a good x, y-path in H2.

Note that since S is a minimum cut, there is a matching with s edges between S
and H1 and between S and H2. Note also that each vertex v ∈ H1 ∪ H2 has at least 4
adjacencies in S, since dH2(v) ≤ (n/2 + 1)− 4. Now it follows easily that G′ = G− V (P )
is 2-connected. To see this observe first that H1 has a Hamiltonian cycle C. Then for any
v1, v2 ∈ H2, there are four pairwise internally vertex disjoint paths, two from v1 and two
from v2, into four distinct vertices of C. Using appropriate subpaths of C we obtain two
internally vertex disjoint paths from v1 to v2. Similar argument applies for the variations
when v1 and v2 are located anywhere in G′. Thus the 2-connectivity of G′ follows by
Whitney’s theorem (see [10]).

In each case, since |G′| = n−k−1, we also have δ(G′) ≥ n/2−k ≥ ((n−k−1)+2)/3 =
(|G′|+2)/3. Then Theorem 1 implies that every longest cycle in G′ is a dominating cycle.
Note that a longest cycle of G′ has at least n− 2k vertices, by Dirac’s theorem (see [2]).

Step 2. Our next objective is to insert the good x, y-path P obtained in Step 1 into a
longest dominating cycle C of G′ = G− V (P ). Assume first that {x, y} has no neighbor
in the independent set G′− V (C), and hence dC(v) ≥ n/2 + 1− k, for v ∈ {x, y}. If there
exists a neighbor of x and a neighbor of y which are consecutive on C, then P and C
form a good cycle of length at least n− k+ 1 that misses the independent set G′−V (C),
thus is dominating. If there does not exist a neighbor of x and a neighbor of y that are
consecutive on C, then a good cycle can be formed by selecting a neighbor of y closest to
a neighbor of x on C, which will yield a cycle of length at least

2|NC(x) ∩NC(y)|+ |NC(x) \NC(y)|+ |NC(y) \NC(x)| − 1 + |P |
= dC(x) + dC(y)− 1 + (k + 1) ≥ 2(n/2− k + 1) + k = n− k + 2.
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Assuming that x or y has an adjacency in G′ − V (C), say x′ or y′, then the path P ′

with a new end vertex x′ or y′ can be used as in the previous argument to insert P ′ into C
to obtain a good cycle of the same length or longer. This completes the proof of Claim 1.

Claim 2: If C is a longest good cycle for x, y and it has length at least n− k+ 1, then C
is a dominating good cycle.

Let C = P ∪ Q be a good cycle of maximum length m ≥ n − k + 1, where P is the
good path on k + 1 vertices from x to y, and Q is the path from y to x with m − k + 1
vertices.

Assume on the contrary that H = G − V (C) is not independent. Let u and v be
endvertices of a longest path in H with ` ≥ 2 vertices. By the maximality of C, neither
u nor v can be adjacent to consecutive vertices of Q . Also by the maximality of C, any
adjacency of u on Q implies that v is not adjacent to any vertex of Q within a distance
`+ 1 of this adjacency.

Consider the case when ` ≤ 3. Hence, dQ(v) ≤ (m − (k − 1) − 2(dQ(u) − 1), and
so 2dQ(u) + dQ(v) ≤ m − k + 3. Also, the roles of u and v can be interchanged, and
so dQ(u) + dQ(v) ≤ 2(m − k + 3)/3. Clearly, dP−{x,y}(u) + dP−{x,y}(v) ≤ 2(k − 1) and
dH(u) + dH(v) ≤ 2(`− 1). This results in the following inequality:

2(n/2 + 1) ≤ d(u) + d(v) ≤ 2(m− k + 3)/3 + 2(k − 1) + 2(`− 1).

This implies n ≥ m+ ` ≥ 3n/2− 2k − 2`+ 6 ≥ 3n/2− 2k > n, a contradiction.
Next we assume that ` > 3. Observe that dH(u), dH(v) ≤ `− 1, since u and v are the

end vertices of a maximum path of length `− 1 of H. Thus we have

dQ(u) = dG(u)− dP−{x,y,}(u)− dH(u) ≥ (n/2 + 1)− (k − 1)− (l − 1) = n/2− k − `+ 3,

and the same bound is valid for dQ(v).
Let t be the number of vertices of Q adjacent to both u and v. Then Q has dQ(u)− t

vertices adjacent to u and not v (and dQ(v) − t vertices of Q adjacent to v and not u).
Traversing Q from y towards x there are t vertices followed by at least ` consecutive
non-neighbors of {u, v}, and each of the further (dQ(u)− t) + (dQ(v)− t) neighbors of u
or v must be followed by at least one non-neighbor of {u, v}. Hence for some r ≤ `,

|Q| ≥ t(`+1)+2(dQ(u)+dQ(v)−2t)−r ≥ 4(n/2−k−`+3)+t(`−3)−` ≥ 4(n/2−k−`+3)−4.

Thus we obtain n = |P−{x, y}|+|Q|+|H| ≥ |Q|+`+k−1 ≥ 4(n/2−k−`+3)−4+`+k−1 =
2n − 3k − 3` + 7 implying n ≤ 3k + 3` − 7. Since ` ≤ |H| = n −m ≤ k − 1, we obtain
n ≤ 3k + 3(k − 1)− 7 < 6k < n, a contradiction. This completes the proof of Claim 2.

Claim 3: If P is a good x, y-path with α(G) ≥ n/2− k + 2, then P can be inserted into
a good cycle that is dominating.

Since α(G) ≥ n/2 − k + 2 ≥ 6k/2 − k + 2 = 2k + 2 > k + 3, Lemma 1 implies that
κ(G) > k + 3. In particular, G− V (P ) is 2-connected.

By Claim 1, as described in Step 2, P can be inserted into a good cycle of length
at least n − k + 2. Then by Claim 2, a maximum length good cycle containing P is a
dominating good cycle. This concludes the proof of Claim 3.

By Claim 1 and 2, G has a dominating good cycle C = P ∪ Q of maximum length
m ≥ n− k+ 1, where P is a good x, y-path, Q is a path from y to x, and H = G− V (C)
is an independent set.
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Given any w ∈ H, the maximality of C implies that w can not be adjacent to two
consecutive vertices of Q. Moreover, A(w) = N+

Q−x(w) ∪ {w} is an independent set, since
any adjacency within A(w) would result in a longer good cycle including w.

Observe that every w′ ∈ H−A(w) has at most one adjacency in A(w), for otherwise a
good cycle could be formed including w and w′. Therefore each w′ can be either added to
A(w) or can replace its only neighbor in A(w). In this way we obtain an independent set
A(H) containing H such that |A(H)| ≥ |A(w)| = |NQ−x(w)|+1 ≥ (dG(w)−dP−y(w))+1 ≥
n/2− k + 2, so now Claim 3 can be used.

For w ∈ H, let U(w) = N+
Q (w) ∩ N−Q (w). If u ∈ U(w), then w is interchangeable

with u to obtain a good cycle C ′ that includes w and excludes u. This C ′ is dominating,
provided H ′ = (H − w) + u is independent. Any edge between u and H − w results in
C ′, a cycle of the same maximum length that is not dominating, contradicting Claim 2.
Thus we conclude that U(w) ⊆ A(H). Since dQ(w) ≥ n/2 + 1 − (k − 1) = n/2 − k + 2,
and |Q| ≤ n−k, we have |U(w)| ≥ 3(dQ(w)− 1)−|Q| > 3(n/2−k)− (n−k) = n/2− 2k.
Consequently there are more than n/2−2k vertices of C that might play the role of a given
w ∈ H in the independent set A(H). For a given maximum length dominating good cycle
C, let A = A(C) be an independent set of maximum order containing H = G − V (C).
Note that |A(C)| ≥ |A(H)| ≥ n/2− k + 2.

Next we shall find a good x, y-path P ∗ saturated by A, that is an x, y-path of length
k containing at most one pair of consecutive vertices not in A.

The path P ∗ will be obtained by alternating between A and G − A. For any s < k,
let P ′ = (a1, z1, a2, . . . , as, zs, as+1) be a path with ai ∈ A, zi ∈ G − A. Then P ′ will
be extended by appending a path (as+1, zs+1, as+2), where as+2 ∈ A − P ′ and zs+1 ∈
(N(as+1) ∩ N(as+2)) − P ′. To see that this can be done, observe that 2(n/2 + 1) ≤
d(as+1)+d(as+2) ≤ (n/2+k−2)+ |N(as+1)∩N(as+2)|. Then, using s < k, it follows that
|N(as+1)∩N(as+2)| ≥ n/2−k+4 ≥ s+1, and therefore the set (N(as+1)∩N(as+2))−P ′
is not empty.

Obviously we can start and terminate P ′ at predetermined vertices of A, in particular
at x and y, provided x, y ∈ A. If {x, y} 6⊂ A, then we use any neighbors, x′ ∈ NA(x) or
y′ ∈ NA(y) or both, and build an alternating x′, y′-path of length shorter by one or two
as needed. We might also need to adjust the alternating path for the parity of k. It is
enough to include an edge from G− A at the beginning of the procedure, by inserting a
path (a1, z,z

′, a2) such that z, z′ ∈ G− A.

Let C∗ be a maximum length dominating good cycle containing P ∗, that is given by
Claim 3. Set C∗ = P ∗ ∪ Q∗ and H∗ = G − C∗. Assume that |C∗| = m < n and let
w ∈ H∗ ∩ A. Observe that the neighbors of w belong to C∗ − A, furthermore C∗ has
at most one pair of consecutive vertices on P ∗ that might both be adjacent to w. Then
it follows dG(w) ≤ m/2 + 1 < n/2 + 1, a contradiction. Thus we conclude that w /∈ A.
Let B = A(C∗) be a maximum independent set containing H∗, which also has at least
n/2− k + 2 vertices.

Since there are more than n/2− 2k vertices of C∗ that might play the role of a given
w ∈ H∗, we have |B \A| ≥ n/2−2k, thus |A∪B| ≥ n/2−2k+(n/2−k+2) = n−3k+2.
For any v ∈ A∩B, we would have dG(v) ≤ n−|A∪B| ≤ 3k−2 < n/2+1, a contradiction.
Thus A and B are disjoint.

We will now build a good x, y-path P ∗∗ containing as many vertices from A ∪ B as
follows. Let A0 ⊆ A and B0 ⊆ B be such that |A0| = |B0| = n0 = dn/2e−k. Let G0 ⊆ G be
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the n0×n0 bipartite subgraph induced by A0∪B0. Clearly δ(G0) ≥ dn/2e+1−(n−2n0) ≥
n0 − k + 1. Furthermore, since δ(G0) ≥ n0 − k + 1 ≥ (n0 + 1)/2, G0 has a Hamiltonian
cycle C0, by a theorem of Moon and Moser [7].

Let x∗, y∗ ∈ (A ∪B)−G0 be distinct vertices in the same partition class, say x∗, y∗ ∈
A−C0, and let k∗ be an even integer, k−5 ≤ k∗ ≤ k−2. We show first that the subgraph
induced by G0 ∪ {x∗, y∗} contains an x∗, y∗-path of length k∗ + 2.

Assume that such a path does not exist. Then each vertex u ∈ NC0(x
∗) ”knocks out” a

possible adjacency of y∗ on C0, i.e. ifN∗ = {v ∈ B0 | dC0(u, v) = k∗ for some u ∈ NC0(x
∗)},

then N∗ ∩ NC0(y
∗) = ∅. Observing that N∗, NC0(y

∗) ⊆ B0, and since dC0(x
∗), dC0(y

∗) ≥
n0− k+ 1, it follows that 2(n0− k+ 1) ≤ dC0(x

∗) + dC0(y
∗) = |N∗|+ |NC0(y

∗)| ≤ n0. This
is a contradiction, since n0 − k + 1 > n0/2.

The x∗, y∗-path obtained above will be used to join two disjoint paths Px = (x, x1, x
∗)

and Py = (y, y∗). Selecting these short paths and the value k∗ depend on the parity of k
and the position of x and y with respect to A and B as follows:

Case (a). k ≥ 4 and even. If x, y ∈ A (the case x, y ∈ B is exactly the same), then
set Px = (x), Py = (y) and k∗ = k − 2. If x, y ∈ G − (A ∪ B), then we choose x∗ 6= y∗

in A (or in B), we set Px = (x, x∗), Py = (y, y∗), and k∗ = k − 4. To see that there are
such independent edges xx∗ and yy∗ note that |A|, |B| ≥ n/2− k + 2, hence each vertex
in G− (A ∪B) has at least n/4− k + 2 > 2 adjacencies in A or in B.

If y ∈ A, x ∈ G − A, then we choose an arbitrary x∗ ∈ A − y and a vertex x1 ∈
N(x) ∩ N(x∗). Note that x1 6= y exists, since any two vertices of G have at least two
common neighbors. Then we set Px = (x, x1, x

∗), Py = (y) and k∗ = k − 4.

Case (b). k ≥ 5 and odd. If x ∈ B, y ∈ A, then we choose a vertex x∗ ∈ NA(x)− y, set
Px = (x, x∗), Py = (y), and k∗ = k − 3. If x, y ∈ G − (A ∪ B), then y has an adjacency
y∗ ∈ A, and x has an adjacency x1 ∈ B, by the maximality of A and B. Now choose an
arbitrary x∗ ∈ NA(x1)− y∗. Thus we set Px = (x, x1, x

∗), Py = (y, y∗), and k∗ = k − 5.
If x, y ∈ B or y ∈ B, x ∈ G − B, then let y∗ ∈ NA(y) be an arbitrary vertex, and

choose any x∗ ∈ A − y∗. As before, there is a vertex x1 ∈ NG(x) ∩ NG(x∗) disjoint from
{y, y∗}. Then we set Px = (x, x1, x

∗), Py = (y, y∗) and k∗ = k − 5.

In each case after Px and Py are specified, we define A0, B0 to be any sets A0 ⊆
A − (Px ∪ Py), B0 ⊆ B − (Px ∪ Py) such that |A0| = |B0| = dn/2e − k. Now Px and Py

are joined in A0∪B0 into a good x, y-path P ∗∗ = (x, x1, x
∗, . . . , y∗, y). The vertices of P ∗∗

belong to A ∪ B with the possible exception of two among x, y and x1. Thus we obtain
|P ∗∗ ∩ A| ≥ |P ∗∗ ∩B| ≥ b(k − 1)/2c.

Let C∗∗ be a maximum length dominating good cycle containing P ∗∗, that is given by
Claim 3. Set C∗∗ = P ∗∗∪Q∗∗, H∗∗ = G−C∗∗ and assume that w ∈ H∗∗∩(A∪B). Observe
that dP ∗∗−{x,y}(w) ≤ k−1−b(k−1)/2c ≤ k/2, and dQ∗∗(w) ≤ (m−k+2)/2 ≤ (n−k+1)/2.
Then it follows that dG(w) = dP ∗∗−{x,y}(w) + dQ∗∗(w) < n/2 + 1, a contradiction. Thus
we conclude that w /∈ A ∪B.

Then there is a largest independent set A(C∗∗) with at least n/2− k + 2 vertices and
containing H∗∗ = G−C∗∗, thus disjoint from A∪B. Since 3(n/2− k+ 2) > n, this leads
to a contradiction and completes the proof of Theorem 3.
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