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Abstract

By Petersen’s theorem, a bridgeless cubic multigraph has a 2-factor. H.
Fleischner generalised this result to bridgeless multigraphs of minimum degree
at least three by showing that every such multigraph has a spanning even sub-
graph. Our main result is that every bridgeless simple graph with minimum
degree at least 3 has a spanning even subgraph in which every component has
at least four vertices. We deduce that if G is a simple bridgeless graph with n
vertices and minimum degree at least 3, then its line graph has a 2-factor with
at most max{1, (3n− 4)/10} components. This upper bound is best possible.

1 Introduction

All graphs considered are finite. We refer to graphs which and may contain loops

and multiple edges as multigraphs and to graphs without loops and multiple edges

as simple graphs. We denote the minimum degree of a graph G by δ(G). We refer to

the number of vertices of G as the order of G and denote it by |G|. If no ambiguity

can arise, we simply denote the order of G by n and the minimum degree by δ. We

denote the number of components in G by c(G) and the line graph of G by L(G). A

graph is said to be even if every vertex has positive even degree. All notation and

terminology not explained in this paper is given in [3].

1This research was carried out while the second author was visiting Queen Mary, University of
London.
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Petersen [13] showed that every bridgeless cubic multigraph has a 2-factor. Fleis-

chner [6] generalised this result to bridgeless multigraphs of minimum degree at least

three by showing that every such graph has a spanning even subgraph. We extend

these results in Section 3 for the special case of simple graphs by proving:

Theorem 1. Every bridgeless simple graph G with δ ≥ 3 has a spanning even

subgraph in which each component has order at least four.

It is not true in general that every bridgeless multigraph with δ ≥ 3 has a

spanning even subgraph in which every component has order at least four. Consider

a bridgeless graph H with δ ≥ 3 which contains a 3-edge cut {e1, e2, e3}, see Figure

1. Let G be obtained from H by inserting either a vertex incident to a loop, or

e1

e2

e3
H G

Figure 1:

two vertices joined by a mutiple edge, or a triangle with one edge replaced by a

multiple edge, into each edge ei, 1 ≤ i ≤ 3. Then every spanning even subgraph of

G contains at least one of the inserted loops, multiple edges, or triangles. We show

in a forthcoming paper, however, that the conclusion of Theorem 1 holds in an even

stronger form for 3-connected multigraphs.

Theorem 2 ([10]). Every 3-connected multigraph on n vertices has a spanning even

subgraph in which each component has order at least min{n, 5}.

Theorem 1 has the following immediate corollary.

Corollary 3. Every bridgeless simple graph with δ ≥ 3 has a spanning even subgraph

with at most ⌊n/4⌋ components.
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In the case that a bridgeless graph G has vertices of degree two, G does not

necessarily have a spanning even subgraph. (Consider the graph obtained by sub-

dividing the edges in a 3-edge-cut in a bridgeless graph.) We will show, however,

that G has an even subgraph containing all vertices of degree at least three in G,

and obtain an upper bound on the number of components of such a subgraph.

Lemma 4. Let G be a bridgeless simple graph, V2(G) the set of vertices of degree 2

in G and S the set of all vertices in V2(G) whose neighbours are not adjacent. If G

is not K4, then G has an even subgraph X such that V (G − X) ⊂ S and

c(X) +
|G − X|

2
≤ min{n + |V2(G)|

4
,
3n − 4 + 2|V2(G)|

10
}.

We use the above results to obtain upper bounds on the minimum number of

components in a 2-factor of the line graph of a simple graph G with δ(G) ≥ 3.

Chartrand and Wall [1] showed that if G is connected, then L(L(G)) is hamiltonian.

Although L(G) is not always hamiltonian, L(G) does always have a 2-factor. This

fact follows from the results of Egawa and Ota [4], Choudum and Paulraj [2], or

Nishimura [12]. Fujisawa et al. [7] consider line graphs of graphs of minimum degree

at least two, and their results imply that L(G) has a 2-factor with at most (3|G| −

2)/8 components. We use Lemma 4 to prove a stronger result in Section 4.

Theorem 5. If G is a simple graph with δ ≥ 3, then L(G) has a 2-factor with at

most max{1, (3|G| − 4)/10} components.

This result resolves the case δ = 3 of a conjecture from [7], which will be explained

in Section 5. We also describe examples from [7] which show that the upper bound

in Theorem 5 is in some sense best possible.

Line graphs are examples of claw-free graphs. There are several results concern-

ing the minimum number of components in a 2-factor of a claw-free graph. Faudree

et al. [5] showed that a simple claw-free graph G with δ ≥ 4 has a 2-factor with at

most 6n/(δ + 2) − 1 components. Moreover, Gould and Jacobson [9] proved that

if δ ≥ (4n)
2
3 , then G has a 2-factor with at most n/δ components. In general the
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second upper bound is too strong. The second author gave examples of simple claw-

free graphs in which every 2-factor contains more than n/δ components in [16]. In

particular, he constructs a family {Gi} of claw-free graphs with δ = 4 such that

f2(Gi)

|Gi|
→ 5

18
(|Gi| → ∞),

where f2(Gi) is the minimum number of components in a 2-factor of Gi. We shall

use Theorems 1 and 2 to show that highly connected claw-free graphs have 2-factors

with fewer components.

Theorem 6. Every 2-connected simple claw-free graph with δ ≥ 4 has a 2-factor

with at most (n + 1)/4 components.

Theorem 7. Every 3-connected simple claw-free graph with δ ≥ 4 has a 2-factor

with at most 2n/15 components.

It is conceivable that every bridgeless simple claw-free graph with δ ≥ 4 has a

2-factor with at most n/4 components. The second named author proves a related

result in [16]: if G is a simple claw-free graph with δ ≥ 4 and every edge of G lies

in a triangle, then G has a 2-factor with at most (n − 1)/4 components.

2 Notation and Preliminary Results

The set of all the neighbours of a vertex x in a graph G is denoted by NG(x), or

simply N(x), and its cardinality by dG(x), or d(x). For a subgraph H of G, we

denote NG(x)∩V (H) by NH(x) and its cardinality by dH(x). The set of neighbours∪
v∈H NG(v) \ V (H) is written by NG(H) or N(H), and for a subgraph F ⊂ G,

NG(H) ∩ V (F ) is denoted by NF (H). For simplicity, we denote |V (H)| by |H| and

“ui ∈ V (H)” by “ui ∈ H” and “G − V (H)” by “G − H”. The set of edges incident

to a vertex v is denoted by E(v). For a connected subgraph H of G, we denote

by G/H the graph obtained from G by contracting every edge in H and use [H] to

denote the vertex of G/H corresponding to H. The set of all vertices of degree k in

G is denoted by Vk(G) and we put V≥k(G) =
∪

i≥k Vi(G). The maximum degree of

G is denoted by ∆(G) and the minimum order of a component of G by σ(G).
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Given two distinct edges e1 = vx1, e2 = vx2 incident to a vertex v in a graph

G, let Ge1,e2
v be the graph obtained from G − {e1, e2} by adding a new vertex v′

and new edges e′1 = x1v
′, e′2 = x2v

′. We say that Ge1,e2
v has been obtained by

splitting the vertex v. We will need the following elementary result on splitting in

2-edge-connected graphs.

Lemma 8. Let G be a 2-edge-connected graph, v ∈ V (G) with d(v) ≥ 4 and e1 ∈

E(v). Then

(a) there exists an edge e2 ∈ E(v) − e1 such that Ge1,e2
v is 2-edge-connected.

(b) If d(v) = 4 then there exists at most one edge e3 ∈ E(v) − e1 such that Ge1,e3
v is

not 2-edge-connected.

Proof. Part (a) is well known, see for example [11] for a generalisation to k-edge-

conectivity. To prove (b) we suppose that E(v) = {e1, e2, e3, e4}. Using (a) we may

assume that Ge1,e2
v is 2-edge-connected. Then there exist two edge-disjoint v′v-paths

in Ge1,e2
v , say P = v′x1x2 . . . xrv and Q = v′y1y2 . . . ytv. Without loss of generality

e′1 = v′x1, e′2 = v′x2, e3 = xrv and e4 = ytv. Then P and Q′ = v′ytyt−1 . . . y1v are

two edge-disjoint v′v-paths in Ge1,e4
v . Hence Ge1,e4

v is also 2-edge-connected.

3 Even subgraphs

We need the following lemma to prove Theorem 1.

Lemma 9. If G is a bridgeless cubic simple graph, then G has a triangle-free 2-

factor.

Proof. We proceed by contradiction. Choose a counterexample G with n as small

as possible. Clearly G is 2-edge-connected. If G has no triangles, then the lemma

holds by Petersen’s Theorem. Thus G contains a triangle T . If |N(T )| = 1, then,

since G is cubic and 2-edge-connected, G is isomorphic to K4 and the lemma holds.

If |N(T )| = 3, then G′ = G/T is still simple, bridgeless and cubic. By induction G′

has a triangle-free 2-factor X ′. It is easy to extend X ′ to the required triangle-free

2-factor of G. Thus for all triangles T in G, |N(T )| = 2. In this case, it is easy to
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see that no 2-factor of G can contain a triangle of G, and hence the lemma holds by

Petersen’s Theorem.

3.1 Proof of Theorem 1.

Our proof uses the vertex splitting operation to reduce to the cubic case. Note that

when we apply this operation we must ensure that the new graph remains simple

and bridgeless in order to apply Lemma 9.

Proof. Suppose the theorem is false and choose a counterexample G with ∆ = ∆(G)

as small as possible and, subject to this condition, such that the number of vertices

of degree ∆ is as small as possible. Clearly G is connected and hence 2-edge-

connected. We have ∆ ≥ 4 by Lemma 9. Choose a vertex v of G with d(v) = ∆.

If N(v) induces a complete subgraph in G then the facts that G is connected and

has maximum degree ∆ imply that G is complete, and hence hamiltonian. Thus we

may choose edges e = vw, f = vx ∈ E(v) such that wx ̸∈ E(G).

Claim 1. ∆ = 4.

Proof. Suppose that ∆ ≥ 5. Let G1 be the graph obtained from Ge,f
v by suppressing

v′. Then G1 is simple. If G1 is bridgeless then, by induction, G1 has a spanning

even subgraph X1 with σ(X1) ≥ 4. Now X1 readily gives rise to the required even

subgraph of G. Thus G1, and hence also Ge,f
v , contains a bridge e0. Let H1, H2 be

the components of Ge,f
v − e0. Since G is 2-edge-connected, we may suppose that

w, x, v′ ∈ V (H1) and v ∈ V (H2). Relabelling w, x if necessary, we may suppose

further that w is not incident with e0. By Lemma 8, Ge,h
v is 2-edge-connected for

some h = vz ∈ EG(v). Then z ∈ V (H2) and hence wz ̸∈ E(G). Let G′
1 be the graph

obtained from Ge,h
v by suppressing v′. We may apply induction to G′

1 to obtain a

contradiction, as above.

Claim 2. For some h ∈ EG(v) − {e}, the graph obtained from Ge,h
v by adding the

edge v′v is both simple and bridgeless.
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Proof. Let G2 be obtained from Ge,f
v by adding the edge v′v. Since wx ̸∈ E(G), G2

is simple. Suppose G2 has a bridge e0. Since G is 2-edge-connected, we must have

e0 = v′v, and hence Ge,f
v is disconnected. Let H1, H2 be the components of Ge,f

v .

Since G is 2-edge-connected, we may suppose that w, x, v′ ∈ V (H1) and v ∈ V (H2).

Choose h = vz ∈ EG(v) with z ∈ V (H2). By Lemma 8(b), Ge,h
v is 2-edge-connected.

Clearly wz ̸∈ E(G) and hence Ge,h
v is also simple.

Relabelling f and h if necessary, we may assume that G2 = Ge,f
v +v′v is bridgeless

and simple. Let N(v) = {w, x, y, z}. By induction G2 has a spanning even subgraph

X2 with σ(X2) ≥ 4. If v′v ̸∈ E(X2) then X2 readily gives rise to the required even

subgraph of G. Hence v′v ∈ E(X2). Let D be the component of X2 which contains

v′v. Since X/v′v is a spanning even subgraph of G and G is a counterexample to

the theorem, D must be a 4-cycle. Relabelling w and x, and y and z, if necessary,

we may suppose that T = D/vv′ = vwyv is a triangle in G. Let H be the subgraph

of G induced by {w, x, y, z} and H be the complement of H.

Claim 3. H has a 1-factor.

Proof. Suppose not. Since wx ̸∈ E(G) we have wx ∈ E(H). Since H has no 1-

factor, we must have yz ̸∈ E(H), and hence yz ∈ E(G). We also have yw ∈ E(G)

by the preceding paragraph.

Suppose yx ∈ E(G). Then dG(y) = 4 = dG(v) and the edge vy is a chord in the

4-cycle vxywv of G. Thus G−vw satisfies the hypotheses of the theorem. Applying

induction we deduce that G − vw, and hence also G, contains the required even

subgraph of G.

Thus yx ̸∈ E(G). Then yx ∈ E(H). Since H has no 1-factor, we must have wz ̸∈

E(H), and hence wz ∈ E(G). Hence {v, w, y, z} induces a K4 in G. Furthermore,

since G is 2-edge-connected, some vertex u ∈ {w, y, z} is adjacent to a vertex of

V (G) − {v, w, y, z} in G. Then v, u both have degree four in G and we may now

apply induction to G − vu as in the preceding paragraph.

Using Claim 3 and relabelling if necessary, we may suppose that wx, yz ̸∈ E(G).
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By symmetry, we may suppose that this relabelling has also been done in such a

way that T = vwyv continues to be a triangle in G. Let G3 be the graph obtained

from Ge,f
v by suppressing both v′ and v.

Suppose G3 is bridgeless. Then, by induction, G3 has a spanning even subgraph

X3 with σ(X3) ≥ 4. Let X ′
3 be the even subgraph of G corresponding to X3. If

v ∈ V (X ′
3) then X ′

3 is the required even subgraph of G. Hence v ̸∈ V (X ′
3). Then

E(T ) ∩ E(X ′
3) ⊆ {wy}. Let Z = X ′

3 ∪ T if wy ̸∈ E(X ′
3) and Z = (X ′

3 ∪ T ) − wy if

wy ∈ E(X ′
3). Then Z is the required even subgraph of G.

Thus G3, and hence also Ge,f
v , has a bridge e0. Let H1, H2 be the components of

Ge,f
v − e0. Since G is 2-edge-connected, we necessarily have e0 = wy and, relabelling

if necessary, w, x ∈ V (H1) and y, z ∈ V (H2). Then wz, xy ̸∈ E(G). Let h = vz.

By Lemma 8(b), Ge,h
v is 2-edge-connected. We may now apply the argument in the

preceding paragraph to Ge,h
v .

3.2 Proof of Lemma 4

Proof. For an even subgraph X ′ of a graph G′, let

ϕ(G′, X ′) = c(X ′) +
|G′ − X ′|

2
,

ψ1(G
′) =

|G′| + |V2(G
′)|

4
and ψ2(G

′) =
3|G′| − 4 + 2|V2(G

′)|
10

.

Note that ψ1(G
′) ≤ ψ2(G

′) whenever |G′| − |V2(G
′)| ≥ 8. Let S(G′) be the set of all

vertices in V2(G
′) whose neighbours are not adjacent.

Suppose the lemma is false and choose a counterexample G such that n is as

small as possible, and subject to this, |V2(G)| is as small as possible. Since G is not

K4, it is easy to check that ψ1(G), ψ2(G) ≥ 1. Hence,

G has no spanning connected even subgraph. (1)

Suppose V2(G) = ∅. Then, by Corollary 3, there exists a spanning even subgraph

X of G with at most n/4 components, and so ϕ(G,X) ≤ ψ1(G). If n ≥ 8, then

ψ1(G) ≤ ψ2(G), and so ϕ(G,X) ≤ ψ2(G) holds. If n ≤ 7, then c(X) = 1, which
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contradicts (1). Hence

V2(G) ̸= ∅.

Also, if n = 3 or 4, then G is hamiltonian. So n ≥ 5.

Claim 4. G is connected.

Proof. Suppose G is disconnected, and let G1 be a component of G and G2 = G−G1.

If there is no component isomorphic to K4, then each Gj has an even subgraph Xj

such that Gj − Xj ⊂ S(Gj) and ϕ(Gj, Xj) ≤ min{ψ1(Gj), ψ2(Gj)}. Then,

G − (X1 ∪ X2) = (G1 − X1) ∪ (G2 − X2) ⊂ S(G1) ∪ S(G2) = S(G)

and

ϕ(G,X1 ∪ X2) = ϕ(G1, X1) + ϕ(G2, X2) ≤ ψi(G1) + ψi(G2) ≤ ψi(G),

for each i ∈ {1, 2}. This contradicts the choice of G.

Assume that G has a component isomorphic to K4, say G1. If G2 is also iso-

morphic to K4, then G has a 2-factor with two components and ψi(G) = 2 for each

i ∈ {1, 2}, which contradicts the choice of G. Hence G2 ̸= K4. In this case,

G − (D ∪ X2) = G2 − X2 ⊂ S(G2) = S(G),

where D is a hamilton cycle of G1. Hence

ϕ(G,D ∪ X2) = ϕ(G2, X2) + 1 ≤ ψ1(G2) + 1 =
|G2| + |V2(G)|

4
+ 1

=
(|G| − 4) + |V2(G)|

4
+ 1 =

|G| + |V2(G)|
4

= ψ1(G)

and

ϕ(G,D ∪ X2) = ϕ(G2, X2) + 1 ≤ ψ2(G2) + 1 =
3(|G| − 4) − 4 + 2|V2(G)|

10
+ 1

=
3|G| − 4 + 2|V2(G)| − 2

10
< ψ2(G),

a contradiction.

Now we divide our argument into two cases.
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Case 1. S(G) ̸= ∅.

Let u ∈ S(G) and N(u) = {x, y}. Since xy /∈ E(G), G′ = G/uy is simple. See

Figure 2. As dG′(x) = dG(x) and dG′(y) = dG(y), |V2(G
′)| = |V2(G)| − 1 and

x y

u

x [uy]

Figure 2:

|G′| = n − 1 ≥ 4. Therefore,

ψ1(G
′) +

1

2
= ψ1(G) and ψ2(G

′) +
1

2
= ψ2(G).

If G′ = K4, then G is hamiltonian, which contradicts (1). Thus G′ ̸= K4. By

induction, G′ has an even subgraph X ′ such that

G′ − X ′ ⊂ S(G′) and ϕ(G′, X ′) ≤ ψi(X
′) for each i ∈ {1, 2}.

Suppose the edge x[uy] is used by X ′. Then X = (X ′ \ {x[uy]}) ∪ {xuy} is an

even subgraph of G such that c(X) = c(X ′) and G−X = G′−X ′ ⊂ S(G′) ⊂ S(G),

and so ϕ(G,X) = ϕ(G′, X ′). Hence,

ϕ(G,X) = ϕ(G′, X ′) < ψi(G
′) +

1

2
= ψi(G),

for each i ∈ {1, 2}. This contradict the choice of G.

Thus x[uy] /∈ E(X ′). Then X = X ′ is an even subgraph of G such that c(X) =

c(X ′) and G − X = (G′ − X ′) ∪ {u} ⊂ S(G′) ∪ {u} = S(G), and so ϕ(G,X) =

ϕ(G′, X ′) + 1/2. Therefore for each i ∈ {1, 2},

ϕ(G,X) = ϕ(G′, X ′) +
1

2
≤ ψi(G

′) +
1

2
= ψi(G),

a contradiction.

Case 2. S(G) = ∅.

Let u ∈ V2(G) and N(u) = {x, y}. By symmetry, we may assume d(x) ≤ d(y).

Consider the following subcases.
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1. N(x) ∩ N(y) = {u}.

In this subcase, G′ = G/xuy is simple. See Figure 3. Because |G′| = n − 2 ≥ 3 and

x y

u(ii)

x y

u(i)
[xuy] [xuy]

Figure 3:

|V2(G
′)| ≤ |V2(G)|,

ψ1(G
′) +

1

2
≤ ψ1(G) and ψ2(G

′) +
3

5
≤ ψ2(G).

If G′ = K4, then G′ has a hamilton cycle D such that D ∪ xuyx is a spanning

connected even subgraph of G. This contradicts (1). Thus G′ ̸= K4. Then G′ has

an even subgraph X ′ such that G′ − X ′ ⊂ S(G′) ⊂ {[xuy]} and ϕ(G′, X ′) ≤ ψi(G
′)

for each i ∈ {1, 2}.

Suppose [xuy] /∈ X ′. Then the triangle xuyx is a new component in the even

subgraph X = X ′ ∪xuyx of G, and so c(X) = c(X ′) + 1 and |G−X| = |(G′−X ′) \

{[xuy]}| = |G′ − X ′| − 1. Hence the following inequalities hold for each i ∈ {1, 2}.

ϕ(G,X) ≤ ϕ(G′, X ′) +
1

2
≤ ψi(G

′) +
1

2
≤ ψi(G). (2)

This contradicts the choice of G.

Thus [xuy] ∈ X ′, i.e., X ′ is spanning G′. If there are an even number of edges of

X ′ incident to x in G, let X = X ′ ∪ xuyx. On the other hand, if there are an odd

number of edges of X ′ incident to x in G, then let X = X ′ ∪ xuy. In both cases X

is a spanning even subgraph of G, c(X) = c(X ′) and G − X = G′ − X ′ = ∅. Hence

ϕ(G,X) = ϕ(G′, X ′) ≤ ψi(G
′) ≤ ψi(G) for each i ∈ {1, 2}.

2. N(x) ∩ N(y) ̸= {u}.

Let z ∈ (N(x) ∩ N(y)) \ {u}.

Suppose d(y) ≥ 4, and let G′ = G − u. See Figure 4(i). Then V2(G
′) ⊂
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x y

u

z

x y

u

z

x y

u

z

x y

z

(ii)(i)

Figure 4:

(V2(G) \ {u}) ∪ {x}, and so |V2(G
′)| ≤ |V2(G)| and |G′| = n − 1. Thus

ψ1(G
′) +

1

4
≤ ψ1(G) and ψ2(G

′) +
3

10
≤ ψ2(G).

Because xz, yz ∈ E(G′), x, y /∈ S(G′) and so S(G′) = S(G) = ∅. If G′ = K4, then

G has a hamilton cycle, which contradicts (1). Thus G′ ̸= K4 and there exists a

spanning even subgraph X ′ of G′ such that ϕ(G′, X ′) ≤ ψi(G
′) for each i ≤ 2. If

xy ∈ E(X ′), then let X = (X ′ \ {xy}) ∪ xuy. Otherwise let X = X ′ ∪ xuyx. In

either case, X is a spanning even subgraph of G and c(X) = c(X ′). Hence

ϕ(G,X) = ϕ(G′, X ′) ≤ ψi(G
′) < ψi(G)

for each i ∈ {1, 2}.

Thus d(y) = 3. Since d(x) ≤ d(y) we have d(x) = 3. This implies that z is a cut

vertex of G. Let G′ = G ∪ {uz}. Then |G′| = n and |V2(G
′)| + 1 = |V2(G)| and so

ψ1(G
′) +

1

4
= ψ1(G) and ψ2(G

′) +
1

5
= ψ2(G).

See Figure 4(ii). Since |V2(G
′)| < |V2(G)| and S(G′) = S(G) = ∅, by our assumption,

G′ has a spanning even subgraph X ′ such that ϕ(G′, X ′) ≤ ψi(G
′) for each i ∈ {1, 2}.

Suppose zu /∈ E(X ′). Then X = X ′ is a spanning even subgraph of G such that

ϕ(G,X) = ϕ(G′, X ′) ≤ ψi(G
′) < ψi(G), (3)

for each i ∈ {1, 2}.

Thus zu ∈ E(X ′). By symmetry, we may assume xu ∈ E(X ′), and then xy ∈

E(X ′); otherwise y /∈ X ′. Hence, yz ∈ E(X ′), X = (X ′ \ {zu, xy}) ∪ {xz, uy} is

a spanning even subgraph of G, and the inequalities (3) hold. This completes the

proof of Lemma 4.
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4 2-factors in line graphs

4.1 Proof of Theorem 5

Let G be a simple graph with δ ≥ 3 and let S be a set of mutually edge-disjoint

connected even subgraphs and stars. If each star has at least three edges and every

edge in E(G) \
∪

L∈S E(L) is incident to an even subgraph in S, then S is called a

system that dominates G.

We shall use the following result of Gould and Hynds.

Lemma 10. [8] Let G be a simple graph. Then L(G) has a 2-factor with c compo-

nents if and only if there is a system that dominates G with c elements.

Let X be an even subgraph in G such that G−X is a forest. Let H be obtained

from G−X by deleting all its isolated vertices and let (A,B) be a bipartition of H

with |A| ≤ |B|. For v ∈ A, let St(v) be the star with edge set {uv : u ∈ NG(v)}. Let

S be the set whose elements are each of the components of X and each of the stars

St(v) for v ∈ A. Then S is a system that dominates G and |S| ≤ c(X)+ |G−X|/2.

Therefore Theorem 5 is an easy consequence of the following lemma because if we

choose an even subgraph X of G such that c(X)+ |G−X|/2 is as small as possible,

then G − X must be a forest.

Lemma 11. If G is a simple graph with δ ≥ 3, then G ≅ K4 or G has an even

subgraph X such that

c(X) +
|G − X|

2
≤ 3n − 4

10
.

Proof. Let ϕ(G,X) = c(X)+ |G−X|/2. We suppose the lemma is false and choose

a counterexample G such that n is as small as possible. As in the proof of Lemma 4,

we can see that G is connected.

Suppose G is bridgeless. Then, by Corollary 3, G has a spanning even subgraph

X with c(X) ≤ n/4. If n ≥ 8 then n/4 ≤ (3n − 4)/10 so we must have n ≤ 7. This

is impossible since any such G has a spanning connected even subgraph. Thus G

has a bridge.
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Claim 5. For any bridge e, one of the components of G − e is isomorphic to K4.

Proof. Let G1, G2 be the components of G − e and e = u1u2 and ui ∈ Gi. Suppose

neither G1 nor G2 is K4. Let Li ≅ K4 and xi ∈ Li for each i ∈ {1, 2}. Notice that

|G1|, |G2| ≥ 5 as δ ≥ 3. Then the minimum degree of the graph

G′
i = Gi ∪ {uixi} ∪ Li

is at least three and |G′
i| = |Gi| + 4 ≤ n − 1. Hence, by induction, G′

i has an even

subgraph X ′
i such that:

ϕ(G′
i, X

′
i) ≤

3(|Gi| + 4) − 4

10

for each i ≤ 2. Choosing X ′
i such that ϕ(G′

i, X
′
i) is smallest, X ′

i must contain a

hamilton cycle Di of Li as a component. Let Xi = X ′
i − Di. Then, X1 ∪ X2 is an

even subgraph of G and ϕ(G,X1 ∪ X2) is at most

3(|G1| + 4) − 4

10
− 1 +

3(|G2| + 4) − 4

10
− 1 =

3(|G1| + |G2|) − 4

10
=

3n − 4

10
.

This contradicts the choice of G, and so at least one of G1 and G2 is K4.

Let e1, . . . , et be the all bridges in G, let Gi
1, G

i
2 be the components G − ei, and

let ei = ui
1u

i
2. We may assume that ui

2 ∈ Gi
2 ≅ K4 for all 1 ≤ i ≤ t, and let Di be a

hamilton cycle of Gi
2. Then, H = G−

∪t
i=1 Gi

2 is bridgeless since a bridge of H is a

bridge of G as well. Clearly H ̸= K4; otherwise G has a 2-factor without triangles,

which contradicts our assumption that G is a counterexample.

Suppose |H| ≥ 3. Then by Lemma 4 there exists an even subgraph X ′ in H such

that

ϕ(H,X ′) ≤ 3|H| − 4 + 2|V2(H)|
10

.

Then X = X ′ ∪
∪t

i=1 Di is an even subgraph of H. Since |V2(H)| ≤ t we have

ϕ(G,X) ≤ 3|H| − 4 + 2|V2(H)|
10

+ t ≤ 3(n − 4t) − 4 + 2t + 10t

10
=

3n − 4

10
.

This contradicts the choice of G.
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Thus |H| ≤ 2. Because H is bridgeless, |H| ̸= 2. Hence |H| = 1 and G − X =

H = K1. Thus n = 4t + 1 and, since δ ≥ 3, t ≥ 3. Then X =
∪t

i=1 Di is an even

subgraph of G and

ϕ(G,X) = t +
1

2
≤ 12t − 1

10
=

3(4t + 1) − 4

10
=

3n − 4

10
,

a contradiction. ¤

4.2 Proofs of Theorems 6 and 7

Let G be a claw-free graph. For each vertex x of G, NG(x) induces a subgraph

with at most two components. Furthermore, if this subgraph has two components,

both of them must be cliques. In the case that the subgraph induced by N(x) is

connected, we add edges joining all pairs of nonadjacent vertices in N(x). This

operation is called local completion of G at x. The closure cl(G) of G is a graph

obtained by recursively repeating the local completion operation, as long as this is

possible. Ryjácěk [14] showed that the closure of G is uniquely determined and G

is hamiltonian if and only if cl(G) is hamiltonian. The latter result was extended to

2-factor as follows.

Theorem 12 (Ryjácěk, Saito and Shelp [15]). Let G be a claw-free graph. If cl(G)

has a 2-factor with k components, then G has a 2-factor with at most k components.

Since G is a spanning subgraph of cl(G), Theorem 12 implies that

f2(G) = f2(cl(G)),

where f2(G) is the minimum number of components in a 2-factor of G. Ryjácěk also

proved:

Theorem 13 (Ryjácěk [14]). If G is a claw-free graph, then there is a triangle-free

simple graph H such that

L(H) = cl(G).
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Theorems 12 and 13 imply that we can obtain general upper bounds on the

mimimum number of components in a 2-factor of claw-free graphs by considering

the special case of line graphs of triangle-free simple graphs.

A graph H is essentially k-edge-connected if for any edge set E0 of at most k−1

edges, H \ E0 contains at most one component with edges. The edge-degree of an

edge xy is defined as d(x) + d(y) − 2. Clearly L(H) is k-connected if and only if H

is essentially k-edge-connected and the minimum degree of L(H) is at least four if

and only if the minimum edge-degree of H is at least four. Thus, for Theorem 6, it

is sufficent to prove the following.

Lemma 14. Let H be an essentially 2-edge-connected triangle-free simple graph with

minimum edge-degree at least four. Then there is a set T of mutually vertex-disjoint

even subgraphs and stars such that

1. every component in T contains at least four vertices.

2. every edge in E(H)\
∪

L∈T E(L) is incident to an even subgraph or the central

vertex of some star in T .

Clearly the cardinality of T in this lemma is at most |H|/4. We may modify T

to create a system which dominates H as follows. For each e ∈ E(H) \
∪

L∈T E(L)

which is not incident with an even subgraph in T choose a star S ∈ T with e

incident to the central vertex of S, and add e to S. The resulting system S has

|S| = |T | ≤ |H|/4. Thus L(H) has a 2-factor with at most |H|/4 components by

Lemma 10. As |L(H)| = |E(H)| ≥ |H| − 1, we obtain Theorem 6.

Proof of Lemma 14. Since H is essentially 2-edge-connected, F = H − V1(H)

is bridgeless. Hence, by Lemma 4, there exists an even subgraph X such that

V (F − X) ⊂ V2(F ). Let

S = V2(F ) ∩ NH(V1(H)).

Since the minimum edge-degree in H is at least four, dH(x) ≥ 5 for all x ∈ S. Thus

|NH(x) ∩ V1(H)| ≥ 3 for all x ∈ S. We also have

V2(F ) \ S = V2(H).
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For each x ∈ S, let St∗(x) be the star with edge-set {xv : v ∈ N(x)∩ V1(H)}, and

let T be the set whose elements are each component of X and each star St∗(x) for

x ∈ S. As H is triangle-free, T satisfies condition 1 of our lemma.

Since V≥3(H) = V≥3(F ) ∪ S ⊂ V (X) ∪ S, we have

H − (V (X) ∪ S) ⊂ V1(H) ∪ V2(H).

Clearly the subgraph induced by V1(H)∪ V2(H) has no edges; otherwise there is an

edge of edge-degree at most two. Hence T also satisfies condition 2 of the lemma.

¤

Similarly, for Theorem 7, it is sufficent to prove the following.

Lemma 15. Every essentially 3-edge-connected graph H contains a dominating even

subgraph X such that V3(H) ⊂ V (X) and c(X) ≤ max{1, 2|E(H)|/15}.

Proof. We proceed by contradiction. Choose a counterexample H with |H| as small

as possible. Suppose V1(H) ̸= ∅, and let u ∈ V1(H) and v ∈ N(u). Since H − u

is essentially 3-edge-connected, H − u has a dominating even subgraph X ′ with

V3(H − u) ⊂ V (X ′) and c(X ′) ≤ max{1, 2(|E(H)| − 1)/15}. As H is essentially

3-edge-connected, dH−u(v) ≥ 3, and so v ∈ X ′. Thus X ′ is the required subgraph of

H. This contradicts the choice of H. Hence V1(H) = ∅.

Suppose V2(H) ̸= ∅, and let u ∈ V2(H). The graph H ′ obtained from H by

suppressing u has a desired subgraph X ′. Since H is essentially 3-edge-connected,

the degree of a neighbour of u is at least three. Hence as in the above case, X ′

is the required subgraph of H, and hence δ(H) ≥ 3. Then H is 3-edge-connected

graph, and so by Theorem 2, H has a spanning even subgraph X with σ(H) ≥

max{|H|, 5}. This implies c(X) ≤ max{1, n/5}. Since 3|H|/2 ≤ |E(H)|, we obtain

c(X) ≤ max{1, 2|E(H)|/15}.

5 Closing Remarks

The following example shows that the upper bound in Theorem 5 is, in some sense,

best possible. Let P2m be a path of length 2m − 1. We add 2m + 2 edges to

17



Figure 5:

P2m ∪ (2m+2)K4. Figure 5 is the example when m = 3. Let H2m,4 be the resultant

graph. Then n = |H2m,4| = 10m+8 and so m = (n−8)/10. It is easy to see that every

system which dominates H2m,4 has at least 3m + 2 elements. Thus, by Lemma 10,

the number of components in a 2-factor of L(H2m,4) is at least 3m+2 = (3n−4)/10.

Fujisawa et al. [7] conjectured that if G is a simple graph with minimum degree

δ ≥ 3, then its line graph has a 2-factor X such that c(X) ≤ (2δ−3)n
2(δ2−δ−1)

. If we allow

an exception graph, the following conjectured upper bound would be sharper.

Conjecture 16. If G is a simple graph with minimum degree δ ≥ 3, then G ≅ Kd+1

or L(G) has a 2-factor X such that

c(X) ≤ (2δ − 3)n − 2δ + 2

2(δ2 − δ − 1)
.

Theorem 5 resolves the case d = 3 of this conjecture. If true Conjecture 16

would be in some sense best possible. Consider the graph, given in [7], obtained

from H2m,4 by replacing each K4 adjacent to internal vertices of P2m by (d− 2)Kd+1

and by replacing each 2K4 adjacent to the ends by (d − 1)Kd+1, see Figure 6.

…… Kd+1Kd+1Kd+1Kd+1 ……

d - 1 d - 2

Figure 6:
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