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Abstract

A graph G is called k-ordered if for any sequence of k distinct vertices of G,

there exists a cycle in G through these vertices in the order. A vertex set S is

called cyclable in G if there exists a cycle passing through all vertices of S. We

will define “set-orderedness” which is a natural generalization of k-orderedness

and cyclability. We also give a degree sum condition for graphs to satisfy

“set-orderedness”. This is an extension of well-known sufficient conditions on

k-orderedness.
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1 Introduction

A cycle-related property, for instance, a hamilton cycle have been studied for a long

time, and as an extension of it, a cycle passing all specified vertices is also widely

studied. Many researchers study this type cycle from two aspects; one of them is a

cycle passing specified vertices in a given order, another is that without considering

the order.

The first one is the notion of k-orderedness, which was first introduced by Char-

trand. A graph G is called k-ordered if for any sequence of k distinct vertices of G,

there exists a cycle in G passing through these specified vertices in the order. The

second one is the notion of cyclability. For any subset S of V (G), S is called cyclable

in G if there exists a cycle through all vertices of S. Many results of these two con-

cepts are known, see [4, 5, 6, 7, 8, 10, 11, 12, 13] for k-orderedness and [1, 3, 9, 14, 15]

for cyclability.

Note that k-orderedness is a stronger concept than cyclability. In this sense,

there seems to exist a close relationship between these two concepts, however, this

relationship was not studied. The purpose of this paper is to interpolate these

concepts. In Section 2, we introduce a new concept set-orderedness, which is a

natural generalization of k-orderedness.

2 Set-orderedness

In this paper, we consider only finite undirected graphs without loops or multiple

edges. For standard graph-theoretic terminology not explained in this paper, we

refer the reader to [2].

The following result is a classical one on k-orderedness by Ng and Schultz. Note

that they proved that the same condition as Theorem 1 guarantees the existence of

a hamilton cycle passing through specified k vertices in the given order.

Theorem 1 (Ng and Schultz [12]) Let G be a graph of order n ≥ 3 and let k be

an integer with 3 ≤ k ≤ n. If

dG(u) + dG(v) ≥ n + 2k − 6

for any two non-adjacent vertices u and v, then G is k-ordered.

The bound of the degree condition was improved for small k with respect to n

by Faudree et al. [6]
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Theorem 2 (Faudree et al. [6]) Let k be an integer with 3 ≤ k ≤ n/2 and let G

be a graph of order n. If

dG(u) + dG(v) ≥ n + 3(k − 3)/2

for any two non-adjacent vertices u and v, then G is k-ordered.

Let v1, v2, . . . , vk be k distinct vertices of G. A graph G is called (v1, v2, . . . , vk)-

ordered if there exists a cycle containing these k vertices in this order. (See Figure 1

(i).) Definitely, a graph G is k-ordered if and only if G is (v1, v2, . . . , vk)-ordered for

any distinct vertices v1, v2, . . . , vk. In order to show k-orderedness of a given graph,

we need the degree sum condition for all non-adjacent vertices. because we must

consider all combinations and orders of k distinct vertices. However, considering

only given k vertices v1, v2, . . . , vk and a cycle through them in such a order, we may

be able to restrict the vertices on which we must deal with the degree sum condition

to the given k vertices. In fact, Ng and Schultz [12] found the degree sum condition

on given k vertices which guarantees the existence of a path passing them in the

given order. As a corollary of it, we obtain the following result.

Theorem 3 Let G be a graph of order n ≥ 3 and let v1, v2, . . . , vk be k distinct

vertices of G with k ≥ 3. If

d(vi) + d(vi+1) ≥ n + 2k − 6

for any 1 ≤ i ≤ k (regarding vk+1 as v1), then G is (v1, v2, . . . , vk)-ordered.

While Theorem 2 shows that Theorem 1 is not sharp, the following example shows

the sharpness of Theorem 3. Let k be even integer and n be an odd integer. Consider

the graph G which is obtained from k vertices v1, v2, . . . , vk with all possible edges

between them except for vivi+1 for 1 ≤ i ≤ k by adding n − k vertices and joining

k − 1 vertices of them to v1, v2, . . . , vk−1, vk, half of remaining n− 2k + 1 vertices to

v1, v3, . . . , vk−1 and another half to v2, v4, . . . , vk.

As an extension of (v1, v2, . . . , vk)-orderedness, we will define the concept of set-

orderedness. In the concept of k-orderedness or (v1, v2, . . . , vk)-orderedness, we must

find a cycle passing through the specified vertices in the prescribed order. In this

sense, we consider a relaxation of cycles, that is, a cycle passes specified vertices in

a “partially desired” order.

Let S1, S2, . . . , Sl be disjoint nonempty vertex sets in a graph G with
∑l

i=1 |Si| =
k. A graph G is called (S1, S2, . . . , Sl)-ordered if there exists a cycle in G through
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all vertices of S1 ∪ S2 ∪ · · · ∪ Sl in the order, that is, any vertex of Sj appears in the

cycle after any vertex of Si if 1 ≤ i < j ≤ l. (See Figure 1 (ii).)

v1

v2

v3
v4

v5

∈ S1

∈ S2

∈ S3

(i) a (v1, v2, · · · , v5)-ordered graph (ii) an (S1, S2, S3)-ordered graph

Figure 1:

By the definition of (S1, S2, . . . , Sl)-orderedness, in case of l = k, (S1, S2, . . . , Sl)-

orderedness means (v1, v2, . . . , vk)-orderedness where Si = {vi} for 1 ≤ i ≤ l. On

the other hand, in case of l = 1, (S1)-orderedness is equivalent to cyclability of S1.

In this sense, the concept of (S1, S2, . . . , Sl)-orderedness connects k-orderedness and

cyclability.

We define a path cover of G as a set of paths which are pairwise disjoint and

contain all vertices of G. The path cover number, denoted by pc(G), is the minimum

number of |P| among all path covers P of G. Let S ⊂ V (G). For convenience, we

call a path cover of S instead of a path cover of G[S] and denote pc(S) instead of

pc(G[S]). Throughout this paper, the index i is always taken modulo l.

Theorem 4 Let G be a graph on n vertices and l ≥ 2 and let S1, S2, . . . , Sl be

disjoint nonempty vertex sets. Let si := |Si|, pi := pc(Si), k :=
∑l

i=1 si, p :=
∑l

i=1 pi,

si :=
∑

j �=i,i+1 sj and pi :=
∑

j �=i,i+1 pj. Suppose that for each i (1 ≤ i ≤ l),

dG(u) + dG(v) ≥ n + k + p− (si + pi + l)

for every pair of non-adjacent vertices u, v ∈ Si, and

dG(u) + dG(v) ≥ n + si + pi − 2− εi
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for every pair of non-adjacent vertices u, v such that u ∈ Si and v ∈ Si+1, where

εi :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 if l = 2,

0 if l = 3, 4,

or if l ≥ 5 and si−1 = si+2 = 1,

1 if l = 5, 6 and at least one of si−1 and si+2 is at least 2,

or if l ≥ 7 and exactly one of si−1 and si+2 is at least 2,

2 if l ≥ 7 and both si−1 and si+2 are at least 2.

Then G is (S1, S2, . . . , Sl)-ordered.

Consider the case l = k ≥ 3. Then each Si consists of only one vertex, say vi,

and hence we have si = pi = 1, si = pi = k−2 and εi = 0. Then we can not take any

pair of non-adjacent vertices ui, vi ∈ Si because si = 1, and hence the first degree

condition is vacuous. The second degree condition in Theorem 4 is

d(u) + d(v) ≥ n + si + pi − 2− εi

= n + 2k − 6

for all pair of non-adjacent vertices u ∈ Si and v ∈ Si+1. Therefore, we obtain

theorem 3 as a corollary.

In Section 3, we will prove Theorem 4, and in Section 4, we will explain the

sharpness of Theorem 4.

3 Proofs

Theorem 4 for the case l = 2 can be proved by the same argument as the case l ≥ 3,

and hence we omit the proof. In this section, we only prove Theorem 4 for the case

l ≥ 3.

Throughout this section, the index j is also taken modulo l. Let S ⊂ V (G). We

call a path P an S-dense path if S ⊂ V (P ) and |V (P )| = |S| + pc(S) − 1, that is,

an S-dense path is a shortest possible path through S, given pc(S).

Lemma 5 Let G be a graph of order n ≥ 3 and let S ⊂ V (G). If dG(u) + dG(v) ≥
n − 1 for every pair of non-adjacent vertices u, v ∈ S, then there exists an S-dense

path P .

5



Proof of Lemma 5. Let P := {P1, P2, . . . , Pl} be a path cover of S such that

l = pc(S) and let ui and vi be the end-vertices of Pi. Possibly ui = vi. We give an

orientation to each path Pi from ui to vi and write the oriented path Pi by
−→
Pi . In

addition, the reverse orientation of
−→
P is denoted by

←−
P . Since P is a minimum path

cover of S, uiuj, uivj , vivj 
∈ E(G) for i 
= j. Let T := V (G)−⋃l
i=1 V (Pi). Now we

will show that |NT (ui) ∩NT (vj)| ≥ l − 1 for i 
= j.

Fix i and j with 1 ≤ i 
= j ≤ l. Suppose that NPi
(ui)

− ∩ NPi
(vj) 
= ∅, say w ∈

NPi
(ui)

− ∩NPi
(vj). Let P := vi

←−
Pi w

+ui
−→
Piwvj

←−
Pjuj. Then Q := {Ph : h 
= i, j} ∪ {P}

is also a path cover of S with |Q| < |P|, contradicting the minimality of P. Thus,

NPi
(ui)

− ∩NPi
(vj) = ∅. Since NPi

(ui)
− ∪NPi

(vj) ⊂ V (Pi)− {vi}, we have

dPi
(ui) + dPi

(vj) ≤ |V (Pi)| − 1. (1)

By symmetry of i and j, we obtain

dPj
(ui) + dPj

(vj) ≤ |V (Pj)| − 1. (2)

Next, suppose that NPh
(ui)

− ∩ NPh
(vj) 
= ∅ for h 
= i, j, say w ∈ NPh

(ui)
− ∩

NPh
(vj). Let P := vi

←−
Pi uiw

+−→Phvh and P ′ := uj
−→
Pjvjw

←−
Phuh. Then Q := {Pt : t 
=

h, i, j}∪{P, P ′} is also a path cover of S, a contradiction. Thus, NPh
(ui)

−∩NPh
(vj) =

∅. Since NPh
(ui)

− ∪NPh
(vj) ⊂ V (Ph)− {vh}, we have

dPh
(ui) + dPh

(vj) ≤ |V (Ph)| − 1. (3)

By the inequalities (1) – (3), we reduce

l∑
h=1

(
dPh

(ui) + dPh
(vj)

) ≤
l∑

h=1

(|V (Ph)| − 1
)

=
l∑

h=1

|V (Ph)| − l.

Then by the degree condition,

dT (ui) + dT (vj) ≥ n− 1−
( l∑

h=1

|V (Ph)| − l
)

= |T |+ l − 1,

and hence |NT (ui) ∩NT (vj)| ≥ l − 1.

Therefore, we can find l − 1 distinct vertices w1, w2, . . . , wl−1 ∈ T such that

wi ∈ NT (ui+1)∩NT (vi) for 1 ≤ i ≤ l−1. Then P = u1
−→
P1v1w1u2

−→
P2v2w2 . . . wl−1ul

−→
Pl vl

is a path such that S ⊂ V (P ) and

|V (P )| =
l∑

h=1

|V (Ph)|+ l − 1 = |S|+ pc(S)− 1. �
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For the proof of our main theorem, we need the following lemma. This follows

from Lemma 5 by a straight forward induction on l.

Lemma 6 Let G be a graph of order n ≥ 3 and let l ≥ 1. Let S1, S2, . . . , Sl

be disjoint nonempty vertex sets. Let si := |Si|, pi := pc(Si), k :=
∑l

i=1 si and

p :=
∑l

i=1 pi. Suppose that for each i (1 ≤ i ≤ l) and for every pari of non-adjacent

vertices u, v ∈ Si,

dG(u) + dG(v) ≥ n + k + p− (si + pi + l).

There exist l disjoint paths P1, P2, . . . , Pl such that Pi is an Si-dense path for each

1 ≤ i ≤ l.

Proof of Theorem 4. By Lemma 6, there exist l disjoint paths P1, P2, . . . , Pl

such that Pi is an Si-dense path for each 1 ≤ i ≤ l. Let ui and vi be the end-vertices

of Pi and let T := V (G) − ⋃l
i=1 V (Pi). Note that vi = ui if si = 1. Now we will

connect Pi and Pi+1. First, if vi and ui+1 are adjacent, then using the edge viui+1,

we can join two paths Pi and Pi+1. We call this operation Operation 1 on (vi, ui+1).

Next, suppose that vi and ui+1 are not adjacent and NT (vi) ∩ NT (ui+1) 
= ∅,
say wi ∈ NT (vi) ∩ NT (ui+1). If wi is not in use for other pairs, then we can con-

nect vi and ui+1 by using wi. After connecting vi and ui+1, we obtain the path

ui
−→
Piviwiui+1

−−→
Pi+1vi+1. We call this operation Operation 2 on (vi, ui+1). (See Figure

2.)

P1 P2 P3 P4

u1 v1 u2 v2 u3 v3 u4 v4

Operation 1
Operation 2

w2

Figure 2: Operations 1 and 2.

By repeating Operations 1 and 2 for
⋃l

i=1 Pi, we obtain a cycle or a union of paths,

denoted by P . Note that Pi is contained in P as a subpath, and Pi+1 lies on P next

to Pi if vi and ui+1 are connected by one of the operations. Let T ′ := V (G)− V (P ).

If P is a cycle, then there is nothing to prove. Thus we may assume that there

exists a pair (vi, ui+1) on which we can perform neither Operation 1 nor 2. Then

viui+1 
∈ E(G) and NT ′(vi) ∩ NT ′(ui+1) = ∅. We also give an orientation to P and

for x ∈ V (P ), we define x+ as the successor of x along
−→
P . Note that v+

j := wj
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if Operation 2 is performed on (vj , uj+1), and we define v+
j := uj+1 even if neither

Operation 1 nor 2 are performed on (vj, uj+1).

Choose such dense paths P1, P2, . . . , Pl, such a union P of paths, which is obtained

by repeating Operations 1 and 2, and a pair (vi, ui+1) on which we can perform neither

Operation 1 nor 2 so that

(P1) Operation 1 is performed as many times as possible,

(P2) Operation 2 is performed as many times as possible; subject to (P1).

In addition to (P1) and (P2), we choose P1, .., Pl, P and (vi, ui+1) so that

(P3) The number of performing Operation 2 on (vi−1, ui) and (vi+1, ui+2) is as large

as possible; subject to (P2).

Without loss of generality, we may assume that i = l. Thus, u1vl 
∈ E(G) and

NT ′(u1) ∩NT ′(vl) = ∅. Since NT ′(u1) ∩NT ′(vl) = ∅, we have

dT ′(u1) + dT ′(vl) ≤ |T ′|. (4)

Let Q1 and Ql be parts of P from u1 to u2 and from vl−1 to vl, respectively. (See

Figure 3.)

P1 P2 Pl−1 Pl

u1 v1 u2 v2 ul−1 vl−1 ul vl

Q1 Ql

Figure 3: Q1 and Ql.

Claim 1 dQ1(u1) + dQ1(vl) ≤ |V (Q1)| and dQl
(u1) + dQl

(vl) ≤ |V (Ql)|.

Proof. Suppose that NQ1(u1)
− ∩ NQ1(vl) 
= ∅, say w ∈ NQ1(u1)

− ∩ NQ1(vl). Then

we can replace
−→
Ql ∪ −→Q1 with vl−1

−→
Qlvlw

←−
Q1u1w

+−→Q1u2, contradicting the choice of P .

Hence NQ1(u1)
− ∩ NQ1(vl) = ∅. This implies that dQ1(u1) + dQ1(vl) ≤ |V (Q1)|. By

considering the reverse orientation
←−
P , we have dQl

(u1) + dQl
(vl) ≤ |V (Ql)|. �
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Let wj be the vertex connecting vj and uj+1 under Operation 2 on (vj, uj+1), if

Operation 2 is performed on (vj , uj+1). Let

W := {wj : Operation 2 is performed on (vj , uj+1), and j 
= 1, l − 1, l}

and let η := |W |.
Let P ′ := P − (Q1 ∪Ql). Since |V (Pj)| = sj + pj − 1, we have

|V (P ′)| = sl + pl − l + η. (5)

Let r := 2|V (P ′)| − (
dP ′(u1) + dP ′(vl)

) − εl. By the definition of εl, note that

r ≥ −2. The following claim holds.

Claim 2 l − 3 ≥ η ≥ l − 2 + r. In particular, r ≤ −1.

Proof. It is clear that l − 3 ≥ η by the definition of η. Suppose that η ≤ l − 3 + r.

Then by (4), (5) and Claim 1, we have

dG(u1) + dG(vl)

= dT ′(u1) + dT ′(vl) + dQ1(u1) + dQ1(vl)

+dQl
(u1) + dQl

(vl) + dP ′(u1) + dP ′(vl)

≤ |T ′|+ |V (Q1)|+ |V (Ql)|+ 2|V (P ′)| − r − εl

= n + |V (P ′)| − r − εl

= n + sl + pl − l + η − r − εl

≤ n + sl + pl − 2− εl − 1,

a contradiction. Thus, η ≥ l−2+r. Moreover, since η ≤ l−3, we have l−3 ≥ l−2+r,

or r ≤ −1. �

Since 2|V (P ′)| ≥ dP ′(u1) + dP ′(vl), we have r ≥ −εl. Therefore by Claim 2, the

case εl = 0 is done. Thus, we may assume that εl ≥ 1, in particular, l ≥ 5.

We also have the following claim. The proof of them is obvious, and hence we

leave it to the reader.

Claim 3 (i) If v2 ∈ NG(u1), then Operation 1 is performed on at least one of the

pairs (v1, u2) and (v2, u3).

(i) If ul−1 ∈ NG(vl), then Operation 1 is performed on at least one of the pairs

(vl−2, ul−1) and (vl−1, ul).
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We divide the rest of the proof into three cases.

Case 1. v2 
∈ NG(u1) and ul−1 
∈ NG(vl).

If s2 ≥ 2, then v2 ∈ V (P ′), and if sl−1 ≥ 2, then ul−1 ∈ V (P ′). Thus, by the

definition of εl, we have dP ′(u1) + dP ′(vl) ≤ 2|V (P ′)| − εl. This implies that r ≥ 0,

contradicting Claim 2. �

Case 2. v2 
∈ NG(u1) and ul−1 ∈ NG(vl), or v2 ∈ NG(u1) and ul−1 
∈ NG(vl).

By symmetry, we may assume that v2 ∈ NG(u1) and ul−1 
∈ NG(vl). Then

ul−1 
∈ NG(vl) implies that dP ′(u1) + dP ′(vl) ≤ 2|V (P ′)| − 1 or εl = 1. In each case,

we have r ≥ −1, and hence r = −1 and η = l − 3 by Claim 2.

Since η = l − 3, Operation 2 is performed on (vj , uj+1) for every 2 ≤ j ≤ l − 2.

By Claim 3 (i), Operation 1 is performed on (v1, u2).

Suppose that wl−2 ∈ NG(u1) ∩ NG(vl). Then using wl−2 in order to connect be-

tween u1 and vl, we can take a union of paths P−{vl−2wl−2, wl−2ul−1}∪{u1wl−2, wl−2vl},
contradicting the choice (P3), because Operation 1 is performed on (v1, u2) and Oper-

ation 2 is performed on (vl−3, ul−2). (See Figure 4.) Thus, we obtain wl−2 
∈ N(u1)∩
N(vl), and this implies that dP ′(u1) + dP ′(vl) ≤ 2|V (P ′)| − 2, or dP ′(u1) + dP ′(vl) ≤
2|V (P ′)| − 1 and εl = 1. Then r ≥ 0, which contradicts Claim 2. �

P1

u1

v1

wl−2

P2

u2 v2

Pl−2

ul−2 vl−2

wl−1

Pl−1

ul−1 vl−1

wl−3

P1

ul

vl

P1

u1 v1

wl−2

P2

u2 v2

Pl−2

ul−2 vl−2

wl−1

Pl−1

ul−1 vl−1

wl−3

P1

ul vl

vl−3

vl−3

Figure 4:

Case 3. v2 ∈ NG(u1) and ul−1 ∈ NG(vl).

Case 3.1. l ≥ 7.

Since r ≥ −2, we have η ≥ l−4 by Claim 2. Therefore on at least one of the pairs

(v2, u3) and (vl−2, ul−1), Operation 2 is performed. By symmetry, we may assume
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that Operation 2 is performed on (v2, u3). This implies that on (v1, u2), Operation 1

is performed by Claim 3 (i).

Suppose that Operation 1 is not performed on (vl−2, ul−1). Then on (vl−1, ul),

Operation 1 is also performed, by Claim 3 (ii). Since η ≥ l− 4 and l ≥ 7, there exist

consecutive pairs (vj , uj+1) and (vj+1, uj+2) such that Operation 2 is performed on

both pairs. If wj ∈ NG(u1)∩NG(vl), then we can change P with P−{vj−1wj , wjuj}∪
{vlwj, wju1}, which contradicts the choice (P3), because Operation 1 is performed

on both (v1, u2) and (vl−1, ul). Thus, wj 
∈ NG(u1) ∩ NG(vl) and by symmetry,

wj+1 
∈ NG(u1) ∩ NG(vl). Therefore dP ′(u1) + dP ′(vl) ≤ 2|V (P ′)| − 2, and hence

r ≥ 0, which contradicting Claim 2.

Thus we may assume that Operation 1 is performed on (vl−2, ul−1). Then η = l−4.

This implies that for any 2 ≤ j ≤ l−3, Operation 2 is performed on (vj , uj+1). Since

η = l−4 ≥ 3, there exist three consecutive pairs (vj−1, uj), (vj , uj+1) and (vj+1, uj+2)

such that Operation 2 is performed on every pair. By the same argument as above,

wj 
∈ NG(u1)∩NG(vl). Therefore dP ′(u1)+dP ′(vl) ≤ 2|V (P ′)|−1, and hence r ≥ −1.

This contradicts Claim 2 together with η = l − 4. �

Case 3.2. l = 5 or l = 6.

In these cases, note that εl = 1. Therefore r = −1 and η = l−3, by the definition

of η and Claim 2. This implies that on both (v2, u3) and (vl−2, ul−1), Operation 2 is

performed. Then by Claims 3 (i) and (ii), Operation 1 is performed on both (v1, u2)

and (vl−1, ul). Moreover since η = l− 3, we can find consecutive pairs (vj , uj+1) and

(vj+1, uj+2) such that Operation 2 is performed on both pairs. By the same argument

as Case 3.1, wj , wj+1 
∈ NG(u1)∩NG(vl) and hence dP ′(u1) + dP ′(vl) ≤ 2|V (P ′)| − 2,

a contradiction again. �

4 Examples

In this section, we will show that almost all of degree sum conditions of Theorem 4

are best possible. (In Examples 1 and 6, the orders of the graph G1 and G2 depend

on the cardinalities of specified vertices.) Throughout this section, we use S1, S2,

. . . , Sl as disjoint vertex sets with |Si| = si and
∑l

i=1 si = k. The first example

shows that the first degree sum condition of Theorem 4 is best possible.
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Example 1: Let S1, S2, . . . , Sl be partite sets of some complete l-partite graph.

We construct a graph G1 by adding (k − l− 1) new vertices and joining them to all

vertices of S1∪ . . .∪Sl. Then pi = si for all i and k = p. Note that the second degree

condition is vacuously true.

We need
∑l

i=1

(
si−1

)
= k−l vertices to obtain l disjoint paths such that the i-th

path has all vertices of Si. Thus, G1 is not (S1, S2, . . . , Sl)-ordered. On the other

hand, for every i with 1 ≤ i ≤ l for every pair of non-adjacent vertices u, v ∈ Si,

dG1(u) + dG1(v) = 2
(|V (G1)| − si

)

= |V (G1)|+
(
2k − l − 1

)− 2si

= |V (G1)|+ k + p− (
si + pi + l

)− 1,

and hence we cannot decrease the value of the first degree sum condition without

breaking the conclusion.

Next we will show that the lower bound of the second condition of Theorem 4 is

also sharp. In order to show that, we have to consider some cases depending on the

value of l. Note that in Examples 2–5, the first degree sum condition is vacuously

true.

Example 2: Let l = 3 and let Si be disjoint cliques for 1 ≤ i ≤ 3. We connect every

vertex of Si and every vertex of Si+1 for i = 1, 2. Moreover, we add (n − k) new

vertices and join some of them to S1 ∪ S2 and others to S2 ∪ S3. Let G2 be a graph

obtained by above construction. Then |V (G2)| = n and pi = 1 for any 1 ≤ i ≤ 3.

Since we cannot pass a vertex of S1 after a vertex of S3 without passing a vertex

of S2, G2 is not (S1, S2, S3)-ordered. On the other hand, for every pair of u ∈ S1 and

v ∈ S3,

dG2(u) + dG2(v) = (s1 − 1 + s2) + (s2 + s3 − 1) + (n− k)

= n + k − s1 − s3 − 2

= |V (G2)|+ s3 + p3 − 2− εi − 1,

and hence when l = 3, we cannot decrease the value of εi.

Example 3: Let l = 4 and let Si be disjoint cliques for 1 ≤ i ≤ 4. We connect all

pairs of Si and Sj except for S1 and S4, and S2 and S3. Moreover, we add n− k new
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vertices and join one vertex of them to
⋃4

i=1 Si, some of others to S1 ∪ S2, and the

remaining vertices to S3 ∪ S4. Let G3 be a graph obtained by above construction.

Then |V (G3)| = n and pi = 1 for any 1 ≤ i ≤ 4.

Since we can use only one vertex to connect S2 and S3, or S4 and S1, G3 is not

(S1, S2, S3, S4)-ordered. On the other hand, for every pair of u ∈ S1 and v ∈ S4,

dG3(u) + dG3(v) = (k − s4 − 1 + 1) + (k − s1 − 1 + 1) + (n− k − 1)

= n + k − s1 − s4 − 1

= |V (G3)|+ s4 + p4 − 2− ε4 − 1,

and hence when l = 4, we cannot decrease the value of εi.

Example 4: Let l = 5 and let Si be disjoint cliques for 1 ≤ i ≤ 5 with s4 ≥ 2

or s2 ≥ 2. We connect all pairs of Si and Sj except for S1 and S5, and S3 and S4.

Moreover, we add new n−k vertices and join one vertex of them to
⋃5

i=1 Si, some of

others to S1 ∪S2 ∪S3, and the remaining vertices to S2 ∪S4 ∪S5. Let G4 be a graph

obtained by above construction. Then |V (G4)| = n and pi = 1 for any 1 ≤ i ≤ 5.

By the same reason as G3, G4 is not (S1, . . . , S5)-ordered. On the other hand,

for every pair of u ∈ S1 and v ∈ S5,

dG4(u) + dG4(v) = (k − s5 − 1 + 1) + (k − s1 − 1 + 1) + (n− k − 1)

= n + k − s1 − s5 − 1

= |V (G4)|+ s5 + p5 − 2− ε5 − 1,

and hence when l = 5, and si−1 ≥ 2 or si+2 ≥ 2, we cannot decrease the value of εi.

Example 5: Let l = 6 and let Si be disjoint cliques for 1 ≤ i ≤ 6 with s5 ≥ 2 or

s2 ≥ 2. We connect all pairs of Si and Sj except for S1 and S6, S2 and S3, and S4

and S5. We add n−k new vertices, and join two vertices of them to
⋃6

i=1 Si, some of

others to S1 ∪S3 ∪S5, and the remaining vertices to S2 ∪S4 ∪S6. Let G5 be a graph

obtained by above construction. Then |V (G5)| = n and pi = 1 for any 1 ≤ i ≤ 6.

Again, G5 is not (S1, . . . , S6)-ordered, and for every pair of u ∈ S1 and v ∈ S6,

dG5(u) + dG5(v) = (k − s6 − 1 + 2) + (k − s1 − 1 + 2) + (n− k − 2)

= n + k − s1 − s6

= |V (G5)|+ s6 + p6 − 2− ε6 − 1,
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and hence when l = 6, and si−1 ≥ 2 or si+2 ≥ 2, we cannot decrease the value of εi.

Example 6: Let l ≥ 7 and si = 2 or si = 3 for all 1 ≤ i ≤ l. We define Hi as a path

uiu
′
ivi if si = 3, and in case of si = 2, define Hi as an edge uivi. By connecting all pairs

of vertices in Hi and Hj, and removing 4l edges {uiui+1, uivi+1, viui+1, vivi+1 : 1 ≤
i ≤ l}, we obtain a graph H . Then by adding (l− 1) new vertices to a graph H and

joining them to all other vertices, we construct a graph G6. Then |V (G6)| = k+ l−1,

pi = 1 and pi = l − 2 for any 1 ≤ i ≤ l.

Because at least one vertex not in Si is necessary to connect Si and Si+1, G6 is

not (S1, . . . , Sl)-ordered, and for every pair of ui ∈ Si and vi+1 ∈ Si+1,

dG6(ui) + dG6(vi+1) =
(
k − si − 4 + 1 + l − 1

)
+

(
k − si+1 − 4 + 1 + l − 1

)

= n + k − si − si+1 + p− 7

= |V (G6)|+ s6 + p6 − 2− ε6 − 1.

Hence when si = 2 or si = 3 for all 1 ≤ i ≤ l, we cannot decrease the value of εi.
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