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Abstract

Let G be a triangle-free graph with 6(G) > 2 and 04(G) > |V(G)|+2. Let
S C V(G) consist of less than o4/4 + 1 vertices. We prove the following. If all
vertices of S have degree at least three, then there exists a cycle C containing
S. Both the upper bound on |S| and the lower bound on o4 are best possible.
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1 Introduction

Let G = (V(G), E(G)) be a graph, where V(G) is a finite set of vertices and E(G)
is a set of unordered pairs of two different vertices, called edges. All notation and
terminology not explained is given in [6]. For simplicity, the order of a graph is
denoted by n and G — V(H) by G — H. Let

k
o(G) = min{z da(x;) | 21,29, ...,z are independent },
i=1

where dg(z;) is the degree of a vertex z;. If the independence number of G is less
than k, then we define 04 (G) = oc.

Ore [11] showed that a graph G with oo > n is hamiltonian and Bondy [3]
proved that if GG is a 2-connected graph with o3 > n + 2, then for any longest cycle
C, E(G — C) = 0. Enomoto et al. [9] generalized this theorem as follows: if G is a
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2-connected graph with o3 > n+ 2, then p(G) — ¢(G) < 1, where p(G) and ¢(G) are
the order of longest paths and the circumference, respectively.

In this paper we study triangle-free graphs. For triangle-free graphs with oo >
(n + 1)/2, all longest cycles are dominating [16]. This lower bound is almost best
possible by the examples due to Ash and Jackson [1]. Corresponding to the theorem

by Enomoto et al., the following result has been proven.

Theorem 1 ([13]). Let G be a triangle-free graph with 6 > 2. If o4 > n + 2, then
for any path P, there exists a cycle C' such that |V(P — C)| <1 or G is isomorphic
to the graph in Figure 1.

Figure 1:

In the literature the question has been studied whether for a given graph G any
subset S of vertices of restricted size has some cycle passing through it. Many results
on general graphs and graph classes are known (see, e.g., [2], [4], [5] [7], [8], [10],
[12], [14], [15], [17]). For triangle-free graphs the following result has been proven.

Theorem 2 ([13]). Let G be a triangle-free graph with 6 > 2. If o4 > n + 2, then

for any set S of at most § vertices, there exists a cycle C' containing S.
In this paper, we show the following related theorem.

Theorem 3. Let G be a triangle-free graph with § > 2 and o4 > n+2. Let S C V(G)
consist of less than o4/4 + 1 vertices. If all vertices of S have degree at least three,

then there exists a cycle C' containing S.

The several bounds in these theorems are all tight. We show this by a number

of counter examples. For these counter examples we use the following notations.

We denote the complement of graph G = (V,E) by G = (V,(V x V)\E). For
two graphs Gy = (V, E}) and Gy = (Va, E5), we denote their union by G; U Gy =
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(V1UV,, E1U Ey) and their join by Gy xGy = (ViUV,, EyUE,U (V) x Va)). A complete
graph is a graph with an edge between every pair of vertices. The complete graph

on n vertices is denoted by K,. The complete bipartite graph Kj, x K, is denoted by
Kiy.

e Consider the graph Kj_* K+ K% K+ K;_; with 6 = (n+1)/4 and o4 = n+1.
If we choose two vertices from each K, obviously there is no cycle containing

the vertices. See Figure 2(i). Hence, in Theorem 2 and Theorem 3, the lower
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bound on o4 is best possible.

e Consider the graph K;_o * Ky * Ko * K *+ Kp_p with § = (n + 2)/4 and
o4 = n + 2. There is no cycle containing all k = (n + 2)/4 vertices of the left
K, and a vertex in the right K x—2. See Figure 2(ii). Hence, in Theorem 2

and Theorem 3, the upper bound on |S| is best possible.

We cannot relax the degree condition of vertices in .S in Theorem 3 into “all
vertices of S have degree at least two”. For example in the graph in Figure 1,
o4/4+1 = 10/4 + 1. So we can choose three vertices. However, if we choose
the three white vertices of degree two in the graph, obviously there is no desired
cycle. There is even a class of counter examples of large order as follows. Consider
the graph Ky for any & > 3. Let z,2’ be two vertices in the same partite set
of this graph. Add two extra vertices w,w’ and add all edges between {x, 2’} and
{w,w'}. This way we obtain a graph G} with 04, = 2k +4 = n+ 2 > 10. Now
let S C V(Gy) consist of the vertices w, w’ and some vertex u not in {z,z'}. Then
S| =3 < 10/4+ 1 < 04/4+ 1. However, the only cycle in Gy that contains both

w and w' is the cycle on the four vertices z, ', w,w’. This means that Gj does not



contain a cycle passing through S. We note that S contains two vertices of degree

two. The following conjecture seems to hold.

Conjecture 4. Let G be a triangle-free graph with 6 > 2 and o4 > n + 2. Let
S C V(QG) consist of less than o4/4 + 1 vertices. If S contains at most one vertex

of degree 2, then there exists a cycle C' containing S.

Finally, we give some additional definitions and notations. The set of all the
neighbours of a vertex = € V(G) is denoted by Ng(x) or simply N(z), and its
cardinality by dg(z) or d(z). For a subgraph H of G, we denote Ng(x) NV (H) by
Ny (z) and its cardinality by dg(x). For simplicity, we denote |V (H)| by |H| and
“uj € V(H)” by “u; € H”. The set of neighbours |J, .y Ng(v) \ V(H) is written
by Ng(H) or N(H), and for a subgraph F' C G, Ng(H) N V(F) is denoted by
Np(H). Especially, for an edge e = zy, we denote N(e) = (N(x) U N(y))\{z,y}
and d(e) = |N(e).

Let C = vvy ... 0,01 be a cycle with a fixed orientation. The segment v;v;41 ... v;
is written by viavj where the subscripts are to be taken modulo |C]. The converse
segment v;v;_;...v; is written by ngvi. The successor of wu; is denoted by uj
and the predecessor by u; . For a subset A C V(C), we write {u] | u; € A} and
{u; | u; € A} by AT and A~, respectively.

2 The Proof of Theorem 3

In the proof we make use of the following lemma. A cycle C' in a graph G is called

a swaying cycle of a subset S C V(G) if |C' N S| is maximum in all cycles of G.

Lemma 5. Let G be a connected graph such that for any path P, there exists a cycle
C such that |P — C| < 1. Let S C V(G). Then for any longest swaying cycle C of
S, ScV(C) orNx)CC foranyx e S—C.

Proof. Let S C V(G) and C a longest swaying cycle of S. Suppose S — C # ().
For any vertex x € S — C, there is a path @) joining z and C. Let P be a longest
path containing V(C'U Q). Then there exists a cycle D such that [P — D| < 1.
If z has neighbours in G — C, then |P| > |C| 4 2 and so |D| > |C| + 1. Because
|DNS| > |C'NS|, this contradicts the assumption that C' is a longest swaying cycle.
Hence Ng_c(z) = 0. O



Now let G be a graph with 6 > 2 and 04 > n + 2. Let S C V(G) be a set of
less than o4/4 + 1 vertices that all have degree at least three. Let C be the set of all

longest swaying cycles of S. Suppose a cycle in C does not contain all vertices in S.

Claim 1. If there exists a swaying cycle D of S and v € S — D such that N(v) C
V(D), then d(v) < |DNS|, and so d(v) < a4/4.

Proof. If d(v) > |D N S|, then there exist y, z € N(v) such that y* = z or y+Bz_ N
S = () because N(v) C V(D). Then the cycle yszy contains |D N S| + 1 vertices

in S. This contradicts the assumption that D is a swaying cycle. Hence d(v) <
IDNS| < |S|—1< 04/4. O

Note that our statement holds if G is isomorphic to the graph in Figure 1. Hence
Claim 1 together with Theorem 1 and Lemma 5 implies that

d(v) < o4/4 forany D e Candv e S — D. (1)

Let C' = uyuy - - - )¢ € C such that max{d(v) | v € S — C'} is maximum in C, and
let x € S — C such that d(z) is maximum in S — C. Then d(z) < 04/4 by (1).
Let N(z) = {ur(1), Ur2), - - -, Ur(d(z)) } Which occur on C' in the order of their indices.
Then clearly:

N(x)" is an independent set; (2)

otherwise there is a cycle containing |C' N S| 4 1 vertices of S. As G is triangle-
free, a vertex u:f(l) € N(z)' is not adjacent to x. If uj(l) is adjacent to a vertex
y € G— (C'Ux), then the order of the path yuj(l)aum)x is |C| 4 2. By Theorem 1,
there is a cycle D" such that |[D'N S| > |C N S| and |D'| > |C| + 1. This is a
contradiction. Therefore:

N(uj(l)) C V(C) for “j(z) € N(z)*. (3)

Let [; = uj(l)auT(lH) and J; = uj( E’)uT(l) and:

I+1)
L= {ul, | d(ul,) is maximum in N(z)"}.
Because 04/4 > d(z) > 3 and N(z)" Uz is an independent set, there is a vertex in

N(z)" whose degree is at least 04/4. Hence the degree of a vertex in L is greater

than o4/4. If wfj € LT is adjacent to uf,) € (N(z) \ ur)*, then the cycle



+++

wl Ul C’uT (4)TUr(5) Cu (@ and uT( € S contradict (1). If uj(j)x € E(G), then the

cycle uy i)xum C'ur(y and u 0 contradict (1). Hence:

’L

uj(f) € L* is adjacent to none of (N (z) \ u;))* Uz. (4)
For each u:f(l) € N(z)*, we denote the edge uT(l by €.
Claim 2. For any u:_r(i) € L, it holds that:

1. Ny(e;))” NNy (u (H—l)) 0.

2. Ny (x)* NNy (e;) =0.

3. Ny (e;) NNy (u T(z+1))_ = 0.

Proof. Suppose there is a vertex u; € Ny, (e;)™ N Ny, (ul ), and let y € V(e;) N

N (u;"). Then the cycle:

7(i+1)

= yC’ulu C’uT( ) TUr(i41) C’ul Yy

H—l

contains all vertices of V(C)Ux if y = uj(t), ie, |D| =|CNS|+1. See Figure 3(i).
This contradicts the assumption that C' € C. If y = [}, then D € C and d(uf) >

o4/4. This contradicts (1). Hence Ny, (e;)” N Ny, (u
show the other statements. See Figure 3(ii)-(iii). O

= (). Similarly, we can

T('L+1))
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Let o; = [Ny (z)" NNy (ul, ~i+1)) |- By this number, we will divide our argument

into three cases, and in each case, the following claim will be used.

Claim 3. For any uj, € L, n > d(u ()+d( ) Fdufigy) +d@) =2 —

Especially if the equality holds, then u ) € N(ez) and u? € S and:

T(i+1)
Js = (N3, () \ttry) " U N ) U N (t )™

Proof. By the previous claim, we have:

1Ll = [Ng(e)™ UNL(wf; ) U{ul}
> |Ng(e) ™|+ INF (uf )] + {uf) H
= dy(ei) +dr(ufy,) +1
[Tl = [(Ng(2) \ ur) ™ U Ny (€3) U Ny (u)p0)) 7|
> (N5 (2) \ urey) |+ [N (ea)] + N (uf ) 7| = i
= dyy(@) = 1+ dyy(e) + do(ul ) — o

Therefore:

n > |Cl+dg-c(e:) + [{z} = [L] + [Ji] + de-c(e:) + 1
> (dy(eq) +dr,(ufyyy)) + (dg (@) + dy(eq) + dg, (wfyq) — i) +do-cle) + 1
= (dr(e:) + dy(e:) +da-c(e:) + (dr (Wl ) + ds(uly) + (dy () +1) — a
= d(e;) +d(ufy,,) +d@) — o
= d(u, )+d( )+d( Hl))+d( r)—2— .

If equalities hold in the above inequalities, then:
| Til = [(N, () \ uri) ™ U Ny, () U N (wfi; )7
also holds and so:
Ji = (Ny,(2) \ try) T UNy(e;) UNy,(u r(z+1))7'

Because G is triangle-free, u+(l+1) ¢ N(u (H—l))_ and ¢ N(z)*, and so

T(Z+1)EN( )
Let y = V(e;) N N(ul,

z+1

) and:

T(z+1)

ﬁ
C' = Y C Ur(i11)TUr (i) C’uj@l)y
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Suppose uj(i L1y & 5. Because C” does not contain |[C'N S|+ 1 vertices of S, we have
y # uT(l and u’ i) € 5. Therefore N (uf, @) C V(C") by (2) and (3). This contradicts

Claim 1 as u, i) € L. See Figure 3(iv). Hence ul St €5 O

For ul, € L, if the vertex uf,, ) is adjacent to uf ) € (N, (¥) \ ur;))*", then

+1
the cycle
C' = u:f(iﬂ) CuT i+1) Tl (s Cu i)
is a longest swaying cycle of S. Hence uf,, € S; otherwise |C" N S| > |C' N S| + 1.

Therefore from (1), it holds that:
) € S and d(u], (s)) < 04/4 for all ul ) € Ny (z)" N NJZ.<U:_(1:+1))_. (5)

If there are three vertices in Ny, (z)T NN, (ul, e +1)) , then the three vertices and x are
independent by (2), however, the sum of these degrees are less than o4. Therefore,

a; < 2. Now we divide our argument.
Case 1. There is ul 0 € L such that o; = 1.

Let {5} = N0 OV ()" By (3) ) < /4 < ), and by (2

and (4), {u++,uj(l 1) T(s ,x} is an independent set. Hence by Clalm 3, it holds
that:
no > duly) +dull) +dl,,,) +dz) -2-1
> dufg) +d d(ufy,) +d(@)

(ui(i-&-l)) +
+(d(uly) —dufy)) =3
ot () — ) - 3

> (n+2)+1-3=n.

v

Therefore all equalities have to hold in the above inequalities, and so we have

n=d(ul,)+dull) +dul;,,) +dx) -3 (6)
d(uf,) = d(uf,) +1, (7)
—
Because wf, ,yull CuT(Hl Tr(s) Cufy, ) € C, we have d(v) > d(uf,)) by the

maximality of d(z). Then d(z) +1 > d( T F1= d(uf, (iy) = 04/4 by (7). On the
other hand, d(z) +1 < |CNS|+1< S| <o4/4+1 by Clalm 1. Thus:

%gd(x)+1§|3|<%—l—1,



e., |S| = d(z) + 1. Therefore |uj(l)5’)u;(l+1 N S| =1 for all [ < d(x); otherwise
we can easily obtain a cycle containing |C' N S|+ 1 vertices of S as in the proof of

Claim 1. However, by (6) and Claim 3, uj(iﬂ) € S, and by (5), u:_r(s) € S, and hence:

A T _
7' H—l CUT(H—Q ns= UT(S) CUT(S+1) ns= @

Then, the cycle ul, C Ur(i42) TUr(s41) C’ ut contains |[C'N S|+ 1 vertices in

T 7,+1) T(i+1)
S. See Figure 4. This Contradlcts the assumption that C' is a swaying cycle.

. u R
Uiy i)

Ugint)'

;
Urs)

Figure 4:

Case 2. There exists u. i) € L such that o; = 2.

Let {ull,ulh} = Nu(2)" 0 Ny(ufiy)™ By (2), {ufy,ufy 2, uf;} s an
independent set. By (5), both of the degrees of uj(s) and u:f(t) are less than oy4/4,
and so d(u ~ir1)) = 0a/4. Thus, it holds that:

d(uf ) < 0/4 < d(uly) and d(uly) < 01/4 < d(ul,,,).

Therefore by Claim 3,

S
v

d(uy) + d(ulg) + dugy) +dl@) =2 -2
d(ur) + d(ufiy) + d(uly) + d(z)

+Hd(uly) —dlufy)) + ( (U 41)) — d(ufyy)) — 4
s+ (d(ugy) = d(uly)) + (dlugy) — dlury)) —4
> (n+2)+1+1—4:n

v

v

_l’_

because {u ) U ()s uj(t), x} is an independent set by (2) and (4). Thus all equalities

7(i)”

hold in the above inequalities, and we can use the same arguments as in Case 1.
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Case 3. a; =0 for any u.;+ € L.

For any u o) € (N(x) \ {ur@), urgn 1),

n > d(u:_r(i)) + d(uf, ) +d(u T(H—l)) +d(z) —2
> d(uff) + d(uT(lJrl ) +d(uf ) +d(z)
+

+Hd(uly) —dlufy)) =2
o4+ d(u+(i)) — d(u:f(s))) -2

T

Y

> (n+2)—2=n

by Claim 3 because {uT ul &> T} is an independent set from (2) and (4).

T(’L+1)
Therefore all equalities hold in the above inequalities, and so we have:

n=d(u ()+d( )+d( Z+1)—|—cl(ac)—2:<74—2 (8)

d<ui—(i)> = d(ui_(s)>‘ (9)

7(4)

From (9), we obtain u, sy € L, and so, by symmetry, N(z)" C L.

Claim 4. u]} is adjacent to all of {ull | s # i}.

Proof. By (8) and Claim 3, uf;,,) € N(e;). Because uf;,, € L, u]/ ) is not
adjacent to uj, by (4). Hence ufful], ) € E(G)

Suppose the vertex uj(’L) is not adjacent to u (s #1,1+1). If uT(Z+1)u+++

7(s)
E(G), ie., ui(t) ¢ N(uj(iﬂ)) , then u:f;“) € N(el) by (8) and Claim 3, and so
uj_'(i)u:f(;“) € E(G). This contradicts (4) because u ~s) € L

Assume u:f(zﬂ) +(+)+ € E(G). By (4), (8) and (9) we have

Auty) + dtS) + () + d(z)
= d(uj(i)) +d(u :_F(J“)) + d(uj(iﬂ)) +d(x)
= d(uf,) +d(ufy) +d(ul, ) + d(@).

T(s

v

Hence d(u’, i ) > d(ut uliy) = o4/4. Let:

«—
D =u" CuT (5)TUr(i41) C’ur(if)

T(i+1) T(i+1)"

By (3), N(uj(s)) c V(C). As uj(s) € L, the vertex uj(fg) is not adjacent to

x. If u:_“(;“) is adjacent to the vertex y € G — C, then the order of the path
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yuj(;6ui(i+l)uj(§)+8u7(i+l)x is |C| + 2. As in the proof of (3), this contradicts
the assumption that C' € C by Theorem 1. Hence, we obtain N (uj(i)) c V(0O).

Thus N(es) C V(D). Because |[DNS| < |[CNS| < ay4/4,
des) > 04/2 =2 2> 04/4 > |SND|.

Therefore, there exist vertices y,z € D N N(es) such that y™ = z or y+Bz_ ns =
() and y+Bz_ N N(es) = 0. If y and z are adjacent to distinct ends of e, say
yu:f(s), zuj(fg) € E(G), then yuj(s)ujg)zﬁy contains |C'N S|+ 1 vertices of S. Hence,
by symmetry, we may assume uj(s) is adjacent to both y and z. Then the cycle
D' = yuj(s)zﬁy is a swaying cycle and N (uj(;) C N(D'). This contradicts Claim 1

because d(ufl)) > o4/4. O
By symmetry, the vertex uj(zrl) is adjacent to uj(;r), and so there is the triangle

++, 4+t . I
U U 1y U () - This is a contradiction.
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