On longest cycles in a 2-connected balanced bipartite graph with Ore type condition, I

Atsushi Kaneko
Department of Computer Science and Communication Engineering Kogakuin University, Tokyo 163-8677, Japan
kaneko@ee.kogakuin.ac.jp
and
Kiyoshi Yoshimoto
Department of Mathematics, College of Science and Technology
Nihon University, Tokyo 101-8308, Japan
yosimoto@math.cst.nihon-u.ac.jp

Abstract

For a balanced bipartite graph G with partite sets B and W, we define an Ore type invariant as follows: $\sigma_{1,1}(G)=\{d(u)+d(v) \mid u v \notin E(G), u \in B, v \in$ $W\}$. In this article, we shall prove the conjecture of Wang to be correct, i.e., if G is 2 -connected, then the length of a longest cycle is at least $2 \sigma_{1,1}(G)-2$ or G is hamiltonian.

Mailing address

Kiyoshi Yoshimoto
Department of Mathematics
College of Science and Technology, Nihon University
1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 Japan
e-mail: yosimoto@math.cst.nihon-u.ac.jp

1 Introduction

Let G be a simple graph. Dirac studied the length $c(G)$ of a longest cycle in G and the minimum degree $\delta(G)$ in 1952.

Theorem 1 (Dirac [5]). If G is a 2-connected graph, then $c(G) \geq 2 \delta(G)$ or G is hamiltonian.

Especially, if $\delta(G) \geq|V(G)| / 2$ and $|V(G)| \geq 3$, then G is 2-connected, and hence G is hamiltonian. Ore extended the result in 1960. Let

$$
\sigma_{2}(G)=\min \left\{d_{G}(x)+d_{G}(y) \mid x y \notin E(G)\right\}
$$

where $d_{G}(x)$ is the degree of x. If non-adjacent vertices do not exist, i.e., the graph is complete, we define $\sigma_{2}(G)=\infty$. For the invariant, the following was shown:

Theorem 2 (Ore [10]). If $\sigma_{2}(G) \geq|V(G)| \geq 3$, then G is hamiltonian.
On the invariant and a longest cycle, in 1976, Bermond and Linial independently showed:

Theorem 3 (Bermond [1], Linial [8]). If G is 2-connected and has at least three vertices, then $c(G) \geq \sigma_{2}(G)$ or G is hamiltonian.

Recently, for bipartite graphs, the following was proved by Wang:
Theorem 4 (Wang [12]). If G is a 2-connected bipartite graph with partite sets B and W, then $c(G) \geq \min \left\{2|B|, 2|W|, 2 \sigma_{2}(G)-2\right\}$, unless G belongs to one of two families of exceptional graphs.

This result improves the degree condition, obtained by Dang and Zhao [3]. In the definition of $\sigma_{2}(G)$, two non-adjacent vertices are allowed to be chosen from the same partite set of the bipartite graph. However in a bipartite graph any pair of vertices in a partite set are not adjacent. Therefore we define Ore type invariant for bipartite graphs as follows: Let G be a bipartite graph with partite sets B and W, and define:

$$
\sigma_{1,1}(G)=\min \left\{d_{G}(x)+d_{G}(y) \mid x y \notin E(G), x \in B, y \in W\right\}
$$

For the definition, in 1963, the hamiltonicity was shown by Moon and Moser:

Theorem 5 (Moon and Moser [9]). Let G be a balanced bipartite graph with $2 n$ vertices. If $\sigma_{1,1}(G)>n$, then G is hamiltonian.

About the invariant and the length of a longest cycle, Wang conjectured that $c(G) \geq 2 \sigma_{1,1}(G)-2$ or G is hamiltonian if G is a 2 -connected in [12]. In this paper, we shall prove the conjecture to be correct as follows:

Theorem 6. If G is a 2-connected balanced bipartite graph, then $c(G) \geq 2 \sigma_{1,1}(G)-2$ or G is hamiltonian.

If $\sigma_{1,1}(G)>n$, then G is 2-connected and $c(G) \geq 2 \sigma_{1,1}(G)-2>2 n-2$. This implies that G is hamiltonian because a bipartite graph has no odd cycle and $c(G) \leq 2 n$. Hence Theorem 5 is obtained from Theorem 6 as a corollary. In Theorem 6, the length of longest cycles are best possible because there are lots of 2connected balanced bipartite graphs satisfying $c(G)=2 \sigma_{1,1}(G)-2$. However in [7], the authors prove that if G is 3 -connected, then the exceptional class is uniquely determined. The proof in [7] requires same definitions and lemmas to the proof of Theorem 6. We prepare them in the next section.

2 Preparations

In this section, we prepare some definitions, notations and lemmas. The set of all vertices adjacent to x in a graph G is denoted by $N_{G}(x)$, and we denote $\bigcup_{x \in V(H)} N_{G}(x)$ by $N_{G}(H)$ and $N_{G}(x) \cap V(H)$ by $N_{H}(x)$ for a subgraph H. The cardinalities $\left|N_{G}(H)\right|$ and $\left|N_{H}(x)\right|$ are denoted by $d_{G}(H)$ and $d_{H}(x)$, respectively. For simplicity, we denote $N_{G}(H) \backslash\{u\}$ by $N_{G}(H) \backslash u$

Let $P=\left(u_{1}, u_{2} \cdots, u_{p}\right)$ be a path. For two vertices u_{i} and $u_{j} \in V(P)$, the subpath joining u_{i} and u_{j} in P is denoted by $P\left[u_{i}, u_{j}\right]$, and we denote the paths $P\left[u_{i}, u_{j}\right]-u_{i}, P\left[u_{i}, u_{j}\right]-u_{j}$ and $P\left[u_{i}, u_{j}\right]-\left\{u_{i}, u_{j}\right\}$ by $P\left(u_{i}, u_{j}\right], P\left[u_{i}, u_{j}\right)$ and $P\left(u_{i}, u_{j}\right)$, respectively. The vertices u_{i-1} and u_{i+1} are denoted by u_{i}^{-}and u_{i}^{+}. For a vertex x which is adjacent to P, let $a=\min \left\{l \mid u_{l} \in N_{P}(x)\right\}$ and $b=\max \{l \mid$ $\left.u_{l} \in N_{P}(x)\right\}$. The vertices u_{a} and u_{b} are denoted by $\alpha_{P}(x)$ and $\beta_{P}(x)$. For any vertex $u_{i} \in V(P)$, let $c=\min \left\{l \mid u_{l} \in N_{P}\left(u_{1}\right)\right.$ and $\left.l>i\right\}$ and $d=\max \left\{l \mid u_{l} \in\right.$ $N_{P}\left(u_{1}\right)$ and $\left.l<i\right\}$. We denote the vertices u_{c} and u_{d} by $\psi_{P+}^{u_{1}}\left(u_{i}\right)$ and $\psi_{P-}^{u_{1}}\left(u_{i}\right)$, respectively. For vertex disjoint subgraphs H_{1} and H_{2} in G, a path joining H_{1} and
H_{2} is a path such that the ends are contained in H_{1} and H_{2}, respectively, and except the ends, the path and $H_{1} \cup H_{2}$ have no common vertex.

If all of the neighbours of u_{1} and u_{p} are contained in P, then we call P a maximal path. Notice that a longest path is maximal. If there are two vertices $u_{i} \in N\left(u_{1}\right)$ and $u_{j} \in N\left(u_{p}\right)$ such that $i>j$, then P is called a crossing path. If u_{1} and u_{p} are contained in different partite sets and $N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(u_{p}\right)=\emptyset$, then P is called an essential path. The following fact is obvious because G is bipartite.

Fact 1. Let G be a bipartite graph. If $P=\left(u_{1}, u_{2}, \ldots, u_{p}\right)$ is an essential path, then $N_{P}\left(u_{1}\right), N_{P}\left(u_{1}\right)^{-}, N_{P}\left(u_{p}\right)$ and $N_{P}\left(u_{p}\right)^{+}$are pairwise disjoint.

At first, we prepare the following lemma:
Lemma 7. Let G be a bipartite graph and $P=\left(u_{1}, u_{2} \cdots, u_{p}\right)$ a crossing maximal path of G. If P is essential, then $c(G) \geq 2\left(d\left(u_{1}\right)+d\left(u_{p}\right)\right)-2$.

Proof. Let $u_{i} \in N\left(u_{1}\right)$ and $u_{j} \in N\left(u_{p}\right)$ such that $i-j=\min \left\{k-l \mid u_{k} \in N\left(u_{1}\right), u_{l} \in\right.$ $\left.N\left(u_{p}\right), k>l\right\}$. Then the cycle $C=P\left[u_{1}, u_{j}\right] \cup u_{j} u_{p} \cup P\left[u_{p}, u_{i}\right] \cup u_{i} u_{1}$ contains all of the vertices in $N\left(u_{1}\right) \cup\left(N\left(u_{1}\right) \backslash u_{i}\right)^{-} \cup N\left(u_{p}\right) \cup\left(N\left(u_{p}\right) \backslash u_{j}\right)^{+}$. Therefore

$$
|C| \geq d\left(u_{1}\right)+\left(d\left(u_{1}\right)-1\right)+d\left(u_{p}\right)+\left(d\left(u_{p}\right)-1\right) \geq 2\left(d\left(u_{1}\right)+d\left(u_{p}\right)\right)-2
$$

since P is maximal and essential.
Similarly, for a maximal path of which ends are contained in the same partite set, we have the following lemma.

Lemma 8. Let G be a bipartite graph and $P=\left(u_{1}, u_{2} \cdots, u_{p}\right)$ a crossing maximal path of G. If u_{1} and u_{p} are contained in the same partite set, then $c(G) \geq \min \{|P|-$ $\left.1,2\left(d\left(u_{1}\right)+d\left(u_{p}\right)\right)-4\right\}$.

Proof. Let $u_{i} \in N\left(u_{1}\right)$ and $u_{j} \in N\left(u_{p}\right)$ such that $i-j=\min \left\{k-l \mid u_{k} \in N\left(u_{1}\right), u_{l} \in\right.$ $\left.N\left(u_{p}\right), k>l\right\}$. If $i-j=2$, then the cycle $C=P\left[u_{1}, u_{j}\right] \cup u_{j} u_{p} \cup P\left[u_{p}, u_{i}\right] \cup u_{i} u_{1}$ contains all vertices in P except u_{j+1}. Therefore $|C| \geq|P|-1$. If $i-j \geq 3$, then C contains all of the vertices in

$$
N\left(u_{1}\right) \cup\left(N\left(u_{1}\right) \backslash u_{i}\right)^{-} \cup\left(N\left(u_{p}\right) \backslash u_{j}\right)^{+} \cup\left(N\left(u_{p}\right) \backslash\left\{u_{j}, u_{p-1}\right\}\right)^{++} .
$$

Because the vertex subsets are pairwise disjoint, $|C| \geq 2\left(d\left(u_{1}\right)+d\left(u_{p}\right)\right)-4$.

Next we consider the case of a maximal path which is non-crossing. The following fact is obtained from Lemma of Perfect [11].

Fact 2. Let G be a 2-connected graph and P a path joining u_{1} and u_{p} in G. For any two vertices u_{i} and $u_{j(>i)}$ in $P\left(u_{1}, u_{p}\right)$, there are two vertex disjoint paths Q_{1} and Q_{2} joining $P\left[u_{1}, u_{i}\right]$ and $P\left[u_{j}, u_{p}\right]$ such that u_{i} and u_{j} are ends of Q_{1} or Q_{2}.

In the following, Q_{1} and Q_{2} are called $\left(P ; u_{i}, u_{j}\right)$-links.
Lemma 9. Let G be a bipartite graph and $P=\left(u_{1}, u_{2} \cdots, u_{p}\right)$ a non-crossing maximal path of G. Then $c(G) \geq 2\left(d\left(u_{1}\right)+d\left(u_{p}\right)\right)-2$. Especially, if u_{1} and u_{p} are contained in the same partite set and $N\left(u_{1}\right) \cap N\left(u_{p}\right)=\emptyset$, then $c(G) \geq 2\left(d\left(u_{1}\right)+d\left(u_{p}\right)\right)$.

Proof. As P is non-crossing, $u_{1} u_{p} \notin E(G)$. Let $u_{i}=\beta_{P}\left(u_{1}\right)$ and $u_{j}=\alpha_{P}\left(u_{p}\right)$. Suppose $i \neq j$. From Fact 2, there are $\left(P ; u_{i}, u_{j}\right)$-links Q_{1} and Q_{2}. Let $\left\{u_{a}, u_{i}, u_{j}, u_{b}\right\}$ be the set of the end vertices of Q_{1} and Q_{2}. We may assume that Q_{1} contains u_{i}. Using the links, we obtain a cycle as follows;

$$
\begin{gathered}
C=P\left[u_{1}, u_{a}\right] \cup P\left[\psi_{P^{+}}^{u_{1}}\left(u_{a}\right), u_{i}\right] \cup P\left[u_{j}, \psi_{P-}^{u_{p}}\left(u_{b}\right)\right] \cup P\left[u_{b}, u_{p}\right] \cup \\
Q_{1} \cup Q_{2} \cup\left\{u_{1} \psi_{P^{+}}^{u_{1}}\left(u_{a}\right), \psi_{P^{-}}^{u_{p}}\left(u_{b}\right) u_{p}\right\}
\end{gathered}
$$

See Figure 1. Because $V(C) \supset N\left(u_{1}\right) \cup\left(N\left(u_{1}\right) \backslash u_{c}\right)^{-} \cup N\left(u_{p}\right) \cup\left(N\left(u_{p}\right) \backslash u_{d}\right)^{+}$and

Figure 1:
the vertex subsets are pairwise disjoint, we have:

$$
\begin{aligned}
|C| & \geq\left|N\left(u_{1}\right)\right|+\left|\left(N\left(u_{1}\right) \backslash u_{c}\right)^{-}\right|+\left|N\left(u_{p}\right)\right|+\left|\left(N\left(u_{p}\right) \backslash u_{d}\right)^{+}\right| \\
& \geq 2\left(d\left(u_{1}\right)+d\left(u_{p}\right)\right)-2 .
\end{aligned}
$$

If $|C|=2\left(d\left(u_{1}\right)+d\left(u_{p}\right)\right)-2$, then both of Q_{1} and Q_{2} are edges joining $N\left(u_{1}\right)$ and $N\left(u_{p}\right)$. Therefore if u_{1} and u_{p} are contained in the same partite set, then $|C| \geq 2\left(d\left(u_{1}\right)+d\left(u_{p}\right)\right)$. Thus in the case of $i=j$, we look for $\left(P ; \psi_{P-}^{u_{1}}\left(u_{i}\right), u_{j}\right)$-links and repeat same argument. Then we can obtain $|C| \geq 2\left(d\left(u_{1}\right)-1+d\left(u_{p}\right)\right)$.

Lemma 7 and 9 imply that if G has a maximal essential path, then $c(G) \geq$ $2 \sigma_{1,1}(G)-2$ because the ends of an essential path are not adjacent. The following lemma is important in our proof.

Lemma 10. Let G be a bipartite graph with partite sets B and W. If $|B|<|W|$, then there exists a maximal path joining vertices in W.

Proof. Let M be a maximum matching of G and $w \in W \backslash V(M)$. As M is maximum, w is not adjacent to $B \backslash V(M)$. If w is not adjacent to $V(M)$, then the path consisting of one single vertex w is the desired path. Suppose that w is adjacent to $V(M)$. Let P be a maximal path containing edges in M alternately such that w is the end. Then the other end w^{\prime} is contained in $W \cap V(M)$. Because P is maximal, w^{\prime} is not adjacent to $V(M) \backslash V(P)$. If w^{\prime} is adjacent to $B \backslash V(M)$, then we can obtain a matching which is larger than M. Thus $N\left(w^{\prime}\right) \subset V(P)$. If w is not adjacent to $V(M) \backslash V(P)$, then P is a desired path. Assume that w is adjacent to $V(M) \backslash V(P)$, and let Q be a maximal path containing edges in $E(M) \backslash E(P)$ alternately such that w is the end. As the path P, the end $w^{\prime \prime}(\neq w)$ of Q is not adjacent to $(V(M) \backslash V(P \cup Q)) \cup(B \backslash V(M))$, i.e., $N\left(w^{\prime \prime}\right) \subset V(P \cup Q)$. Since $N\left(w^{\prime}\right) \subset V(P)$, the path $P \cup Q$ is a desired path.

3 The Proof of Theorem 6

Suppose that G is not hamiltonian, and let $P=\left(u_{1}, u_{2}, \ldots, u_{p}\right)$ be a longest path in G with $d\left(u_{1}\right) \leq d\left(u_{p}\right)$. In the following, we denote $\sigma_{1,1}(G)$ by simply $\sigma_{1,1}$. At first, we show the following claim.

Claim 3. If $c(G) \geq|P|-1$, then G is hamiltonian or $c(G) \geq 2 \sigma_{1,1}$.
Proof. If there is a cycle C of length at least $|P|$, then $G-V(C)$ is empty because P is a longest path and G is connected. Hence G is hamiltonian. Suppose that there exists a cycle C of length $|P|-1$. If there is a component in $G-V(C)$ containing
at least two vertices, then there exists a path joining it and C since G is connected. This contradicts the assumption that P is a longest path. Therefore $G-V(C)$ is a set of isolated vertices. As G is balanced, there exist vertices $x \in B \cap(V(G) \backslash V(C))$ and $y \in W \cap(V(G) \backslash V(C))$. Since x and y are not adjacent, we have $d(x)+d(y) \geq \sigma_{1,1}$. Because P is longest, it holds that $N_{C}(x) \cap N_{C}(y)^{+}=\emptyset$ and $N_{C}(x)^{+} \cap N_{C}(y)=\emptyset$. This implies that $|C| \geq 2(d(x)+d(y)) \geq 2 \sigma_{1,1}$ since the cycle contains all vertices in $N(x) \cup N(x)^{+} \cup N(y) \cup N(y)^{+}$.

If $u_{1} \in B$ and $u_{p} \in W$, then from Claim 3, P is an essential path; otherwise there exists a cycle of length $|P|$. Because a longest path is maximal, from Lemma 7 and 9 , we have $c(G) \geq 2\left(d\left(u_{1}\right)+d\left(u_{p}\right)\right)-2 \geq 2 \sigma_{1,1}-2$.

Suppose that the ends of P are contained in the same partite set, say B. From Claim 3, we may assume that $c(G)<|P|-1$. Then from Lemma 8 and $9, c(G) \geq$ $2\left(d\left(u_{1}\right)+d\left(u_{p}\right)\right)-4$. If $c(G) \leq 2 \sigma_{1,1}-4$, we have $d\left(u_{1}\right) \leq \sigma_{1,1} / 2$. Because G is a balanced graph, $G-V(P)$ is not balanced. Thus there exists a component D in $G-V(P)$ such that $|V(D) \cap W|>|V(D) \cap B|$. From Lemma 10, there is a maximal path Q joining vertices in W.

Suppose that Q is one vertex z. Then $N(z) \subset V(P)$ and $N\left(u_{1}\right)^{-} \cap N(z)=\emptyset$ as P is longest. Hence if $\beta_{P}(z) \in P\left[\beta_{P}\left(u_{1}\right), u_{p}\right]$, then the path $P\left[u_{1}, \beta_{P}(z)\right] \cup \beta_{P}(z) z$ is maximal and essential, i.e., $c(G) \geq 2 \sigma_{1,1}-2$. On the other hand, if $\beta_{P}(z) \in$ $P\left[u_{1}, \beta_{P}\left(u_{1}\right)\right)$, then $P\left[u_{1}, \beta_{P}\left(u_{1}\right)\right] \cup \beta_{P}\left(u_{1}\right) u_{1}$ is a desired cycle because the cycle contains all vertices in $N\left(u_{1}\right) \cup N\left(u_{1}\right)^{-} \cup N(z) \cup N(z)^{+}$and $u_{1} z \notin E(G)$.

Assume that $Q=\left(z_{1}, z_{2}, \ldots, z_{q}\right)$ contains at least three vertices. As $z_{1} u_{1} \notin E(G)$ and $d\left(u_{1}\right) \leq \sigma_{1,1} / 2$, it holds that $d\left(z_{1}\right) \geq \sigma_{1,1} / 2$. Because G is connected, there is a path joining Q and P. Suppose that there exists a path joining $Q\left[z_{1}, \alpha_{Q}\left(z_{q}\right)\right] \cup$ $Q\left[\beta_{Q}\left(z_{1}\right), z_{q}\right]$ and P. In such paths, we choose a path R such that the end u_{m} is nearest to u_{p} on P. By symmetry, we may assume that another end z_{a} of R is in $Q\left[\beta_{Q}\left(z_{1}\right), z_{q}\right]$. Then $N\left(z_{1}\right) \subset P\left[u_{1}, u_{m}\right] \cup Q\left[z_{1}, z_{a}\right]$ and $N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(z_{1}\right)=\emptyset$ since P is a longest path. If $\beta_{P}\left(u_{1}\right) \in P\left[u_{1}, u_{m}\right]$, then the path $P\left[u_{1}, u_{m}\right] \cup R \cup Q\left[z_{a}, z_{1}\right]$ is maximal and essential. Hence, we have $c(G) \geq 2 \sigma_{1,1}-2$ from Lemma 7 and 9 .

If $\beta_{P}\left(u_{1}\right) \in P\left(u_{m}, u_{p}\right]$, then $\left|P\left(u_{m}, \psi_{P^{+}}^{u_{1}}\left(u_{m}\right)\right)\right| \geq\left|Q\left[z_{1}, \beta_{Q}\left(z_{1}\right)\right]\right| \geq 2 d_{Q}\left(z_{1}\right)$ because $N_{Q}\left(z_{1}\right) \cup N_{Q}\left(z_{1}\right)^{-} \subset Q\left[z_{1}, \beta_{Q}\left(z_{1}\right)\right]$ and P is longest. See Figure 2i. Since $P\left[u_{1}, \beta_{P}\left(u_{1}\right)\right]$ contains all vertices in $N\left(u_{1}\right) \cup N\left(u_{1}\right)^{-} \cup N_{P}\left(z_{1}\right) \cup N_{P}\left(z_{1}\right)^{+}$, the cycle

Figure 2:
$P\left[u_{1}, \beta_{P}\left(u_{1}\right)\right] \cup \beta_{P}\left(u_{1}\right) u_{1}$ is longer than or equal to

$$
2 d\left(u_{1}\right)+2\left(d\left(z_{1}\right)-d_{Q}\left(z_{1}\right)\right)+2 d_{Q}\left(z_{1}\right)-2 \geq 2 \sigma_{1,1}-2 .
$$

Thus there is no path joining $Q\left[z_{1}, \alpha_{Q}\left(z_{q}\right)\right] \cup Q\left[\beta_{Q}\left(z_{1}\right), z_{q}\right]$ and P. In particular, $N_{P}\left(z_{1}\right)=N_{P}\left(z_{q}\right)=\emptyset$.

Because G is 2-connected, there are two vertex disjoint paths R_{1} and R_{2} joining $Q\left(\alpha_{Q}\left(z_{q}\right), \beta_{Q}\left(z_{1}\right)\right)$ and P. Let $\left\{z_{c}, u_{d}\right\}$ and $\left\{z_{f}, u_{g}\right\}$ be the ends of R_{1} and R_{2}, respectively. We may assume $c<f$. If there exists a path Q^{\prime} joining z_{c} and z_{f} of length at least $\sigma_{1,1}-2$ which is vertex disjoint to P, then the length of the cycle $Q^{\prime} \cup R_{1} \cup R_{2} \cup P\left[u_{d}, u_{g}\right]$ is at least $2 \sigma_{1,1}-2$ because $\left|P\left(u_{d}, u_{g}\right)\right| \geq\left|Q^{\prime}\right|$, otherwise P is not longest.

If $Q\left(z_{c}, z_{f}\right) \cap N\left(z_{1}\right)=\emptyset$, then the path $Q\left[z_{c}, z_{1}\right] \cup z_{1} \beta_{Q}\left(z_{1}\right) \cup Q\left[\beta_{Q}\left(z_{1}\right), z_{f}\right]$ joins z_{c} and z_{f} and contains at least $2 d\left(z_{1}\right)-1 \geq \sigma_{1,1}-1$ vertices because $V\left(Q^{\prime}\right) \supset$ $N\left(z_{1}\right) \cup\left(N\left(z_{1}\right) \backslash z_{f}\right)^{-}$. See Figure 2ii. Hence $c(G) \geq 2 \sigma_{1,1}-2$. By symmetry, we have that $Q\left(z_{c}, z_{f}\right) \cap N\left(z_{1}\right) \neq \emptyset$ and $Q\left(z_{c}, z_{f}\right) \cap N\left(z_{q}\right) \neq \emptyset$.

Let $h=\min \left\{l \mid z_{l} \in N\left(u_{1}\right) \cup N\left(z_{q}\right)\right.$ and $\left.c<l\right\}$ and $k=\max \left\{l \mid z_{l} \in N\left(z_{1}\right) \cup\right.$ $N\left(z_{q}\right)$ and $\left.l<f\right\}$. Suppose that $z_{k} \in N\left(z_{q}\right)$. If $u_{g} \in P\left[u_{1}, \beta_{P}\left(u_{1}\right)\right)$, then both of $\left|P\left[u_{1}, u_{g}\right)\right|$ and $\left|P\left(u_{g}, \beta_{P}\left(u_{1}\right)\right)\right|$ are greater than or equal to the length of the path $Q^{\prime}=Q\left[z_{1}, z_{k}\right] \cup z_{k} z_{q} \cup Q\left[z_{q}, z_{f}\right]$ because P is longest. See Figure 3i. Since $N\left(z_{1}\right) \cup$

Figure 3:
$\left(N\left(z_{1}\right) \backslash z_{f}\right)^{-} \subset V\left(Q^{\prime}\right)$ and $z_{q} \in V\left(Q^{\prime}\right)$, we have $\left|Q^{\prime}\right| \geq \sigma_{1,1}$. Hence $P\left[u_{1}, \beta_{P}\left(u_{1}\right)\right] \cup$ $\beta_{P}\left(u_{1}\right) u_{1}$ is a desired cycle. By symmetry, we have $u_{g} \notin P\left(\alpha_{P}\left(u_{p}\right), u_{p}\right]$. This implies that the path $Q^{\prime} \cup R_{2} \cup P\left[u_{g}, u_{1}\right]$ is maximal and essential, i.e., $c(G) \geq 2 \sigma_{1,1}-2$ from Lemma 7 and 9 . Hence by symmetry, it holds that $z_{k} \in N\left(z_{1}\right)$ and $z_{h} \in N\left(z_{q}\right)$. See Figure 3ii. In this case, $Q\left[z_{c}, z_{1}\right] \cup z_{1} z_{k} \cup Q\left[z_{k}, z_{h}\right] \cup z_{h} z_{q} \cup Q\left[z_{q}, z_{f}\right]$ is a path joining z_{c} and z_{f} of length at least $2 d\left(z_{1}\right) \geq \sigma_{1,1}$ because the path contains all vertices in $N\left(z_{1}\right) \cup\left(N\left(z_{1}\right) \backslash z_{f}\right)^{-}$and z_{q}. Thus $c(G) \geq 2 \sigma_{1,1}-2$.

Acknowledgment

The authors wish to thank Prof. H. Enomoto for appropriate comments.

References

[1] J. -C. Bermond, On hamiltonian walks, Congr. Numer. 15 (1976), 41-51
[2] G. Chartrand and L. Lesniak, Graphs ε^{3} Digraphs, Second edition, Wadsworth \& Brooks/Cole (1986).
[3] K. Q. Dang and L. C. Zhao, On the circumferences of 2-connected bipartite graphs, Ars Combin. 27 (1989), 203-209.
[4] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000)
[5] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81
[6] P. Hall, On representation of subsets, J. London Math. Soc. 10 (1935) 26-30
[7] A. Kaneko and K. Yoshimoto, On longest cycles in a 3-connected balanced bipartite graph with Ore type condition, preprint
[8] N. Linial, A lower bound for the circumference of a graph, Discrete Math. 15 (1976) 297-300
[9] J. Moon and L. Moser, On hamiltonian bipartite graphs, Israel J. Math 1, 163-165 (1963).
[10] O. Ore, Note on hamiltonian circuits, Amer. Math Monthly 67 (1960) 55.
[11] H. Perfect, Applications of Menger's graph theorem, J. Math. Anal. Appl. 22 (1968) 96-111
[12] H. Wang, On long cycles in a 2-connected bipartite graph, Graphs and Combinatorics 12 (1996) 373-384.

