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Abstract

For a balanced bipartite graph G with partite sets B and W , we define an
Ore type invariant as follows: σ1,1(G) = {d(u)+d(v) | uv /∈ E(G), u ∈ B, v ∈
W}. In this article, we shall prove the conjecture of Wang to be correct, i.e.,
if G is 2-connected, then the length of a longest cycle is at least 2σ1,1(G)− 2
or G is hamiltonian.
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1 Introduction

Let G be a simple graph. Dirac studied the length c(G) of a longest cycle in G and

the minimum degree δ(G) in 1952.

Theorem 1 (Dirac [5]). If G is a 2-connected graph, then c(G) ≥ 2δ(G) or G is

hamiltonian.

Especially, if δ(G) ≥ |V (G)|/2 and |V (G)| ≥ 3, then G is 2-connected, and hence

G is hamiltonian. Ore extended the result in 1960. Let

σ2(G) = min{dG(x) + dG(y) | xy /∈ E(G)}

where dG(x) is the degree of x. If non-adjacent vertices do not exist, i.e., the graph

is complete, we define σ2(G) = ∞. For the invariant, the following was shown:

Theorem 2 (Ore [10]). If σ2(G) ≥ |V (G)| ≥ 3, then G is hamiltonian.

On the invariant and a longest cycle, in 1976, Bermond and Linial independently

showed:

Theorem 3 (Bermond [1], Linial [8]). If G is 2-connected and has at least three

vertices, then c(G) ≥ σ2(G) or G is hamiltonian.

Recently, for bipartite graphs, the following was proved by Wang:

Theorem 4 (Wang [12]). If G is a 2-connected bipartite graph with partite sets B

and W , then c(G) ≥ min{2|B|, 2|W |, 2σ2(G) − 2}, unless G belongs to one of two

families of exceptional graphs.

This result improves the degree condition, obtained by Dang and Zhao [3]. In

the definition of σ2(G), two non-adjacent vertices are allowed to be chosen from the

same partite set of the bipartite graph. However in a bipartite graph any pair of

vertices in a partite set are not adjacent. Therefore we define Ore type invariant for

bipartite graphs as follows: Let G be a bipartite graph with partite sets B and W ,

and define:

σ1,1(G) = min{dG(x) + dG(y) | xy /∈ E(G), x ∈ B, y ∈ W}.

For the definition, in 1963, the hamiltonicity was shown by Moon and Moser:
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Theorem 5 (Moon and Moser [9]). Let G be a balanced bipartite graph with 2n

vertices. If σ1,1(G) > n, then G is hamiltonian.

About the invariant and the length of a longest cycle, Wang conjectured that

c(G) ≥ 2σ1,1(G)− 2 or G is hamiltonian if G is a 2-connected in [12]. In this paper,

we shall prove the conjecture to be correct as follows:

Theorem 6. If G is a 2-connected balanced bipartite graph, then c(G) ≥ 2σ1,1(G)−2

or G is hamiltonian.

If σ1,1(G) > n, then G is 2-connected and c(G) ≥ 2σ1,1(G) − 2 > 2n − 2.

This implies that G is hamiltonian because a bipartite graph has no odd cycle

and c(G) ≤ 2n. Hence Theorem 5 is obtained from Theorem 6 as a corollary. In

Theorem 6, the length of longest cycles are best possible because there are lots of 2-

connected balanced bipartite graphs satisfying c(G) = 2σ1,1(G)− 2. However in [7],

the authors prove that if G is 3-connected, then the exceptional class is uniquely

determined. The proof in [7] requires same definitions and lemmas to the proof of

Theorem 6. We prepare them in the next section.

2 Preparations

In this section, we prepare some definitions, notations and lemmas. The set of all ver-

tices adjacent to x in a graph G is denoted by NG(x), and we denote
⋃

x∈V (H)NG(x)

by NG(H) and NG(x)∩V (H) by NH(x) for a subgraphH. The cardinalities |NG(H)|
and |NH(x)| are denoted by dG(H) and dH(x), respectively. For simplicity, we denote

NG(H) \ {u} by NG(H) \ u
Let P = (u1, u2 · · · , up) be a path. For two vertices ui and uj ∈ V (P ), the

subpath joining ui and uj in P is denoted by P [ui, uj], and we denote the paths

P [ui, uj] − ui, P [ui, uj] − uj and P [ui, uj] − {ui, uj} by P (ui, uj], P [ui, uj) and

P (ui, uj), respectively. The vertices ui−1 and ui+1 are denoted by u−i and u+
i . For

a vertex x which is adjacent to P , let a = min{l | ul ∈ NP (x)} and b = max{l |
ul ∈ NP (x)}. The vertices ua and ub are denoted by αP (x) and βP (x). For any

vertex ui ∈ V (P ), let c = min{l | ul ∈ NP (u1) and l > i} and d = max{l | ul ∈
NP (u1) and l < i}. We denote the vertices uc and ud by ψu1

P+(ui) and ψu1

P−(ui),

respectively. For vertex disjoint subgraphs H1 and H2 in G, a path joining H1 and
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H2 is a path such that the ends are contained in H1 and H2, respectively, and except

the ends, the path and H1 ∪H2 have no common vertex.

If all of the neighbours of u1 and up are contained in P , then we call P a maximal

path. Notice that a longest path is maximal. If there are two vertices ui ∈ N(u1)

and uj ∈ N(up) such that i > j, then P is called a crossing path. If u1 and up are

contained in different partite sets and NP (u1)
− ∩ NP (up) = ∅, then P is called an

essential path. The following fact is obvious because G is bipartite.

Fact 1. Let G be a bipartite graph. If P = (u1, u2, . . . , up) is an essential path, then

NP (u1), NP (u1)
−, NP (up) and NP (up)

+ are pairwise disjoint.

At first, we prepare the following lemma:

Lemma 7. Let G be a bipartite graph and P = (u1, u2 · · · , up) a crossing maximal

path of G. If P is essential, then c(G) ≥ 2(d(u1) + d(up))− 2.

Proof. Let ui ∈ N(u1) and uj ∈ N(up) such that i−j = min{k−l | uk ∈ N(u1), ul ∈
N(up), k > l}. Then the cycle C = P [u1, uj]∪ ujup ∪P [up, ui]∪ uiu1 contains all of

the vertices in N(u1) ∪ (N(u1) \ ui)
− ∪N(up) ∪ (N(up) \ uj)

+. Therefore

|C| ≥ d(u1) + (d(u1)− 1) + d(up) + (d(up)− 1) ≥ 2(d(u1) + d(up))− 2

since P is maximal and essential.

Similarly, for a maximal path of which ends are contained in the same partite

set, we have the following lemma.

Lemma 8. Let G be a bipartite graph and P = (u1, u2 · · · , up) a crossing maximal

path of G. If u1 and up are contained in the same partite set, then c(G) ≥ min{|P |−
1, 2(d(u1) + d(up))− 4}.

Proof. Let ui ∈ N(u1) and uj ∈ N(up) such that i−j = min{k−l | uk ∈ N(u1), ul ∈
N(up), k > l}. If i − j = 2, then the cycle C = P [u1, uj] ∪ ujup ∪ P [up, ui] ∪ uiu1

contains all vertices in P except uj+1. Therefore |C| ≥ |P | − 1. If i− j ≥ 3, then C

contains all of the vertices in

N(u1) ∪ (N(u1) \ ui)
− ∪ (N(up) \ uj)

+ ∪ (N(up) \ {uj, up−1})++.

Because the vertex subsets are pairwise disjoint, |C| ≥ 2(d(u1) + d(up))− 4.
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Next we consider the case of a maximal path which is non-crossing. The following

fact is obtained from Lemma of Perfect [11].

Fact 2. Let G be a 2-connected graph and P a path joining u1 and up in G. For

any two vertices ui and uj(>i) in P (u1, up), there are two vertex disjoint paths Q1

and Q2 joining P [u1, ui] and P [uj, up] such that ui and uj are ends of Q1 or Q2.

In the following, Q1 and Q2 are called (P ;ui, uj)-links.

Lemma 9. Let G be a bipartite graph and P = (u1, u2 · · · , up) a non-crossing max-

imal path of G. Then c(G) ≥ 2(d(u1) + d(up))− 2. Especially, if u1 and up are con-

tained in the same partite set and N(u1)∩N(up) = ∅, then c(G) ≥ 2(d(u1)+d(up)).

Proof. As P is non-crossing, u1up /∈ E(G). Let ui = βP (u1) and uj = αP (up).

Suppose i 6= j. From Fact 2, there are (P ;ui, uj)-links Q1 and Q2. Let {ua, ui, uj, ub}
be the set of the end vertices of Q1 and Q2. We may assume that Q1 contains ui.

Using the links, we obtain a cycle as follows;

C = P [u1, ua] ∪ P [ψu1

P+(ua), ui] ∪ P [uj, ψ
up

P−(ub)] ∪ P [ub, up]∪
Q1 ∪Q2 ∪ {u1ψ

u1

P+(ua), ψ
up

P−(ub)up}

See Figure 1. Because V (C) ⊃ N(u1) ∪ (N(u1) \ uc)
− ∪N(up) ∪ (N(up) \ ud)

+ and

Q1

Q2

uj

ub

ua

up
u1

ui

Q1

Q2

ub

ua

up
u1

ui
 uj

Figure 1:

the vertex subsets are pairwise disjoint, we have:

|C| ≥ |N(u1)|+ |(N(u1) \ uc)
−|+ |N(up)|+ |(N(up) \ ud)

+|
≥ 2(d(u1) + d(up))− 2.
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If |C| = 2(d(u1) + d(up)) − 2, then both of Q1 and Q2 are edges joining N(u1)

and N(up). Therefore if u1 and up are contained in the same partite set, then

|C| ≥ 2(d(u1) + d(up)). Thus in the case of i = j, we look for (P ;ψu1

P−(ui), uj)-links

and repeat same argument. Then we can obtain |C| ≥ 2(d(u1)− 1 + d(up)).

Lemma 7 and 9 imply that if G has a maximal essential path, then c(G) ≥
2σ1,1(G) − 2 because the ends of an essential path are not adjacent. The following

lemma is important in our proof.

Lemma 10. Let G be a bipartite graph with partite sets B and W . If |B| < |W |,
then there exists a maximal path joining vertices in W .

Proof. Let M be a maximum matching of G and w ∈ W \V (M). As M is maximum,

w is not adjacent to B\V (M). If w is not adjacent to V (M), then the path consisting

of one single vertex w is the desired path. Suppose that w is adjacent to V (M).

Let P be a maximal path containing edges in M alternately such that w is the

end. Then the other end w′ is contained in W ∩ V (M). Because P is maximal,

w′ is not adjacent to V (M) \ V (P ). If w′ is adjacent to B \ V (M), then we can

obtain a matching which is larger than M . Thus N(w′) ⊂ V (P ). If w is not

adjacent to V (M) \ V (P ), then P is a desired path. Assume that w is adjacent

to V (M) \ V (P ), and let Q be a maximal path containing edges in E(M) \ E(P )

alternately such that w is the end. As the path P , the end w′′(6= w) of Q is not

adjacent to (V (M) \ V (P ∪ Q)) ∪ (B \ V (M)), i.e., N(w′′) ⊂ V (P ∪ Q). Since

N(w′) ⊂ V (P ), the path P ∪Q is a desired path.

3 The Proof of Theorem 6

Suppose that G is not hamiltonian, and let P = (u1, u2, . . . , up) be a longest path in

G with d(u1) ≤ d(up). In the following, we denote σ1,1(G) by simply σ1,1. At first,

we show the following claim.

Claim 3. If c(G) ≥ |P | − 1, then G is hamiltonian or c(G) ≥ 2σ1,1.

Proof. If there is a cycle C of length at least |P |, then G−V (C) is empty because P

is a longest path and G is connected. Hence G is hamiltonian. Suppose that there

exists a cycle C of length |P | − 1. If there is a component in G− V (C) containing
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at least two vertices, then there exists a path joining it and C since G is connected.

This contradicts the assumption that P is a longest path. ThereforeG−V (C) is a set

of isolated vertices. As G is balanced, there exist vertices x ∈ B∩(V (G)\V (C)) and

y ∈ W ∩ (V (G)\V (C)). Since x and y are not adjacent, we have d(x)+d(y) ≥ σ1,1.

Because P is longest, it holds that NC(x) ∩NC(y)+ = ∅ and NC(x)+ ∩NC(y) = ∅.
This implies that |C| ≥ 2(d(x) + d(y)) ≥ 2σ1,1 since the cycle contains all vertices

in N(x) ∪N(x)+ ∪N(y) ∪N(y)+.

If u1 ∈ B and up ∈ W , then from Claim 3, P is an essential path; otherwise

there exists a cycle of length |P |. Because a longest path is maximal, from Lemma 7

and 9, we have c(G) ≥ 2(d(u1) + d(up))− 2 ≥ 2σ1,1 − 2.

Suppose that the ends of P are contained in the same partite set, say B. From

Claim 3, we may assume that c(G) < |P | − 1. Then from Lemma 8 and 9, c(G) ≥
2(d(u1) + d(up)) − 4. If c(G) ≤ 2σ1,1 − 4, we have d(u1) ≤ σ1,1/2. Because G is

a balanced graph, G − V (P ) is not balanced. Thus there exists a component D in

G−V (P ) such that |V (D)∩W | > |V (D)∩B|. From Lemma 10, there is a maximal

path Q joining vertices in W .

Suppose that Q is one vertex z. Then N(z) ⊂ V (P ) and N(u1)
− ∩N(z) = ∅ as

P is longest. Hence if βP (z) ∈ P [βP (u1), up], then the path P [u1, βP (z)] ∪ βP (z)z

is maximal and essential, i.e., c(G) ≥ 2σ1,1 − 2. On the other hand, if βP (z) ∈
P [u1, βP (u1)), then P [u1, βP (u1)] ∪ βP (u1)u1 is a desired cycle because the cycle

contains all vertices in N(u1) ∪N(u1)
− ∪N(z) ∪N(z)+ and u1z /∈ E(G).

Assume that Q = (z1, z2, . . . , zq) contains at least three vertices. As z1u1 /∈ E(G)

and d(u1) ≤ σ1,1/2, it holds that d(z1) ≥ σ1,1/2. Because G is connected, there is

a path joining Q and P . Suppose that there exists a path joining Q[z1, αQ(zq)] ∪
Q[βQ(z1), zq] and P . In such paths, we choose a path R such that the end um is

nearest to up on P . By symmetry, we may assume that another end za of R is in

Q[βQ(z1), zq]. Then N(z1) ⊂ P [u1, um] ∪ Q[z1, za] and NP (u1)
− ∩ NP (z1) = ∅ since

P is a longest path. If βP (u1) ∈ P [u1, um], then the path P [u1, um] ∪ R ∪ Q[za, z1]

is maximal and essential. Hence, we have c(G) ≥ 2σ1,1 − 2 from Lemma 7 and 9.

If βP (u1) ∈ P (um, up], then |P (um, ψ
u1

P+(um))| ≥ |Q[z1, βQ(z1)]| ≥ 2dQ(z1) be-

cause NQ(z1) ∪ NQ(z1)
− ⊂ Q[z1, βQ(z1)] and P is longest. See Figure 2i. Since

P [u1, βP (u1)] contains all vertices inN(u1) ∪N(u1)
− ∪NP (z1) ∪NP (z1)

+, the cycle
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z1

zc

zq

R1 R2

ud ug

zf

u1

z1

um

(i)

R

(ii)

Figure 2:

P [u1, βP (u1)] ∪ βP (u1)u1 is longer than or equal to

2d(u1) + 2(d(z1)− dQ(z1)) + 2dQ(z1)− 2 ≥ 2σ1,1 − 2.

Thus there is no path joining Q[z1, αQ(zq)] ∪ Q[βQ(z1), zq] and P . In particular,

NP (z1) = NP (zq) = ∅.
Because G is 2-connected, there are two vertex disjoint paths R1 and R2 joining

Q(αQ(zq), βQ(z1)) and P . Let {zc, ud} and {zf , ug} be the ends of R1 and R2,

respectively. We may assume c < f . If there exists a path Q′ joining zc and zf of

length at least σ1,1 − 2 which is vertex disjoint to P , then the length of the cycle

Q′ ∪R1 ∪R2 ∪ P [ud, ug] is at least 2σ1,1 − 2 because |P (ud, ug)| ≥ |Q′|, otherwise P

is not longest.

If Q(zc, zf ) ∩N(z1) = ∅, then the path Q[zc, z1] ∪ z1βQ(z1) ∪Q[βQ(z1), zf ] joins

zc and zf and contains at least 2d(z1) − 1 ≥ σ1,1 − 1 vertices because V (Q′) ⊃
N(z1) ∪ (N(z1) \ zf )

−. See Figure 2ii. Hence c(G) ≥ 2σ1,1 − 2. By symmetry, we

have that Q(zc, zf ) ∩N(z1) 6= ∅ and Q(zc, zf ) ∩N(zq) 6= ∅.
Let h = min{l | zl ∈ N(u1) ∪ N(zq) and c < l} and k = max{l | zl ∈ N(z1) ∪

N(zq) and l < f}. Suppose that zk ∈ N(zq). If ug ∈ P [u1, βP (u1)), then both of

|P [u1, ug)| and |P (ug, βP (u1))| are greater than or equal to the length of the path

Q′ = Q[z1, zk] ∪ zkzq ∪ Q[zq, zf ] because P is longest. See Figure 3i. Since N(z1) ∪

z1

zc

zq
R1

R2

zkzh

u1 ug

zf

(i)

z1

zc

zq

R1 R2

zkzh

(ii)

ud
ug

zf

Figure 3:
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(N(z1) \ zf )
− ⊂ V (Q′) and zq ∈ V (Q′), we have |Q′| ≥ σ1,1. Hence P [u1, βP (u1)] ∪

βP (u1)u1 is a desired cycle. By symmetry, we have ug /∈ P (αP (up), up]. This implies

that the path Q′∪R2∪P [ug, u1] is maximal and essential, i.e., c(G) ≥ 2σ1,1−2 from

Lemma 7 and 9. Hence by symmetry, it holds that zk ∈ N(z1) and zh ∈ N(zq). See

Figure 3ii. In this case, Q[zc, z1]∪ z1zk ∪Q[zk, zh]∪ zhzq ∪Q[zq, zf ] is a path joining

zc and zf of length at least 2d(z1) ≥ σ1,1 because the path contains all vertices in

N(z1) ∪ (N(z1) \ zf )
− and zq. Thus c(G) ≥ 2σ1,1 − 2.
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