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Abstract

A graph G is said to be claw-free if G has no induced subgraph isomorphic to K1,3. For
a cycle C in a graph G, C is called a Tutte cycle of G if C is a Hamilton cycle of G, or the
order of C is at least 4 and every component of G − C has at most three neighbors on C.
In [On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997), 217–224],
Ryjáček proved that the conjectures by Matthews and Sumner (every 4-connected claw-free
graph is Hamiltonian) and by Thomassen (every 4-connected line graph is Hamiltonian) are
equivalent. In this paper, we show the above conjectures are equivalent with the conjecture
by Jackson in 1992 (every 2-connected claw-free graph has a Tutte cycle).
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1 Introduction

In this paper, we consider finite graphs without loops. For terminology and notation not defined

in this paper, we refer the readers to [5]. Let G be a graph. We denote by V (G) and E(G) the

vertex set and the edge set of G, respectively. The degree of a vertex v of G is the number of

edges incident with v in G, and we denote by δ(G) the minimum degree of G. For X ⊆ V (G),

we let G[X] denote the subgraph induced by X in G, and let G − X = G[V (G) − X]. For
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a subgraph H of G, let G − H = G − V (H). A graph G is said to be Hamiltonian if G has

a Hamilton cycle, i.e., a cycle containing all vertices of G, and Hamilton-connected if G has a

Hamilton path between any pair of vertices, i.e., a path containing all vertices of G. A graph G

is said to be claw-free if G has no induced subgraph isomorphic to K1,3. For a cycle C of G, C

is said to be maximal if there exists no cycle C ′ such that V (C) ⊊ V (C ′).

In this paper, we will deal with many statements which are unknown to be true or not. We

call two statements equivalent if the correctness of one statement implies that of the other and

vice versa. Most of the results in this paper are motivated by the following two conjectures due

to Matthews and Sumner [16] and Thomassen [22], respectively.

Conjecture A (Matthews and Sumner [16], Thomassen [22]) The following statements

are true.

(A1) Every 4-connected claw-free graph is Hamiltonian.

(A2) Every 4-connected line graph is Hamiltonian.

Since every line graph is claw-free, statement (A2) is a special case of statement (A1).

However it is known that a result on closures due to Ryjáček [17] implies that statements (A1)

and (A2) are even equivalent.

Theorem B (Ryjáček [17]) Statements (A1) and (A2) are equivalent.

Like Theorem B, many statements that are seemingly stronger or weaker than statements

(A1) and (A2) have been proven to be equivalent to it as follows (see a survey [4] for more

details). Note that statements (A5) and (A6) were conjectured by Ash and Jackson [1] and

Fleischner [7], respectively.

Theorem C All of the following statements are equivalent to statements (A1) and (A2).

(A3) Every 4-connected claw-free graph is Hamilton-connected [18].

(A4) Every 4-connected line graph is 1-Hamilton-connected (2-edge-Hamilton-connected) [14].

(A5) Every essentially 4-edge-connected graph has a dominating closed trail [8].

(A6) Every cyclically 4-edge-connected cubic graph has a dominating cycle [8].

(A7) Every cyclically 4-edge-connected cubic graph that is not 3-edge-colorable has a dominating

cycle [11].

(A8) Every snark has a dominating cycle [2].

Recently, as a positive result related to Conjecture A, Kaiser and the fourth author [15]

proved that every 5-connected claw-free graph with minimum degree at least 6 is Hamilton-

connected.
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On the other hand, it is known that considering “Tutte cycles” is an effective approach to

some problems on Hamiltonicity, where a cycle C of a graph G is called a Tutte cycle of G if

(i) C is a Hamilton cycle of G, or (ii) |V (C)| ≥ 4 and every component of G − C has at most

three neighbors on C. Note that every Tutte cycle C of a 4-connected graph G is a Hamilton

cycle, since otherwise the neighbors of a component of G − C form a cut set of order at most

three, contradicting 4-connectedness of G. One can show that every 4-connected planar graphs

are Hamiltonian by proving assertions on the existence of certain Tutte cycles in 2-connected

planar graphs (see [21, 23]). Starting with this result, many researchers have studied about the

existence of certain Tutte cycles not only in planar graphs but also in projective planar graphs

or graphs on other surfaces in order to show Hamiltonicity of such graphs, (for example, see

[19, 20, 24]). Thus, it has succeeded to show Hamiltonicity of 4-connected planar graphs or

graphs on surfaces, considering stronger concept “Tutte cycles”.

Motivated by the above situation for planar graphs, in this paper, we concentrate on Tutte

cycles in claw-free graphs. As a possible approach to solve Conjecture A, Jackson [10] proposed

the following conjecture (also see a survey [6, Conjecture 2a.5]).

Conjecture D (Jackson [10]) The following statement is true.

(A9) Every 2-connected claw-free graph has a Tutte cycle.

As mentioned above, Tutte cycles in 4-connected graphs are Hamilton cycles, and hence

statement (A9) implies statement (A1). The main result of this paper is to show that the

converse also holds. In fact, we prove the following theorem.

Theorem 1 Statements (A1) and (A9) are equivalent.

On the other hand, if a graph has a Tutte cycle, then we can expect that it is long since it

can avoid only vertices in a component of the graph after deleting a cut set of order at most

three. Actually, Tutte cycles in 4-connected graphs are Hamilton cycles, i.e., Tutte cycles in

4-connected graphs are longest cycles of the graphs. How about 2-connected (or 3-connected)

claw-free graphs? In view of Theorem 1, it would be natural to ask that every 2-connected (or

3-connected) claw-free graph has a Tutte cycle which is longest. As an answer of this problem,

in Section 6, we will give a 3-connected claw-free graph in which any Tutte cycle is not longest.

Thus it is not always true that a 2-connected (or 3-connected) claw-free graph has a longest

one. However, the following theorem, which is also our main theorem, implies that if every

2-connected claw-free graph has a Tutte cycle, then we can always take it so that it is maximal.

Theorem 2 Statement (A9) is equivalent to the following statement.

(A10) Every 2-connected claw-free graph has a Tutte cycle which is a maximal cycle of the graph.

In Sections 3 and 4, we prove Theorems 1 and 2 by using closure concepts and other related

results, some of which are also new.
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2 Notation and terminology

In this section, we prepare terminology and notation which we use subsequent sections. Let G

be a graph. For a vertex v of G, we denote by dG(v) and NG(v) the degree and the neighborhood

of v in G, respectively, and let NG[v] = NG(v) ∪ {v}. For an integer l, let Vl(G) = {v ∈ V (G) |
dG(v) = l}, and let V≥l(G) =

∪
m≥l Vm(G) and V≤l(G) =

∪
m≤l Vm(G). For a subgraph H of

G and a vertex v in G − H, let NH(v) = NG(v) ∩ V (H). For subgraphs H and F of G with

V (F ) ∩ V (H) = ∅, we define NH(F ) =
∪

v∈V (F )NH(v). We use L(G) for the line graph of G.

Let e ∈ E(G). We denote by ve a vertex in L(G) corresponding to e. Let V (e) be the set of

end vertices of e, and we define EG(e) = {f ∈ E(G) | V (f) ∩ V (e) ̸= ∅}. The edge degree of

e in G is defined by the number of elements of EG(e) − {e}, i.e., the number of edges incident

with e. Note that for a graph G, the minimum edge degree of G is d if and only if the minimum

degree of L(G) is d. For subsets X and Y of V (G) with X ∩ Y = ∅, let EG(X,Y ) denote the

set of edges between X and Y , and let eG(X,Y ) = |EG(X,Y )|. We often identify a subgraph

H of G with its vertex set V (H). For example, we write EG(H,F ) instead of EG(V (H), V (F ))

for two disjoint subgraphs H and F of G. For a graph H and an edge set X, H + X means

the graph with vertex set V (H) ∪
(∪

e∈X V (e)
)
and the edge set E(H) ∪X. For a subgraph H

of G, let EG(H) = E(G[V (H)]) ∪ EG(H,G −H). A star is a graph consisting of a vertex and

edges incident with the vertex (note that a star is not necessary a tree in this paper).

3 Closure

In this and the next sections, we will prove Theorems 1 and 2. In order to prove them, here we

consider a new statement and divide the proof into two theorems. Before mentioning those, we

need some definitions.

A connected graph T is called a closed trail (abbreviated as CT) if all vertices of T have even

degree in T . Let H be a multigraph, and let T be a CT of H. We call T a dominating closed

trail of H if H −T is edgeless (in case that T is a cycle, we call T a dominating cycle), and T is

said to be edge-maximal if there exists no closed trail T ′ of H such that EH(T ) ⊊ EH(T ′). Note

that a dominating CT of H is an edge-maximal CT of H. In [9], it is shown that for a connected

multigraph H with |E(H)| ≥ 3, H has a dominating CT if and only if L(H) is Hamiltonian.

Hence by the definition of an edge-maximal CT, we can easily obtain the following lemma.

Lemma 1 Let H be a graph, and let T be an edge-maximal CT of H and H∗ = H[V (T )] +

EH(T,H − T ). Then L(H∗) has a Hamiltonian cycle which is a maximal cycle of L(H).

Let H be a graph with |E(H)| ≥ 3. For a closed trail T of H, T is called a Tutte closed

trail of H if (i) EH(T ) = E(H), or (ii) |EH(T )| ≥ 4 and eH(F, T ) ≤ 3 for every component

F of H − T , and T is called a weakly Tutte closed trail of H if (i) EH(T ) = E(H), or (ii)
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|EH(T )| ≥ 4 and eH(F, T ) ≤ 3 for all F ∈ FH(T ), where let FH(T ) = {F | F is a component

of H − T with |V (F )| ≥ 2}. If T is a Tutte closed trail (resp. a weakly Tutte closed trail) and

an edge-maximal closed trail of H, then we call T a Tutte (resp. a weakly Tutte) edge-maximal

closed trail of H. Furthermore, we need the following terminology and notation. Now let H

be a connected multigraph. For an edge-cut set X of H, X is called an essential k-edge-cut

set of H if |X| = k and G − X has exactly two components of orders at least 2. We define

Ek(H) = {X ⊆ E(H) | X is an essential k-edge-cut set of H}. For an integer k ≥ 2, H is called

essentially k-edge-connected if |E(H)| ≥ k + 1 and El(H) = ∅ for all l < k. It is known that for

a multigraph H such that L(H) is not complete, H is essentially k-edge-connected if and only

if L(H) is k-connected and that if H is essentially 2-edge-connected and H is not a star, then

H − V1(H) is 2-edge-connected.

We are ready to state a new statement that plays a crucial role in the proofs of Theorems 1

and 2. We also give two theorems.

(A11) Every essentially 2-edge-connected multigraph has a weakly Tutte edge-maximal CT.

Theorem 3 If statement (A1) is true, then statement (A11) is also true.

Theorem 4 If statement (A11) is true, then statement (A10) is also true.

Here we prove Theorems 1 and 2 assuming Theorems 3 and 4.

Proof of Theorem 1. It is clear that statement (A10) implies statement (A9) and statement

(A9) implies statement (A1). On the other hand, if statement (A1) is true, then by Theorem 3,

statement (A11) is true, and by Theorem 4, statement (A10) is also true. This completes the

proofs of Theorems 1 and 2. □

Thus, to prove Theorems 1 and 2, it suffices only to show Theorems 3 and 4. We will prove

Theorems 3 and 4 in the next section and in the rest of this section, respectively. Notice that

by Theorems 3 and 4, we have that statement (A11) is also equivalent to statement (A1).

Before preparing some results to prove Theorem 4, we also state other statements and a

theorem as follows.

(A12) Every essentially 2-edge-connected multigraph has a weakly Tutte CT.

(A13) Every essentially 2-edge-connected multigraph has a Tutte CT.

Theorem 5 If statement (A12) is true, then statement (A13) is also true.

We can easily see that statement (A11) implies statement (A12). Moreover, by the definition

of a Tutte CT, it is easy to check that statement (A13) implies statement (A5) “every essentially

4-edge-connected graph has a dominating CT”. Therefore, combining this with Theorems C, 3
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and 5, we have that statement (A1) is also equivalent to statements (A12) and (A13). Note that

it is not necessary to prove Theorem 5 for the proofs of Theorems 3 and 4, but we prove it since

it may itself be interesting (we will prove Theorem 5 in Section 5).

Now we introduce some concept to prove Theorem 4. In [17], Ryjáček introduced the concept

of a closure for claw-free graphs as follows. For a vertex v of a graph G, we call v a locally

connected vertex of G if G[NG(v)] is connected. For a locally connected vertex v of a graph G,

we call v an eligible vertex of G if G[NG(v)] is not compete. Let G be a claw-free graph. For

an eligible vertex v of G, the operation of adding all possible edges between vertices in NG(v) is

called local completion at v. In [17], it is shown that this operation preserves the claw-freeness

of the original graph. Iterating local completions as long as possible, we obtain the graph G∗

in which G∗[NG∗(v)] is a complete graph for every locally connected vertex v, i.e., there is no

eligible vertex in G∗. We call this graph the closure of G, and denote it cl(G). In [17], it is

shown that the closure of a graph has the following property.

Theorem E (Ryjáček [17]) Let G be a claw-free graph. Then the following hold.

(i) cl(G) is well-defined, (i.e., uniquely defined).

(ii) There exists a triangle-free simple graph H such that L(H) = cl(G).

(iii) The length of a longest cycle in G and in cl(G) is the same.

To obtain Theorem E (iii), Ryjáček actually proved the following, where for an eligible vertex

v of a claw-free graph G, let Gv be the graph obtained from G by local completion at v.

Proposition F (Ryjáček [17]) Let G be a claw-free graph and v be an eligible vertex of G.

If C ′ is a longest cycle of Gv, then G has a cycle C such that V (C) = V (C ′).

Proposition F might not hold for a cycle C ′ which is not a longest cycle of Gv. However, in the

proof of Proposition F, the maximality of |V (C ′)| is only used for the fact that NGv [v] ⊆ V (C ′)

if E(Gv[NGv [v]]) ∩ E(C ′) ̸= ∅. Therefore, the same argument can work in the proof of the

following proposition.

Proposition 6 Let G be a claw-free graph and v be an eligible vertex of G. If C ′ is a maximal

cycle of Gv, then G has a maximal cycle C such that V (C) = V (C ′).

As a corollary of Proposition 6, we can obtain the following, where for convenience, we call

a cycle C of a graph G a Tutte maximal cycle of G if C is a Tutte cycle and a maximal cycle

of G. Note that if C ′ is a Tutte cycle of Gv, then C is a Tutte cycle of G for any cycle C in G

such that V (C) = V (C ′).

Corollary 7 Let G be a claw-free graph. If cl(G) has a Tutte maximal cycle, then G has a

Tutte maximal cycle.
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By the definition of a weakly Tutte edge-maximal CT, the following holds.

Proposition 8 Let G be a claw-free graph, and let H be a graph with L(H) = cl(G). If H has

a weakly Tutte edge-maximal CT, then L(H) has a Tutte maximal cycle.

Proof of Proposition 8. Let T be a weakly Tutte edge-maximal CT of H and H∗ = H[V (T )]+

EH(T,H − T ). Then by Lemma 1, L(H∗) has a Hamilton cycle C which is a maximal cycle

of L(H). On the other hand, by the definition of a weakly Tutte CT, eH(F, T ) ≤ 3 for all

F ∈ FH(T ). Since EH(F )∩E(H∗) = EH(F, T ) for each F ∈ FH(T ), we have that |NC(L(F ))| =
|EH(F ) ∩ E(H∗)| = eH(F, T ) ≤ 3 for each F ∈ FH(T ). Moreover, by again the definition of a

weakly Tutte CT, V (C) = E(H∗) = EH(T ) = E(H) or |V (C)| = |E(H∗)| = |EH(T )| ≥ 4 holds.

These imply that C is a Tutte cycle of L(H). Thus C is a Tutte maximal cycle of L(H). □

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Suppose that statement (A11) is true. Let G be a 2-connected claw-free

graph. By Theorem E (ii), there exists a triangle-free simple graph H such that L(H) = cl(G).

If L(H) is complete, then L(H) clearly has a Hamilton cycle, and hence by Theorem E (iii), G

has a Hamilton cycle, that is, G has a Tutte maximal cycle. Thus we may assume that L(H)

is not complete, and hence H is essentially 2-edge-connected. Since we assumed that statement

(A11) is true, H has a weakly Tutte edge-maximal CT. Then, by Proposition 8, L(H) has a

Tutte maximal cycle. Hence by Corollary 7, G has a Tutte maximal cycle. Thus statement

(A10) is also true and this completes the proof of Theorem 4. □

4 Proof of Theorem 3

4.1 Set up for the proof of Theorem 3

In the end of this section, we will prove Theorem 3, that is, prove statement (A11) assuming

(A1), by induction on the number of elements of E2(H) ∪ E3(H), where H is a given essentially

2-edge-connected multigraph. In order to do that, we need the following for the first step of

the induction. Here for a graph H and a subset S of E(H) ∪ V (H), a closed trail T of H is

a called an S-closed trail (abbreviated as S-CT) if S ⊆ E(T ) ∪ V (T ). Furthermore, if T is a

dominating closed trail (resp. a weakly Tutte closed trail) and an S-closed trail of H, we call T

a dominating (resp. a weakly Tutte) S-closed trail of H.

Lemma 2 Statement (A1) is equivalent to the following statement.

(A14) Every essentially 4-edge-connected multigraph H has a dominating V≥4(H)-CT, i.e., H

has a Tutte edge-maximal CT.
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Proof of Lemma 2. By Theorem C, it is easy to see that statement (A14) implies statement

(A1). So it suffices to show the converse. Assume that statement (A1) is true. Then by Theorem

C, every essentially 4-edge-connected graph has a dominating CT. LetH be an essentially 4-edge-

connected multigraph. Let H∗ be the graph obtained from H by adding a pendant edge to each

vertex in V≥4(H). Then H∗ is also essentially 4-edge-connected and V≥4(H
∗) = V≥4(H). By the

assumption, H∗ has a dominating closed trail T . Since each vertex in V≥4(H
∗) is incident with

a pendant edge, V≥4(H
∗) ⊆ V (T ). Therefore by the definition of H∗, since V≥4(H

∗) = V≥4(H),

we have that T is a dominating V≥4(H)-CT of H. □

We next prepare some results to prove the case of E2(H) = ∅ and E3(H) ̸= ∅. To show this

case, we actually consider about weakly Tutte closed trails passing through specified vertices

and edges. Before mentioning the statement, we prepare the following terminology. Let H be a

multigraph. For three distinct edges e1, e2 and e3 in H, (e1, e2, e3) is called a 3-star of H if there

exists a vertex u of H such that dH(u) = 3, u ∈ V (e1)∩V (e2)∩V (e3) and V (e3)−{u} ⊆ V≥3(H),

and u is called the center of (e1, e2, e3).

(A15) Let H be an essentially 4-edge-connected multigraph, and let (e1, e2, e3) be a 3-star of H.

Then H has a dominating {e1, e2} ∪ V (e3) ∪ V≥4(H)-CT.

In order to consider statement (A15), we need the concept called “V2(H)-dominated”. A

graph H is said to be V2(H)-dominated if for any distinct four vertices u1, u2, v1 and v2 in H

with {u1, u2, v1, v2} = V2(H), the graph H + {u1u2, v1v2} has a dominating {u1u2, v1v2}-CT.
The following was proven by Kužel [13].

Theorem G (Kužel [13]) Statement (A1) is equivalent to the following statement.

(A16) Any subgraph H of an essentially 4-edge-connected cubic graph with δ(H) = 2 and

|V2(H)| = 4 is V2(H)-dominated.

Actually, we show the following theorem in this section.

Theorem 9 If statement (A16) is true, then statement (A15) is also true.

We prove Theorem 9 in the next subsection and prove Theorem 3 in Subsections 4.3 and 4.4.

At the end of this subsection, we give another theorem as follows.

Theorem 10 If statement (A15) is true, then statement (A1) is also true.

Combining Theorem 10 with Theorems G and 9, statement (A1) is also equivalent to state-

ment (A15). Note that it is not necessary to prove Theorem 10 for the proof of Theorem 9, but

we prove it since it may itself be interesting (we will prove Theorem 10 in Section 5).
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4.2 Proof of Theorem 9

We first prove Theorem 9. We need some concepts and results.

Let k ≥ 3 be an integer, and let H be an essentially 3-edge-connected graph such that L(H)

is not complete. Note that V≤2(H) is an independent set ofH. The core of a graphH denoted by

core(H), is the graph obtained by recursively deleting all vertices of degree 1, recursively deleting

a vertex z with degree 2 in H and adding the edge xy with NH(z) = {x, y}, and recursively

deleting the created loops. It is easy to see that if H is an essentially k-edge-connected graph

such that L(H) is not complete, then core(H) is a 3-edge-connected essentially k-edge-connected

multigraph (in particular, δ(core(H)) ≥ 3). Moreover we can see that the following holds.

Lemma 3 Let H be an essentially 4-edge-connected graph such that L(H) is not complete, and

let H∗ = core(H). Suppose that H∗ has a dominating V≥4(H
∗)-closed trail T ∗. Then H has a

dominating V≥4(H)-closed trail T which satisfies the following:

• If xy ∈ E(T ∗), then xy ∈ E(T ) or xz, yz ∈ E(T ) for some z ∈ V2(H).

Proof of Lemma 3. By the definition of a core, for each xy ∈ E(H∗), xy ∈ E(H) or there

exists a vertex z in V2(H) such that xz, yz ∈ E(H). Let X = {e ∈ E(H∗) | e /∈ E(H)}.
For each e = xy ∈ X, let ze be a vertex in V2(H) such that NH(ze) = {x, y}. Then by

replacing e with a path xzey for each e = xy ∈ E(T ∗) ∩ X, we can obtain a closed trail T

of H such that V (T ) = V (T ∗) ∪ {ze | e ∈ E(T ∗) ∩ X} and E(T ) = {xze, yze | e = xy ∈
E(T ∗) ∩ X} ∪ (E(T ∗) − X). Moreover, since V≥4(H

∗) = V≥4(H) by the definition of a core

and the assumption, V≥4(H) = V≥4(H
∗) ⊆ V (T ∗) ⊆ V (T ). Therefore, to complete the proof,

we have only to prove that T is a dominating CT of H. Note that |E(H)| ≥ 5 because H is

essentially 4-edge-connected. Let x ∈ V (H−T ). Since V (T ∗) ⊆ V (T ), x /∈ V (T ∗). Suppose that

NH(x) ̸⊆ V (T ), and let z ∈ NH(x)−V (T ). If {x, z} ⊆ V≥3(H), then by the definition of a core,

{x, z} ⊆ V (H∗) and xz ∈ E(H∗). Since x, z /∈ V (T ∗), this contradicts that T ∗ is a dominating

CT of H∗. Thus {x, z} ∩ V≤2(H) ̸= ∅. Since H is essentially 4-edge-connected and L(H) is

not complete, we also have that {x, z} ∩ V≥3(H) ̸= ∅. Since x, z ∈ V (H − T ) and xz ∈ E(H),

we may assume that x ∈ V≥3(H) and z ∈ V≤2(H). Since V≥4(H) ⊆ V (T ), x ∈ V3(H). Then

EH(xz)−{xz} ∈ E2(H)∪ E3(H), a contradiction. Thus NH(x) ⊆ V (T ). Since x is an arbitrary

vertex in H − T , this implies that T is a dominating CT of H. □

We also need the following operation (see [8] for more details). Let H be a graph and

z ∈ V≥4(H), and let u1, u2, . . . , ud (d = dH(z)) be an ordering of neighbors of z (we allow

repetition in case of parallel edges). Then the graph Hz obtained from the disjoint union of

G − z and the cycle Cz = z1z2 . . . zdz1 by adding the edges uizi for each 1 ≤ i ≤ d is called

an inflation of H at z. If δ(H) ≥ 3, then, by successively taking an inflation at each vertex

of degree greater than 3, we can obtain a cubic graph HI , called a cubic inflation of H. An
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inflation of a graph at a vertex is not unique (since it depends on the ordering of neighbors of

z) and the operation may decrease the edge-connectivity. However, the following was proven in

[8].

Theorem H (Fleischner and Jackson [8]) Let H be an essentially 4-edge-connected graph

with δ(H) ≥ 3. Then some cubic inflation of H is also essentially 4-edge-connected.

Let HI be a cubic inflation of a graph H and for each z ∈ V (H), set I(z) = V (Cz) if

z ∈ V≥4(H); otherwise, set I(z) = {z}. Observing that a dominating cycle in HI must contain

at least one vertex in I(z) for each z ∈ V≥4(H), we immediately have the following fact (which

is implicit in [8]).

Lemma I (Fleischner and Jackson [8]) Let H be a graph with δ(H) ≥ 3, and let HI be a

cubic inflation of H. Suppose that HI has a dominating cycle C. Then H has a dominating

V≥4(H)-closed trail T which satisfies the following:

• If uv ∈ E(C) with u ∈ I(x) and v ∈ I(y) for some x, y ∈ V (H) (x ̸= y), then xy ∈ E(T ).

Proof of Theorem 9. Suppose that statement (A16) is true. Let H be an essentially 4-edge-

connected multigraph, and let (e1, e2, e3) be a 3-star of H (note that V (e3) ⊆ V≥3(H) and that

V (e1)∪ V (e2) ⊆ V≥2(H) because H is essentially 4-edge-connected). We will find a dominating

{e1, e2} ∪ V (e3) ∪ V≥4(H)-CT of H.

If L(H) is complete, then we can easily see that (i) H is a star such that V (e1) = V (e2) =

V (e3), or (ii) H is a triangle such that e3 is an unique simple edge in H or V (ei) = V (e3) and

V (e3−i) ̸= V (e3) for some i = 1 or 2. In either case, clearly H has a spanning closed trail T

such that {e1, e2} ⊆ E(T ), that is, H has a desired closed trail.

Thus we may assume that L(H) is not complete. Let u be the center of (e1, e2, e3). Let

H∗ = core(H). Then H∗ is an essentially 4-edge-connected graph with δ(H∗) ≥ 3. Note that

e3 ∈ E(H∗) since V (e3) ⊆ V≥3(H). Let e∗1 and e∗2 be two distinct edges incident with u in H∗

such that e∗i ̸= e3 for each i = 1, 2, and let e∗3 = e3. Note that (e∗1, e
∗
2, e

∗
3) is a 3-star with center

u of H∗.

By Theorem H, there exists a cubic inflation HI of H∗ such that HI is essentially 4-edge-

connected. Note that HI is a simple graph. Note also that by the definition of a 3-star,

I(u) = {u}. For each i with 1 ≤ i ≤ 3, let vi ∈ V (e∗i ) − {u}, and let v′i ∈ I(vi) such that

uv′i ∈ E(HI). We claim that HI has a dominating cycle containing uv′1, uv
′
2 and v′3. Since HI

is essentially 4-edge-connected, if v′kv
′
l ∈ E(HI) for some k and l with 1 ≤ k < l ≤ 3, then it

is easy to check that HI ∼= K4, and hence HI has a desired dominating cycle. Thus we may

assume that v′kv
′
l /∈ E(HI) for each k and l with 1 ≤ k < l ≤ 3.

Let {w(3)
1 , w

(3)
2 } = NHI (v′3)− {u}. Then since H ′ := HI − {u, v′3} is a subgraph of HI such

that δ(H ′) = 2 and V2(H
′) = {v′1, v′2, w

(3)
1 , w

(3)
2 } and we assumed that statement (A16) is true,

10



e∗1 e∗3

e∗2

uv1 v3

v2

u
v′1 v′3

v′2

v′1

v′2

w
(1)
3

w
(2)
3

w
(1)
3

w
(2)
3

I(v1)

I(v2)

I(v3) I(v1) I(v3)

I(v2)

HI H ′ + {v′1v′2, w
(3)
1 w

(3)
2 }

Figure 1: The subgraph H ′ of HI

H ′ + {v′1v′2, w
(3)
1 w

(3)
2 } has a dominating cycle C ′ containing v′1v

′
2 and w

(3)
1 w

(3)
2 (see Figure 1).

Hence (C ′ − {v′1v′2, w
(3)
1 w

(3)
2 }) + {uv′1, uv′2, v′3w

(3)
1 , v′3w

(3)
2 } is a desired dominating cycle of HI .

Thus the assertion holds. Then by Lemma I, H∗ has a dominating {e∗1, e∗2} ∪ V (e∗3) ∪ V≥4(H
∗)-

CT. Hence by Lemma 3 and the definition of e∗1, e
∗
2 and e∗3, H has a dominating {e1, e2}∪V (e3)∪

V≥4(H)-CT. Therefore, statement (A15) is true, and this completes the proof of Theorem 9. □

4.3 Preparation for the proof of Theorem 3

In this subsection, we prepare some technical lemmas to prove Theorem 3.

In the proof of Theorem 3, we will restrict maximal cycles on H to some component. To

show that the resulting graph is a weakly Tutte CT, we use the following lemma.

Lemma 4 Let H be a graph, and let T be a weakly Tutte CT of H. If T ′ is a CT of H such

that EH(T ′) = EH(T ), then T ′ is also a weakly Tutte CT of H.

Proof of Lemma 4. Let T ′ be a CT of H such that EH(T ′) = EH(T ), and suppose that

T ′ is not a weakly Tutte CT of H. Then there exists F ′ ∈ FH(T ′) with eH(F ′, T ′) ≥ 4.

Write EH(F ′, T ′) = {e1, . . . , el} (l ≥ 4). Since EH(F ′, T ′) ⊆ EH(T ′) = EH(T ), V (T ) ∩(∪l
i=1 V (ei)

)
̸= ∅. Let S = V (T ) ∩

(∪l
i=1 V (ei)

)
, and suppose that S ⊆ V (T ′) ∩

(∪l
i=1 V (ei)

)
.

Then {e1, . . . , el} = EH(F ′, T ′) ⊆ EH(T,H −T ) and there exists a component F of H −T such

that V (F ′) ⊆ V (F ), which contradicts the assumption that T is a weakly Tutte CT of H. Thus

S ∩ V (F ′) ∩
(∪l

i=1 V (ei)
)
̸= ∅, and hence E(F ′) ∩ EH(T ) ̸= ∅. Since E(F ′) ∩ EH(T ′) = ∅, this

contradicts the assumption that EH(T ′) = EH(T ). □

In the rest of this subsection, we fix the following notation. Let k be an integer with

2 ≤ k ≤ 3, and let H be an essentially k-edge-connected graph.
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uH2

e1

e2

e3

H

H1 H2

HX
1

H1

e
(1)
1

e
(1)
3

e
(1)
2

X = {e1, e2, e3} ∈ T3(H)

Figure 2: The graph HX
1

To prove Theorem 3, we prepare the following terminology and notation. Let Tk(H) =

{(X,H1, H2) | X ∈ Ek(H) and, H1 and H2 are distinct components of G−X}. Let (X,H1,H2) ∈
Tk(H). We define two graphs HX

1 and HX
2 as follows. For each i = 1, 2, let HX

i be the graph

obtained from H by contracting H3−i to a vertex uH3−i . Note that HX
i is also an essentially k-

edge-connected multigraph. If X = {e1, . . . , ek}, then for each i, j with 1 ≤ i ≤ 2 and 1 ≤ j ≤ k,

let e
(i)
j be the edge in HX

i corresponding to ej (see Figure 2).

Now we fix the following notation. Let (X,H1,H2) ∈ Tk(H), and write X = {e1, . . . , ek}.

Lemma 5 Let 1 ≤ i ≤ 2. If HX
i has a weakly Tutte edge-maximal closed trail Ti such that

E(Ti)∩{e(i)1 , . . . , e
(i)
k } = ∅, then Ti is a weakly Tutte edge-maximal closed trail of H, or HX

i has

a weakly Tutte edge-maximal closed trail Ri such that E(Ri) ∩ {e(i)1 , . . . , e
(i)
k } ̸= ∅.

Proof of Lemma 5.Wemay assume that i = 1. Note that T1 is a weakly Tutte CT ofH because

E(T1) ∩ {e(1)1 , . . . , e
(1)
k } = ∅. Suppose that T1 is not a weakly Tutte edge-maximal CT of H.

Then there exists an edge-maximal closed trail T ′ of H such that EH(T1) ⊊ EH(T ′). Note that

E(T ′)∩X ̸= ∅ because T1 is an edge-maximal CT of HX
1 such that E(T1)∩ {e(1)1 , . . . , e

(1)
k } = ∅.

Note also that |E(T ′)∩X| = 2 because 2 ≤ k ≤ 3. We may assume that E(T ′)∩X = {e1, e2}, and
let R1 = (T ′−V (H2))+{e(1)1 , e

(1)
2 }. Then R1 is a CT ofHX

1 . Since EH(T1) ⊆ EH(T ′), EHX
1
(T1)−

{e(1)1 , . . . , e
(1)
k } = EH(T1) ∩ E(H1) ⊆ EH(T ′) ∩ E(H1). Moreover, by the definition of R1 and

since {e(1)1 , . . . , e
(1)
k } ⊆ EHX

1
(R1) because uH2 ∈ V (R1), (EH(T ′) ∩ E(H1)) ∪ {e(1)1 , . . . , e

(1)
k } =

EHX
1
(R1). This implies that EHX

1
(T1) ⊆ EHX

1
(R1). Since T1 is an edge-maximal CT of HX

1 , we

have that EHX
1
(T1) = EHX

1
(R1), and hence R1 is also an edge-maximal CT of HX

1 . Furthermore,

since T1 is a weakly Tutte CT of HX
1 and EHX

1
(T1) = EHX

1
(R1), it follows from Lemma 4 that

R1 is also a weakly Tutte CT of HX
1 . Thus R1 is a weakly Tutte edge-maximal CT of HX

1 such

that E(R1) ∩ {e(1)1 , . . . , e
(1)
k } ̸= ∅. □

We further fix the following notation in the following three lemmas (Lemmas 6 through 8).

Let ei = v
(1)
i v

(2)
i with v

(1)
i ∈ V (H1) and v

(2)
i ∈ V (H2) for each 1 ≤ i ≤ k. Let l1 and l2 be

integers with 1 ≤ l1 < l2 ≤ k, and for each i = 1, 2, let Ti be a {e(i)l1
, e

(i)
l2
}-CT of HX

i and

T =
(
(T1 − uH2) ∪ (T2 − uH1)

)
+ {el1 , el2}.
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v
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H
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Figure 3: The component F of H − T

Lemma 6 If Ti is a weakly Tutte CT of HX
i for each i = 1, 2 and {v(i)1 , . . . , v

(i)
k } ⊆ V (Ti) for

some i = 1 or 2, then T is a weakly Tutte CT of H.

Proof of Lemma 6. We may assume that l1 = 1 and l2 = 2, and hence {v(i)1 , v
(i)
2 } ⊆ V (Ti)

for each i = 1, 2. By the symmetry of T1 and T2, we also may assume that {v(1)1 , . . . , v
(1)
k } ⊆

V (T1). Let F be a component of H − T . Since {v(1)1 , . . . , v
(1)
k } ⊆ V (T1) − {uH2} ⊆ V (T ) and

{e1, e2} ⊆ E(T ), we have that if v
(2)
k /∈ V (F ), then F is a component of HX

i − Ti for some

i = 1 or 2, and hence EH(F, T ) = EHX
i
(F, Ti) for some i = 1 or 2; if v

(2)
k ∈ V (F ) (note that

in this case, k = 3), then F is a component of HX
2 − T2 and e

(2)
k ∈ EHX

2
(F, T2), and hence

EH(F, T ) =
(
EHX

2
(F, T2)− {e(2)k }

)
∪ {ek} (see Figure 3). Since Ti is a weakly Tutte CT of HX

i

for each i = 1, 2, this implies that T is a weakly Tutte CT of H. □

Lemma 7 If Ti is an edge-maximal CT of HX
i for each i = 1, 2 and {v(i)1 , . . . , v

(i)
k } ⊆ V (Ti) for

some i = 1 or 2, then T is an edge-maximal CT of H.

Proof of Lemma 7. If {v(1)1 , . . . , v
(1)
k } ⊆ V (T1), then let A = {v(1)1 , . . . , v

(1)
k }; otherwise, let

A = {v(2)1 , . . . , v
(2)
k }. Suppose that T is not an edge-maximal CT of H. Then there exists an

edge-maximal closed trail T ′ of H such that EH(T ) ⊊ EH(T ′). Note that E(T ′)∩X ̸= ∅. Let m1

and m2 be integers with 1 ≤ m1 < m2 ≤ k such that E(T ′)∩X = {em1 , em2}. For each i = 1, 2,

let Ri = (T ′ − V (H3−i)) + {e(i)m1 , e
(i)
m2}. Then Ri is a CT of HX

i for each i = 1, 2. Let 1 ≤ i ≤ 2.

Since EH(T ) ⊆ EH(T ′), we have that EHX
i
(Ti)− {e(i)1 , . . . , e

(i)
k } = EH(T ) ∩ E(Hi) ⊆ EH(T ′) ∩

E(Hi) = EHX
i
(Ri)−{e(i)1 , . . . , e

(i)
k }. Since {e(i)1 , . . . , e

(i)
k } ⊆ EHX

i
(Ti)∩EHX

i
(Ri) because uH3−i ∈

V (Ti) ∩ V (Ri), this implies that EHX
i
(Ti) ⊆ EHX

i
(Ri). Since Ti is an edge-maximal CT of HX

i ,

we obtain EHX
i
(Ti) = EHX

i
(Ri), i.e., EHX

i
(Ti)−{e(i)1 , . . . , e

(i)
k } = EHX

i
(Ri)−{e(i)1 , . . . , e

(i)
k }. Since

i is an arbitrary integer with 1 ≤ i ≤ 2, EHX
i
(Ti) − {e(i)1 , . . . , e

(i)
k } = EHX

i
(Ri) − {e(i)1 , . . . , e

(i)
k }

holds for each i = 1, 2. On the other hand, since A ⊆ (V (T1)−{uH2})∪(V (T2)−{uH1}) = V (T ),

X ⊆ EH(T ), and hence X ⊆ EH(T ′). Thus we obtain EH(T ) = (EHX
1
(T1) − {e(1)1 , . . . , e

(1)
k }) ∪

(EHX
2
(T2)−{e(2)1 , . . . , e

(2)
k })∪X = (EHX

1
(R1)−{e(1)1 , . . . , e

(1)
k })∪ (EHX

2
(R2)−{e(2)1 , . . . , e

(2)
k })∪
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X = EH(T ′), a contradiction. □

We call (X,H1, H2) ∈ Tk(H) a minimal 3-tuple of H if there exists no X ′ ∈ Ek(H) such that

H −X ′ has a component H ′
2 such that V (H ′

2) ⊊ V (H2). Then by the definition of a minimal

3-tuple, we can obtain the following.

Lemma 8 Suppose that k = 3 and (X,H1,H2) is a minimum 3-tuple of H. If dH(v
(2)
j ) = 2 for

some j with 1 ≤ j ≤ 3, then H2 is isomorphic to K2.

Proof of Lemma 8. We may assume that j = 3. Since H is essentially 3-edge-connected,

X ∈ E3(H) and dH(v
(2)
3 ) = 2, it follows that there exists an unique vertex v′ in NH(v

(2)
3 )∩V (H2).

Note that v′ ∈ V≥3(H) and H2 − v
(2)
3 is connected. Then X ′ := {e1, e2, v(2)3 v′} is an edge-cut set

of H, and H1 + {e3} and H2 − v
(2)
3 are components of H −X ′. Therefore, since (X,H1,H2) is

a minimal 3-tuple of H, we have |V (H2 − v
(2)
3 )| = 1. □

4.4 Proof of Theorem 3

We finally prove Theorem 3.

Proof of Theorem 3. Assume that statement (A1) is true. Let H be an essntially 2-edge-

connected multigraph. We will prove that H has a weakly Tutte edge-maximal CT by induction

on g(H) := |E2(H) ∪ E3(H)|. If g(H) = 0, then H is essentially 4-edge-connected. By the

assumption that statement (A1) is true and Lemma 2, H has a desired CT, and we are done.

Hence we may assume that g(H) ≥ 1.

By way of a contradiction, suppose that

H has no weakly Tutte edge-maximal CT. (4.1)

Suppose first that E2(H) ̸= ∅, let (X,H1,H2) ∈ T2(H) and write X = {e1, e2}. Then HX
i is

also essentially 2-edge-connected and g(HX
i ) < g(H) for each i = 1, 2. Hence by the induction

hypothesis, HX
i has a weakly Tutte edge-maximal closed trail Ti for each i = 1, 2. By Lemma 5

and (4.1), we may assume that E(Ti) ∩ {e(i)1 , e
(i)
2 } ̸= ∅ for each i = 1, 2, and hence {e(i)1 , e

(i)
2 } ⊆

E(Ti) for each i = 1, 2. Then by Lemmas 6 and 7, T :=
(
(T1 − uH2) ∪ (T2 − uH1)

)
+ {e1, e2} is

a weakly Tutte edge-maximal CT of H, which contradicts (4.1) again. Thus E2(H) = ∅.
Then H is essentially 3-edge-connected. Let (X,H1,H2) be a minimal 3-tuple of H in T3(H).

Write X = {e1, e2, e3} and ei = v
(1)
i v

(2)
i with v

(1)
i ∈ V (H1) and v

(2)
i ∈ V (H2) for each 1 ≤ i ≤ 3.

Note that HX
i is also essentially 3-edge-connected, and g(HX

i ) < g(H) for each i = 1, 2, and

hence by the induction hypothesis, HX
1 has a weakly Tutte edge-maximal CT. We define T =

{T1 | T1 is a weakly Tutte edge-maximal CT of HX
1 such that E(T1) ∩ {e(1)1 , e

(1)
2 , e

(1)
3 } ̸= ∅}. By

Lemma 5 and (4.1), T ̸= ∅ (note that |E(T1) ∩ {e(1)1 , e
(1)
2 , e

(1)
3 }| = 2 for all T1 ∈ T ).
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Figure 4: The closed trail T of H

We divide the proof of Theorem 3 into two cases.

Case 1. dHX
2
(v

(2)
j ) ≥ 3 for each j with 1 ≤ j ≤ 3.

Let T1 ∈ T , and we may assume that E(T1) ∩ {e(1)1 , e
(1)
2 , e

(1)
3 } = {e(1)1 , e

(1)
2 }. Then by the

assumption of Case 1, (e
(2)
1 , e

(2)
2 , e

(2)
3 ) is a 3-star with center uH1 in HX

2 . Moreover, by the

definition of a minimal 3-tuple and since E2(H) = ∅, HX
2 is essentially 4-edge-connected. Since

we assumed that statement (A1) is true, it follows from Theorems G and 9 that statement (A15)

is also true. ThusHX
2 has a dominating {e(2)1 , e

(2)
2 }∪V (e

(2)
3 )∪V≥4(H

X
2 )-closed trail T2, i.e., T2 is a

weakly Tutte edge-maximal CT of HX
2 , {e(2)1 , e

(2)
2 } ⊆ E(T2) and {v(2)1 , v

(2)
2 , v

(2)
3 } ⊆ V (T2). Hence

by Lemmas 6 and 7, T :=
(
(T1 − uH2) ∪ (T2 − uH1)

)
+ {e1, e2} is a weakly Tutte edge-maximal

CT of H, which contradicts (4.1).

Case 2. dHX
2
(v

(2)
j ) ≤ 2 for some j with 1 ≤ j ≤ 3.

We may assume that dHX
2
(v

(2)
3 ) ≤ 2. Then by the denition of HX

2 and since X ∈ E3(H),

dH(v
(2)
3 ) = dHX

2
(v

(2)
3 ) = 2. Hence by Lemma 8, H2

∼= K2, i.e., v
(2)
1 = v

(2)
2 and v

(2)
1 ̸= v

(2)
3 . Let

T1 ∈ T . We choose T1 so that e
(1)
3 ∈ E(T1) or {v(1)1 , v

(1)
2 , v

(1)
3 } ⊆ V (T1) if possible.

Suppose that e
(1)
3 ∈ E(T1). By the symmetry of e

(1)
1 and e

(1)
2 , we may assume that E(T1) ∩

{e(1)1 , e
(1)
2 } = {e(1)1 }. Let T2 = HX

2 −{e(2)2 }. Then T2 is clearly a weakly Tutte {e(2)1 , e
(2)
3 }∪V (e

(2)
2 )-

CT of HX
2 such that EHX

2
(T2) = E(HX

2 ), i.e., T2 is a weakly Tutte edge-maximal CT of HX
2 ,

{e(2)1 , e
(2)
3 } ⊆ E(T2) and {v(2)1 , v

(2)
2 , v

(2)
3 } ⊆ V (T2). Hence by Lemmas 6 and 7, T :=

(
(T1−uH2)∪

(T2 − uH1)
)
+ {e1, e3} is a weakly Tutte edge-maximal CT of H, which contradicts (4.1). Thus

e
(1)
3 /∈ E(T1), that is, E(T1) ∩ {e(1)1 , e

(2)
2 , e

(2)
3 } = {e(1)1 , e

(2)
2 }.

Let T2 = HX
2 − v

(2)
3 and T =

(
(T1 − uH2)∪ (T2 − uH1)

)
+ {e1, e2} ( = (T1 − uH2) + {e1, e2}).

Then T2 is clearly a weakly Tutte {e(2)1 , e
(2)
2 }-CT of HX

2 such that EHX
2
(T2) = E(HX

2 ), i.e., T2

is a weakly Tutte edge-maximal CT of HX
2 and {e(2)1 , e

(2)
2 } ⊆ E(T2). Then by Lemma 6, we also

have that T is a weakly Tutte CT of H. Hence by Lemma 7 and (4.1), v
(1)
3 /∈ V (T1) and there

exists an edge-maximal closed trail T ′ of H such that EH(T ) ⊊ EH(T ′). In particular, since

v
(1)
3 /∈ V (T1),

EH(T ) = (EHX
1
(T1)− {e(1)1 , e

(1)
2 , e

(1)
3 }) ∪ {e1, e2, v(2)1 v

(2)
3 } (see Figure 4). (4.2)

Note that since T1 is an edge-maximal closed trail of HX
1 and EH(T ) ⊊ EH(T ′), EH(T ′) ∩
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X ̸= ∅. Let l1 and l2 be integers with 1 ≤ l1 < l2 ≤ 3 such that EH(T ′) ∩ X = {el1 , el2}.
Let R1 = (T ′ − V (H2)) + {e(1)l1

, e
(1)
l2

}. Then R1 is a CT of HX
1 . Since EH(T ) ⊆ EH(T ′),

EHX
1
(T1)− {e(1)1 , e

(1)
2 , e

(1)
3 } = EH(T ) ∩E(H1) ⊆ EH(T ′) ∩E(H1) = EHX

1
(R1)− {e(1)1 , e

(1)
2 , e

(1)
3 }.

Since {e(1)1 , e
(1)
2 , e

(1)
3 } ⊆ EHX

1
(T1) ∩ EHX

1
(R1) because uH2 ∈ V (T1) ∩ V (R1), this implies that

EHX
1
(T1) ⊆ EHX

1
(R1). Since T1 is an edge-maximal CT of HX

1 , we have EHX
1
(T1) = EHX

1
(R1).

Since T1 is a weakly Tutte CT of HX
1 , this together with Lemma 4 implies that R1 is a weakly

Tutte CT of HX
1 . Therefore R1 is a weakly Tutte edge-maximal CT of HX

1 such that E(R1) ∩
{e(1)1 , e

(1)
2 , e

(2)
3 } ̸= ∅, i.e., R1 ∈ T . Then by the choice of T1, we have that {l1, l2} = {1, 2} and

v
(1)
3 /∈ V (R1). Then by the definition of R1, E(T ′) ∩X = {e1, e2} and v

(1)
3 /∈ V (T ′). Therefore

we obtain

EH(T ′) = (EHX
1
(R1)− {e(1)1 , e

(1)
2 , e

(1)
3 }) ∪ {e1, e2, v(2)1 v

(2)
3 }. (4.3)

Since EHX
1
(T1) − {e(1)1 , e

(1)
2 , e

(1)
3 } = EHX

1
(R1) − {e(1)1 , e

(1)
2 , e

(1)
3 }, it follows from (4.2) and (4.3)

that EH(T ) = EH(T ′), which contradicts the fact that EH(T ) ⊊ EH(T ′).

This completes the proof of Theorem 3. □

5 Proofs of Theorems 5 and 10

As mentioned in the paragraph following Theorem 5 and the paragraph following Theorem 10

in Sections 3 and 4, respectively, we prove Theorems 5 and 10 in this section.

Proof of Theorem 5. Assume that statement (A12) is true. Let H be an essentially 2-edge-

connected multigraph. Let H∗ be a graph obtained from H by adding a pendant edge to each

vertex in V≥4(H). Then H∗ is also essentially 2-edge-connected and V≥4(H
∗) = V≥4(H). Since

we assumed that statement (A12) is true, H∗ has a weakly Tutte closed trail T . Then by the

definition of H∗, T is also a weakly Tutte CT of H. We show that T is a Tutte CT of H. Suppose

that T is not a Tutte CT of H. Since T is a weakly Tutte CT of H, there exists a component

F of H − T such that |V (F )| = 1, say V (F ) = {x}, and x ∈ V≥4(H). Then by the definition of

H∗, there exists a vertex y in NH∗(x) ∩ V1(H
∗). Since x /∈ V (T ) and V (H − T ) ⊆ V (H∗ − T ),

we have that xy is a graph in FH∗(T ) such that eH∗({x, y}, T ) = dH(x) ≥ 4, which contracts

that T is a weakly Tutte CT of H∗. Thus T is a Tutte CT of H∗. Hence statement (A13) is

also true, and this completes the proof of Theorem 5. □

Proof of Theorem 10. By Lemma 2, it is enough to show that statement (A15) implies

statement (A14). Assume that statement (A15) is true. LetH be an essentially 4-edge-connected

multigraph. We will find a dominating V≥4(H)-CT. If L(H) is complete, then H is a star or

a triangle, and hence we can easily see that H has a desired dominating CT. Thus, we may

assume that L(H) is not complete.
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x

y

Figure 5: The cubic graph to construct the example

Then H∗ := core(H) is an essentially 4-edge-connected graph with δ(H∗) ≥ 3. By Theorem

H, there exists a cubic inflation HI of H∗ such that HI is essentially 4-edge-connected. Since

we assumed that statement (A15) is true, taking any vertex in HI as the center of a 3-star, we

can find a dominating cycle of HI . By Lemma I, H∗ has a dominating V≥4(H
∗)-CT. By Lemma

3, H also has a dominating V≥4(H)-CT. Hence statement (A14) is also true, and this completes

the proof of Theorem 10. □

6 Concluding remarks

In 1992, Jackson posed the possible approach to the well-known conjecture on the existence of a

Hamilton cycle in 4-connected claw-free graphs (Conjecture A), using a Tutte cycle. Indeed, he

conjectured that statement (A9) “every 2-connected claw-free graph has a Tutte cycle” is true

(Conjecture D), which directly implies Conjecture A. In this paper, we have concentrated on a

Tutte cycle on claw-free graphs and seen that many statements (A1)–(A16) are equivalent (see

Theorems B, C, G, 1–5, 9, 10 and Lemma 2).

By the above fact, we have that statement (A10) “every 2-connected claw-free graph has a

Tutte maximal cycle” is seemingly stronger than statement (A9), that is, if (A9) is true, then

we can always take a Tutte cycle so that it is maximal. However, as mentioned in Section

1, it is not always true that a 3-connected claw-free graph has a Tutte cycle which is longest

even if statement (A9) is true. The following is the 3-connected claw-free graph showing this.

Let G be the graph illustrated in Figure 5. Then it is easy to check that G is an essentially

3-edge-connected (3-connected) cubic graph which is not Hamiltonian. Moreover, the edges

depicted in Figure 5 by bold lines induce a cycle C such that V (C) = V (G) − {x, y} and C

is a maximal cycle of G. Let d ≥ 3 be an integer. Let G∗ be the graph obtained from G by

adding d − 2 pendant edges to each vertex in {x, y} and at least 2d − 2 pendant edges to each

vertex in V (G) − {x, y}, and let X be the set of pendant edges which are incident with {x, y}
in G∗. Note that |X ∪ {xy}| = 2d − 3. Then by the definition of G∗ and since G is essentially

3-edge-connected, we have that G∗ is also essentially 3-edge-connected and the minimum edge
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Figure 6: The cubic graph introduced by Kochol [12]

degree of G∗ is just d. Furthermore, since G is not Hamiltonian and C is a maximal cycle

of G satisfying V (C) = V (G) − {x, y}, for every closed trail (cycle) T of G∗ with T ̸= C,

|EG∗(T )| < |EG∗(C)| holds. These imply that L(G∗) is a 3-connected claw-free graph with

δ(L(G∗)) = d, and for any longest cycle D of L(G∗), V (D) = EG∗(C) = E(G∗) − (X ∪ {xy})
holds. Since |EG∗(C)∩EG∗(xy)| = eG∗({x, y}, V (G∗)−{x, y}) = 4, every cycle D of L(G∗) with

V (D) = EG∗(C) is not a Tutte cycle of L(G∗). Thus any Tutte cycle of L(G∗) is not longest.

In addition, if statement (A9) is true, then we can also take Tutte closed trails (weakly

Tutte closed trails, weakly Tutte edge-maximal closed trails) in essentially 2-edge-connected

graphs (see statements (A11)–(A13)). Moreover, it is also true that every essentially 4-edge-

connected graph has a Tutte edge-maximal CT if statement (A9) is true (see statement (A14)).

However, it is not always true that an essentially 3-edge-connected graph has a Tutte edge-

maximal CT. We finally give the graph showing this. We use the methods of Kochol [12] for

constructions of snarks with a maximal cycle that is not a dominating cycle. (Note that by using

this method, we can also construct a 3-connected claw-free graph in which any Tutte cycle is

not longest other than the above graph.) Let G be the graph in the right side of Figure 6. It

arises from five copies of the graph H (H1, H2,H3,H4,H5) illustrated in the left side of Figure

6 after joining the vertices ai and bi of degree 2 as in depicted in the figure. Then G is an

essentially 3-edge-connected (3-connected) cubic graph and the cycle C depicted by bold lines is

a maximal cycle of G such that V (C) = V (G)− {x, y, z1, z2, z3}. Let G′ be the graph obtained

from G by contracting xy to a vertex vxy (see Figure 6), and let G∗ be the graph obtained

from G′ by adding a pendant edge to each vertex in V (G′) − {vxy, z1, z2, z3}. Then G∗ is also

essentially 3-edge-connected and C is a dominating CT of G∗, i.e., C is an edge-maximal CT
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of G∗. Since each vertex in V (G′) − {vxy, z1, z2, z3} is incident with a pendant edge in G∗ and

EG∗(C) = E(G∗), every edge-maximal closed trail of G∗ contains V (G′) − {vxy, z1, z2, z3}. On

the other hand, since C is a maximal cycle of G satisfying V (G) − {x, y, z1, z2, z3} and by the

definition of H, G, G′ and G∗, we can see that for every closed trail T of G∗ with vxy ∈ V (T ),

V (G) − {x, y, z1, z2, z3} = V (G′) − {vxy, z1, z2, z3} ̸⊆ V (T ) holds (note that there exists no

Hamilton path in H from a1 to {a2, b2} and H has no two disjoint paths covering V (H) from a1

to {a2, b2} and from b1 to {a2, b2}, respectively, see [12] for more details). Thus C is an unique

edge-maximal CT of G∗. But since C is not a Tutte CT of G∗, any Tutte CT of G∗ is not an

edge-maximal CT of G∗.
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