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Abstract

Let k ≥ 2 be an integer. We show that if G is a (k + 1)-connected graph and

each pair of nonadjacent vertices in G has degree sum at least |G| + 1, then for

each subset S of V (G) with |S| = k, G has a spanning tree such that S is the set of

endvertices. This result generalizes Ore’s theorem which guarantees the existence

of a Hamilton path connecting any two vertices.

Keywords: spanning tree; leaf connected; Hamilton path; Hamilton-connected

1



1 Introduction

Many results concerning conditions for the existence of a Hamilton path are known. We

can regard a Hamilton path as a spanning tree with precisely two endvertices. Thus

it is natural to look for conditions which ensure the existence of a spanning tree with

the bounded number of endvertices or with a specified set of endvertices. This paper is

mainly concerned with sufficient conditions for a graph to have a spannning tree with a

specified set of endvertices.

We consider finite undirected graphs without loops nor multiple edges. Let G be a

graph with vertex set V (G) and edge set E(G). The order of G is denoted by |G|. For

a vertex x ∈ V (G), we denote the degree of x in G by dG(x) and the set of vertices

adjacent to x in G by NG(x); thus dG(x) = |NG(x)|. For a subset S ⊂ V (G), let

NG(S) =
⋃

x∈S NG(x), and let G − S denote the subgraph induced by V (G) \ S. A leaf

(or an endvertex ) of a tree is a vertex of degree one, and a branch vertex of a tree is a

vertex of degree strictly greater than two. For a tree T , let

L(T ) = {x ∈ V (T ) | x is a leaf of T} and

B(T ) = {x ∈ V (T ) | x is a branch vertex of T}.

A graph G said to be k-leaf-connected if |G| > k and for each subset S of V (G) with

|S| = k, G has a spanning tree T with L(T ) = S.

We prove the following theorem, which gives an Ore-type condition for a graph to

be k-leaf-connected.

Theorem 1 Let k ≥ 2 be an integer. Let G be a (k + 1)-connected graph and suppose

that dG(x) + dG(y) ≥ |G| + 1 for any two nonajacent vertices x, y ∈ V (G). Then G is

k-leaf-connected.

Theorem 1 is best possible in the following sense:

• We cannot replace the lower bound |G| + 1 in the degree condition by |G|.

Consider the complete bipartite graph G with partite sets A and B such that

|A| = |B| = t, where t is an integer with t ≥ k + 1. Then G is (k + 1)-connected,

|G| = 2t, and dG(x) + dG(y) = |G| for any two nonadjacent vertices x and y of

V (G). Suppose that G is k-leaf-connected. Then G has a spanning tree T with

L(T ) ⊂ B. Consequently dT (x) ≥ 2 for all x ∈ A, and thus |E(T )| ≥ 2|A| = 2t.

However, this contradicts the fact |E(T )| = |G| − 1 < 2t. Hence G is not k-leaf-

connected.

• For k ≥ 3, the condition that G is (k + 1)-connected is necessary.

Assume that k ≥ 3. Let r ≥ 1 be an integer and consider the graph G :=

Kk + (K1 ∪ Kr). Then G is k-connected but not (k + 1)-connected, and for two

vertices x ∈ V (Kr) and y ∈ V (K1), we have dG(x)+dG(y) = (|G|−2)+k ≥ |G|+1.
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However, G has no spanning tree T with L(T ) = V (Kk). (For the case where k = 2,

see Theorem 3 below and the first sentence in the paragraph following Theorem

3.)

As for the proof, we prove the following result, which is stronger than Theorem 1.

Theorem 2 Let G be a graph, and let S be a subset of V (G) such that |S| ≥ 2, |NG(S)\

S| ≥ 2, G − S is connected and NG(v) \ S 6= ∅ for all v ∈ S. Suppose further that

dG(x) + dG(y) ≥ |G| + 1 for any two nonajacent vertices x, y ∈ V (G) \ S. Then G has

a spanning tree T with L(T ) = S.

As in the case of Theorem 1, balanced complete bipartite graphs show that the lower

bound in the degree condition in Theorem 2 is also sharp.

The following two results motivate our results. Since G has a Hamilton path con-

necting any two vertices if and only if it is 2-leaf-connected, Theorem 1 is a natural

extension of the following famous result.

Theorem 3 (Ore [2]) Let G be a graph. If dG(x)+dG(y) ≥ |G|+1 for every two non-

ajacent vertices x, y ∈ V (G), then G has a Hamilton path connecting any two vertices.

Note that if dG(x)+dG(y) ≥ |G|+k−1 for every two nonajacent vertices x, y ∈ V (G)

then G is (k+1)-connected. Thus the following result also follows from Theorem 1 (in [1],

this result is derived from the assertion that the property of being k-leaf-connected

is stable under a closure operation of Bondy-Chvátal type, i.e., if x, y ∈ V (G) are

nonadjacent vertices with dG(x)+dG(y) ≥ |G|+k−1, then G is k-leaf-connected if and

only if G + xy is k-leaf-connected; see [1; Theorem 4]).

Theorem 4 (Gurgel and Wakabayashi [1; Corollary 6.1]) Let G be a graph, and

suppose that dG(x) + dG(y) ≥ |G| + k − 1 for every two nonajacent vertices x, y of G.

Then G is k-leaf-connected.

2 Proof of Theorem 2

Let G and S be as in Theorem 2. Since NG(v) \ S 6= ∅ for each v ∈ S, and G − S is

connected, G has a tree T with L(T ) = S and V (T ) \ S 6= ∅. Choose such a tree T

so that |T | is as large as possible. If V (G) = V (T ), then we have nothing to prove.

Thus we may assume that G − V (T ) 6= ∅. Let H be a component of G − V (T ) and set

X = NG(H)∩V (T ). Note that X \S 6= ∅ because V (T )\S 6= ∅ and G−S is connected.

We assume that we have chosen H such that |X | is as large as possible. We derive

the proof into two cases according to the value of |X |.

Case 1. |X | = 1.

Set X = {x0}. Since (NG(H ′)∩V (T ))\S 6= ∅ for every component H ′ of G−V (T ), it

follows from our choice of H that NG(G−V (T ))∩S = ∅, which implies NG(S) ⊂ V (T ).
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Since |NG(S) \ S| ≥ 2 by the assumption of the theorem, we can take v0 ∈ V (T ) \

(S ∪ {x0}). Now take u0 ∈ V (H). By the assumption of Case 1, NG(v0) ∩ NG(u0) ⊂

{x0}. Since v0u0 6∈ E(G), we also have NG(v0) ∪ NG(u0) ⊂ V (G) \ {v0, u0}. Hence

dG(v0) + dG(u0) ≤ |G| − 2 + 1 = |G| − 1, which contradicts the degree condition of the

theorem. This completes the proof for Case 1.

Case 2. |X | ≥ 2.

By the maximality of T , we obtain the following fact.

Fact 1 X is an indepedent set in T .

We denote by PT (a, b) the unique path in T connecting two vertices a and b of T .

We choose x1 ∈ X \ S and x2 ∈ X \ {x1} so that |PT (x1, x2)| is as small as possible. By

Fact 1, x1x2 6∈ E(T ). We regard T as an outdirected tree with root x1. For U ⊂ V (T ),

define U+ =
⋃

u∈U (NT (u) \ V (PT (x1, u))) and U− =
⋃

u∈U (NT (u) ∩ V (PT (x1, u))). For

a vertex u ∈ V (T ) \ {x1}, having in mind the fact that |{u}−| = 1, we let u− denote the

unique vertex in {u}−. Recall that B(T ) denotes the set of branch vertices of T .

Claim 2 B(T )+ ∩ X = ∅.

Proof. Suppose that x ∈ B(T )+ ∩X. Let x′ ∈ NG(x)∩ V (H) and x′

1 ∈ NG(x1)∩ V (H),

and let Q be a path in H connecting x′ and x′

1. Then T ′ := (T − xx− + xx′ + x1x
′

1)∪Q

is a tree with L(T ′) = S and |T ′| > |T |. This contradicts the maximality of T . Hence

B(T )+ ∩ X = ∅. �

Set W = B(T ) ∪ {x1}. Choose y1 ∈ (V (PT (x1, x2)) ∩ W ) \ {x2} so that |PT (y1, x2)|

is as small as possible (possibly y1 = x1). By Claim 2, y1x2 6∈ E(T ). Write NT (y1) ∩

V (PT (y1, x2)) = {v1} and NT (x2) ∩ V (PT (y1, x2)) = {v2} (possibly v1 = v2). Write

NT (x1) ∩ V (PT (x1, x2)) = {w1} and define T ∗ = T − V (PT (w1, v2)). We denote by

P1, P2, . . . , Pm the components of T ∗−{uv ∈ E(T ) | u ∈ W, v ∈ {u}+}. We may assume

that V (P1) = {x1} and x2 ∈ V (P2). Note that Pi is a path for every i = 1, . . . , m and

|V (Pi)∩W+| = 1 for each i = 3, . . . , m. Write V (Pi)∩W+ = {ai} for each i = 3, . . . , m.

Then for each i, ai is an endvertex of Pi.

For j = 1, 2, let uj ∈ NG(xj) ∩ V (H) (possibly u1 = u2).

Claim 3 |NG(u1) ∩ V (T ∗)| + |NG(u2) ∩ V (T ∗)| ≤ |T ∗| + 2.

Proof. Since |P1| = |{x1}| = 1, |NG(u1) ∩ V (P1)| + |NG(u2) ∩ V (P1)| ≤ 2 = |P1| + 1.

By Fact 1, (NG(u1) ∩ V (Pi))
− ∩ (NG(u2) ∩ V (Pi)) = ∅ for every 2 ≤ i ≤ m. For the

path P2, we have |NG(u1) ∩ V (P2)| = |(NG(u1) ∩ V (P2))
−| and (NG(u1) ∩ V (P2))

− ∪

(NG(u2) ∩ V (P2)) ⊂ V (P2) ∪ {v2}. Hence |NG(u1) ∩ V (P2)| + |NG(u2) ∩ V (P2)| =

|(NG(u1)∩V (P2))
−|+|NG(u2)∩V (P2)| ≤ |P2|+1. Let now 3 ≤ i ≤ m. Then ai 6∈ NG(u1)

by Fact 1 or Claim 2 according as ai ∈ {x1}
+ or ai ∈ B(T )+. Since u− ∈ V (Pi) for all

u ∈ V (Pi) \ {ai}, this implies (NG(u1) ∩ V (Pi))
− ∪ (NG(u2) ∩ V (Pi)) ⊂ V (Pi). Since

|(NG(u1)∩V (Pi))
−| = |NG(u1)∩V (Pi)|, we obtain |NG(u1)∩V (Pi)|+|NG(u2)∩V (Pi)| ≤
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|(NG(u1) ∩ V (Pi))
−| + |NG(u2) ∩ V (Pi)| ≤ |Pi|. Thus |(NG(u1) ∩ V (Pi))| + |NG(u2) ∩

V (Pi)| ≤ |Pi| for every 3 ≤ i ≤ m. Consequently

|NG(u1) ∩ V (T ∗)| + |NG(u2) ∩ V (T ∗)| =

m∑

i=1

(|NG(u1) ∩ V (Pi)| + |NG(u2) ∩ V (Pi)|)

≤ |P1| + 1 + |P2| + 1 +
m∑

i=3

|Pi|

= |T ∗| + 2.

Hence the claim holds. �

Let R be a path in H connecting u1 and u2.

Claim 4 |NG(v1) ∩ V (T ∗)| + |NG(v2) ∩ V (T ∗)| ≤ |T ∗| + 2.

Proof. Note that |NG(v1) ∩ V (P1)| + |NG(v2) ∩ V (P1)| ≤ 2 = |P1| + 1. Note also that

(NG(v1) ∩ V (P2)) ∪ (NG(v2) ∩ V (P2))
− ⊂ V (P2) ∪ {v2}. We now show ai 6∈ NG(v2)

for every i = 3, . . . , m. Suppose that aj ∈ NG(v2) for some j with 3 ≤ j ≤ m. Then

T ′ := (T −aja
−

j −v2x2 +ajv2 +x1u1 +x2u2)∪R is a tree with L(T ′) = S and |T ′| > |T |.

But this contradicts the maximality of T . Hence ai 6∈ NG(v2) for every i = 3, . . . , m.

Consequently, (NG(v1) ∩ V (Pi)) ∪ (NG(v2) ∩ V (Pi))
− ⊂ V (Pi) for each i = 3, . . . , m.

Next, suppose that (NG(v1)∩V (Pj))∩(NG(v2)∩V (Pj))
− 6= ∅ for some j with 2 ≤ j ≤

m. Then there exists v ∈ V (Pj) such that v ∈ NG(v2)∩V (Pj) and v− ∈ NG(v1)∩V (Pj).

But then T ′ := (T−vv−−v1y1−v2x2+v2v+v1v
−+x1u1+x2u2)∪R is a tree with L(T ′) = S

and |T ′| > |T |, which is a contradiction. Hence (NG(v1)∩V (Pi))∩(NG(v2)∩V (Pi))
− = ∅

for each i = 2, . . . , m.

Since |(NG(v2) ∩ V (Pi))
−| = |NG(v2) ∩ V (Pi)| for every 2 ≤ i ≤ m, we obtain

|NG(v1)∩V (P2)|+ |NG(v2)∩V (P2)| ≤ |P2|+1 and |NG(v1)∩V (Pi)|+ |NG(v2)∩V (Pi)| ≤

|Pi| for every 3 ≤ i ≤ m. Therefore |NG(v1) ∩ V (T ∗)|+ |NG(v2) ∩ V (T ∗)| ≤ |T ∗| + 2. �

Now let j ∈ {1, 2}. By the minimality of |PT (x1, x2)|, we have ujvj 6∈ E(G). Note

that uj, vj 6∈ S because uj 6∈ V (T ) and vj ∈ V (PT (x1, x2))\{x1, x2}. Thus by the degree

condition, dG(uj)+dG(vj) ≥ |G|+1. Furthermore, by the choice of x1 and x2, NG(vj)∩

V (H) = ∅ and NG(uj) ∩ V (PT (w1, v2)) = ∅. Since we clearly have NG(uj) ∩ (V (G) \

(V (T ) ∪ V (H))) = ∅, NG(uj) ∩ V (H) ⊂ V (H) \ {uj} and NG(vj) ∩ V (PT (w1, w2)) ⊂

V (PT (w1, v2)) \ {vj}, this implies

|NG(uj) ∩ (V (G) \ V (T ∗))| + |NG(vj) ∩ (V (G) \ V (T ∗))|

≤ |G − (V (T ) ∪ V (H))| + (|H | − 1) + (|PT (w1, v2)| − 1) = |G| − |T ∗| − 2.

Consequently

|NG(uj) ∩ V (T ∗)| + |NG(vj) ∩ V (T ∗)| ≥ |G| + 1 − (|G| − |T ∗| − 2) = |T ∗| + 3.
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Thus |NG(uj)∩ V (T ∗)|+ |NG(vj)∩ V (T ∗)| ≥ |T ∗|+ 3 for each j = 1, 2. This implies

that we have |NG(u1) ∩ V (T ∗)| + |NG(u2) ∩ V (T ∗)| ≥ |T ∗| + 3 or |NG(v1) ∩ V (T ∗)| +

|NG(v2) ∩ V (T ∗)| ≥ |T ∗| + 3, which contradicts Claim 3 or 4.

This completes the proof of Theorem 2. �

3 Application

As a consequence of Theorem 1, we prove the following result, which gurantees the exis-

tence of a spanning tree having the bounded number of leaves and containing specified

vertices as leaves.

Corollary 5 Let k and s be integers with k ≥ 2 and 0 ≤ s ≤ k. Suppose that G is an

(s + 1)-connected graph, and for any two nonadjacent vertices x, y ∈ V (G),

dG(x) + dG(y) ≥ |G| − k + 1 + s.

Then for any subset S ⊂ V (G) with |S| = s, G has a spanning tree T such that S ⊂ L(T )

and |L(T )| ≤ k.

Proof. Construct a new graph H by joining two graphs G and Kk−s. Then H satisfies

the conditions of Theorem 1, and hence H has a spanning tree T such that L(T ) =

S ∪ V (Kk−s). Thus T − V (Kk−s) is a spanning tree of G with the desired properties. �

In Corollary 5, the lower bound in the degree condition is sharp. For example, let

G be a complete bipartite graph with partite sets A and B such that |A| = t + k

and |B| = t + s, where t ≥ 1. Then G is (s + 1)-connected, |G| = 2t + k + s, and

dG(x)+dG(y) ≥ 2|B| = 2t+2s = |G|−k+s for any two nonadjacent vertices x and y of G.

Suppose that G has a spanning tree T such that |L(T )| ≤ k and s specified vertices in B

are contained in L(T ). Then the number of edges in T is at least 2|A|−(k−s) = 2t+k+s.

However, this is a contradiction because 2t + k + s > |G| − 1 = |E(T )|. Thus G has no

desired spanning tree.

Moreover, for k ≥ 3 and s ≥ 1, the condition that G is (s+1)-connected is necessary.

Assume that k ≥ 3. Let r ≥ 1, and consider the graph G := Ks + (K1 ∪ Kr). Then G

is s-connected but not (s + 1)-connected. For x ∈ V (K1) and any y ∈ V (Kr), we have

dG(x) + dG(y) = (|G| − 2) + s ≥ |G| − k + 1 + s. However, G has no spanning tree T

with V (Ks) ⊆ L(T ).
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