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Abstract

For a balanced bipartite graph G with partite sets B and W, we define an
Ore type invariant as follows: 011(G) = {d(u)+d(v) |uv ¢ E(G), u € B, v €
W}, In this article, we shall prove the conjecture of Wang to be correct, i.e.,
if G is 2-connected, then the length of a longest cycle is at least 201 1(G) — 2
or GG is hamiltonian.
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1 Introduction

Let G be a simple graph. Dirac studied the length ¢(G) of a longest cycle in G and
the minimum degree 6(G) in 1952.

Theorem 1 (Dirac [5]). If G is a 2-connected graph, then ¢(G) > 26(G) or G is

hamiltonian.

Especially, if §(G) > |V(G)|/2 and |[V(G)| > 3, then G is 2-connected, and hence
G is hamiltonian. Ore extended the result in 1960. Let

02(G) = min{da(z) + da(y) | vy ¢ E(G)}

where dg(x) is the degree of z. If non-adjacent vertices do not exist, i.e., the graph

is complete, we define 05(G) = oco. For the invariant, the following was shown:
Theorem 2 (Ore [10]). If 02(G) > |V(G)| > 3, then G is hamiltonian.

On the invariant and a longest cycle, in 1976, Bermond and Linial independently

showed:

Theorem 3 (Bermond [1], Linial [8]). If G is 2-connected and has at least three

vertices, then ¢(G) > 02(G) or G is hamiltonian.
Recently, for bipartite graphs, the following was proved by Wang:

Theorem 4 (Wang [12]). If G is a 2-connected bipartite graph with partite sets B
and W, then ¢(G) > min{2|B|,2|W|,202(G) — 2}, unless G belongs to one of two

families of exceptional graphs.

This result improves the degree condition, obtained by Dang and Zhao [3]. In
the definition of 05(G), two non-adjacent vertices are allowed to be chosen from the
same partite set of the bipartite graph. However in a bipartite graph any pair of
vertices in a partite set are not adjacent. Therefore we define Ore type invariant for
bipartite graphs as follows: Let G be a bipartite graph with partite sets B and W,
and define:

011(G) = min{de(z) + da(y) | 2y ¢ E(G),x € B,y € W}.
For the definition, in 1963, the hamiltonicity was shown by Moon and Moser:
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Theorem 5 (Moon and Moser [9]). Let G be a balanced bipartite graph with 2n

vertices. If o1 1(G) > n, then G is hamiltonian.

About the invariant and the length of a longest cycle, Wang conjectured that
c(G) > 2011(G) — 2 or G is hamiltonian if G is a 2-connected in [12]. In this paper,

we shall prove the conjecture to be correct as follows:

Theorem 6. If G is a 2-connected balanced bipartite graph, then ¢(G) > 201 1(G)—2

or G is hamiltonian.

If 011(G) > n, then G is 2-connected and ¢(G) > 2011(G) —2 > 2n — 2.
This implies that G is hamiltonian because a bipartite graph has no odd cycle
and ¢(G) < 2n. Hence Theorem 5 is obtained from Theorem 6 as a corollary. In
Theorem 6, the length of longest cycles are best possible because there are lots of 2-
connected balanced bipartite graphs satistying ¢(G) = 201 ;(G) — 2. However in [7],
the authors prove that if G is 3-connected, then the exceptional class is uniquely
determined. The proof in [7] requires same definitions and lemmas to the proof of

Theorem 6. We prepare them in the next section.

2 Preparations

In this section, we prepare some definitions, notations and lemmas. The set of all ver-
tices adjacent to z in a graph G is denoted by Ng(z), and we denote |, ¢y gy Na ()
by N¢(H) and Ng(z)NV (H) by Ng(z) for a subgraph H. The cardinalities | Ng(H)|
and | Ny (x)| are denoted by de(H) and dg (), respectively. For simplicity, we denote
Ne(H)\ {u} by Ne(H) \ u

Let P = (uj,us--- ,u,) be a path. For two vertices u; and u; € V(P), the
subpath joining u; and u; in P is denoted by P[u;,u;]|, and we denote the paths
Plu;,uj] — w;, Plug,uj] — vy and Plu;,uj] — {u;, u;} by P(u;, ], Plu;,u;) and
P(u;,u;), respectively. The vertices u;_; and u;+1 are denoted by u; and u:“ For
a vertex x which is adjacent to P, let @ = min{l | w; € Np(z)} and b = max{[ |
w € Np(x)}. The vertices u, and u, are denoted by ap(x) and FBp(z). For any
vertex u; € V(P), let ¢ = min{l | v; € Np(u;) and [ > i} and d = max{l | u; €
Np(uy) and I < i}. We denote the vertices u, and ug by ¥, (u;) and ¥p- (us),
respectively. For vertex disjoint subgraphs H; and Hs in G, a path joining Hy, and
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H, is a path such that the ends are contained in H; and Hs, respectively, and except
the ends, the path and H; U Hy have no common vertex.

If all of the neighbours of u; and u, are contained in P, then we call P a mazimal
path. Notice that a longest path is maximal. If there are two vertices u; € N(uq)
and u; € N(u,) such that ¢ > j, then P is called a crossing path. If u; and u, are
contained in different partite sets and Np(u1)™ N Np(u,) = 0, then P is called an

essential path. The following fact is obvious because G is bipartite.

Fact 1. Let G be a bipartite graph. If P = (uy, us, ..., up,) is an essential path, then

Np(u1), Np(u1)~, Np(up) and Np(u,)t are pairwise disjoint.
At first, we prepare the following lemma:

Lemma 7. Let G be a bipartite graph and P = (uy,us2- - ,u,) a crossing mazimal

path of G. If P is essential, then ¢(G) > 2(d(uy) + d(up)) — 2.

Proof. Let u; € N(uq) and u; € N(u,) such that i—j = min{k—{ | uy € N(w1), w €
N(up), k> 1}. Then the cycle C = Pluy, uj] Uuju, U Plu,, u;) Uu;u; contains all of
the vertices in N(up) U (N (u1) \ u;)~ U N(up,) U (N(up) \ u;)t. Therefore

11 > dur) + (d(ur) — 1) +d(uy) + (d(uy) = 1) = 2(d(ur) + d(u,)) -2
since P is maximal and essential. O

Similarly, for a maximal path of which ends are contained in the same partite

set, we have the following lemma.

Lemma 8. Let G be a bipartite graph and P = (uy,us - -+ ,up) a crossing mazimal
path of G. Ifuy and u, are contained in the same partite set, then ¢(G) > min{|P|—
1, 2(d(uy) + d(up)) — 4}.

Proof. Let u; € N(uy) and u; € N(uyp) such that i—j = min{k—1 | up € N(u1), w €
N(up), k> 1}. If i —j = 2, then the cycle C' = Pluy, u;] U uju, U Pluy, u;] U uug
contains all vertices in P except w; 1. Therefore |C| > |P| —1. If i —j > 3, then C

contains all of the vertices in
N (u1) U (N (ug) \ug) ™ U (N (up) \ i)™ U (N () \ {ug,up-1 )"
Because the vertex subsets are pairwise disjoint, |C'| > 2(d(uy) + d(u,)) — 4. O
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Next we consider the case of a maximal path which is non-crossing. The following

fact is obtained from Lemma of Perfect [11].

Fact 2. Let G be a 2-connected graph and P a path joining w, and u, in G. For
any two vertices u; and wji=; in P(ui,uy), there are two vertex disjoint paths ¢

and Qo joining Pluy,w;] and Pluj,u,] such that u; and u; are ends of Q1 or Qs.
In the following, ()1 and @ are called (P;u;,u;)-links.

Lemma 9. Let G be a bipartite graph and P = (uy,ug -+ ,up) a non-crossing max-
imal path of G. Then ¢(G) > 2(d(uy) +d(uy)) — 2. Especially, if uy and u, are con-
tained in the same partite set and N(u1) NN (up) = 0, then ¢(G) > 2(d(uy) +d(uy)).

Proof. As P is non-crossing, wu, ¢ E(G). Let u; = fp(u1) and u; = ap(u,).
Suppose ¢ # j. From Fact 2, there are (P; u;, u;)-links Q1 and Q2. Let {ugq, u;, uj, up}
be the set of the end vertices of ()1 and ). We may assume that (), contains wu;.

Using the links, we obtain a cycle as follows;

C' = Pluy, ug) U P[YE, (ug), wi] U Pluj, ¥ (up)] U Pluy, u,)U

Q1 U Q2 U {urthpt (ua), Y= (up)up }
See Figure 1. Because V(C) D N(up) U (N(u1) \ ue)” UN(up,) U (N(uyp) \ ug)™ and

Figure 1:

the vertex subsets are pairwise disjoint, we have:

Cl = IN(u)] + [(N () \we) ™| + [N ()] + [(N(up) \ ua) |
> 2(d(uy) + d(uy)) — 2.



If |C| = 2(d(u1) + d(up)) — 2, then both of @; and Q2 are edges joining N (u,)
and N(up,). Therefore if u; and w, are contained in the same partite set, then
|C| > 2(d(uy1) + d(up)). Thus in the case of i = j, we look for (P; 3. (u;), u;)-links
and repeat same argument. Then we can obtain |C| > 2(d(uy) — 1 4 d(uy)). O

Lemma 7 and 9 imply that if G has a maximal essential path, then ¢(G) >
2011(G) — 2 because the ends of an essential path are not adjacent. The following

lemma is important in our proof.

Lemma 10. Let G be a bipartite graph with partite sets B and W. If |B| < |W/|,

then there exists a maximal path joining vertices in W.

Proof. Let M be a maximum matching of G and w € W\V(M). As M is maximum,
w is not adjacent to B\V (M). If w is not adjacent to V' (M), then the path consisting
of one single vertex w is the desired path. Suppose that w is adjacent to V(M).
Let P be a maximal path containing edges in M alternately such that w is the
end. Then the other end w’ is contained in W N V(M). Because P is maximal,
w' is not adjacent to V(M) \ V(P). If w' is adjacent to B \ V(M), then we can
obtain a matching which is larger than M. Thus N(w') C V(P). If w is not
adjacent to V(M) \ V(P), then P is a desired path. Assume that w is adjacent
to V(M) \ V(P), and let ) be a maximal path containing edges in E(M) \ E(P)
alternately such that w is the end. As the path P, the end w”(# w) of @ is not
adjacent to (V(M)\ V(PUQ))U (B\ V(M)), ie., Nw") C V(PUQ). Since
N(w'") C V(P), the path PUQ is a desired path. ]

3 The Proof of Theorem 6

Suppose that G is not hamiltonian, and let P = (uy, us, . .., u,) be a longest path in
G with d(uy) < d(u,). In the following, we denote oy 1(G) by simply o1 ;. At first,

we show the following claim.
Claim 3. If ¢(G) > |P| — 1, then G is hamiltonian or ¢(G) > 20 ;.

Proof. If there is a cycle C' of length at least |P|, then G — V' (C') is empty because P
is a longest path and G is connected. Hence G is hamiltonian. Suppose that there

exists a cycle C of length |P| — 1. If there is a component in G — V(C') containing
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at least two vertices, then there exists a path joining it and C since G is connected.
This contradicts the assumption that P is a longest path. Therefore G—V(C) is a set
of isolated vertices. As G is balanced, there exist vertices z € BN(V(G)\V(C)) and
y € WN(V(G)\V(C)). Since x and y are not adjacent, we have d(z)+d(y) > o1.1.
Because P is longest, it holds that No(z) N No(y)™ = 0 and Ne(z)™ N Ne(y) = 0.
This implies that |C| > 2(d(z) + d(y)) > 2071 since the cycle contains all vertices
in N(z) UN(z)" UN(y) UN(y)". O

If uy € B and u, € W, then from Claim 3, P is an essential path; otherwise
there exists a cycle of length |P|. Because a longest path is maximal, from Lemma 7
and 9, we have ¢(G) > 2(d(u1) + d(up)) — 2 > 2011 — 2.

Suppose that the ends of P are contained in the same partite set, say B. From
Claim 3, we may assume that ¢(G) < |P| — 1. Then from Lemma 8 and 9, ¢(G) >
2(d(uy) + d(up)) — 4. If ¢«(G) < 2017 — 4, we have d(uq) < 011/2. Because G is
a balanced graph, G — V(P) is not balanced. Thus there exists a component D in
G —V(P) such that |V(D)NW| > |V(D)N B|. From Lemma 10, there is a maximal
path @) joining vertices in W.

Suppose that @ is one vertex z. Then N(z) C V(P) and N(u;)" N N(z) =0 as
P is longest. Hence if 8p(2) € P[Bp(u1),u,), then the path Pluy, Sp(2)] U Bp(2)z
is maximal and essential, i.e., ¢(G) > 2017 — 2. On the other hand, if Gp(2) €
Pluy, Bp(uy)), then Pluy, Bp(u1)] U Bp(ui)u; is a desired cycle because the cycle
contains all vertices in N(u;) U N(uy)” UN(2) UN(z)" and u 2z ¢ E(G).

Assume that @ = (21, 29, . . ., 2,) contains at least three vertices. As z;uy ¢ E(G)
and d(uy) < 01,1/2, it holds that d(z1) > 011/2. Because G is connected, there is
a path joining ) and P. Suppose that there exists a path joining Q[z1, ag(z,)] U
Q[Bo(z1),z4] and P. In such paths, we choose a path R such that the end w,, is
nearest to u, on P. By symmetry, we may assume that another end z, of R is in
QBo(#1), z4]. Then N(z1) C Pluy, um) U Q[z1, 2z4) and Np(u1)™ N Np(z1) = 0 since
P is a longest path. If Bp(u;) € Pluy, uy], then the path Pluy, u,,) U RU Q|zq4, 1]
is maximal and essential. Hence, we have ¢(G) > 201, — 2 from Lemma 7 and 9.

IF Bp(ur) € Pltn, ), then [Pl 25 ()] > QL o(z1)]] > 2dg(=1) be-
cause Ng(z1) U Ng(21)~ C Q|z1,80(21)] and P is longest. See Figure 2i. Since
Pluy, Bp(uq)] contains all vertices inN (u1) U N(u1)~™ U Np(z1) U Np(z1)™, the cycle



Figure 2:

Pluy, Bp(u1)] U Bp(ur)uy is longer than or equal to
Qd(ul) + 2(d(zl) — dQ(Zl)) + QdQ(Zl) -2 Z 20’171 — 2.

Thus there is no path joining Q[z1, ag(z,)] U Q[Bo(#1), z,] and P. In particular,
Np(21) = Np(zq) = 0.

Because (G is 2-connected, there are two vertex disjoint paths Ry and Ry joining
Q(ag(zy), Bo(z1)) and P. Let {z.,uq} and {zf,u,} be the ends of R, and Ry,
respectively. We may assume ¢ < f. If there exists a path ()’ joining 2. and zy of
length at least o1 — 2 which is vertex disjoint to P, then the length of the cycle
Q' U Ry U Ry U Plug, ug| is at least 2071 — 2 because |P(ug4, uy)| > |Q'], otherwise P
is not longest.

If Q(zc,zf) N N(z1) = 0, then the path Q|z, 21] U 2180(21) U Q[Bg(21), z¢] joins
z. and zy and contains at least 2d(z;) — 1 > o071 — 1 vertices because V(Q') D
N(z) U (N(21) \ z7)~. See Figure 2ii. Hence ¢(G) > 2077 — 2. By symmetry, we
have that Q(z., zf) N N(z1) # 0 and Q(z., z¢) N N(z,) # 0.

Let h = min{l | 2 € N(u1) UN(z,) and ¢ < [} and k = max{l | z € N(2) U
N(z,) and | < f}. Suppose that z, € N(z,). If u, € Pluy, Bp(u1)), then both of
|Plu, uy)| and |P(ug, Bp(u1))| are greater than or equal to the length of the path
Q' = Q[z1, 2] U 212, U Q|zy, 25| because P is longest. See Figure 3i. Since N(z1) U

U
(&

.
» (i)

Figure 3:



(N(z1) \ z7)~ C V(Q') and 2z, € V(Q'), we have |Q'| > o11. Hence Pluy, Bp(u1)] U
Bp(ur)uy is a desired cycle. By symmetry, we have u, ¢ P(ap(u,), up]. This implies
that the path Q' U Ry U Plug, u1] is maximal and essential, i.e., ¢(G) > 2071 —2 from
Lemma 7 and 9. Hence by symmetry, it holds that z;, € N(z;1) and 2z, € N(z,). See
Figure 3ii. In this case, Q|z., z1] U 212, U Q[2k, 2n] U 2,2, U Qzy, 2f] is a path joining
z. and z; of length at least 2d(z;) > o1 because the path contains all vertices in
N(z1) U (N(z1)\ zf)” and z,. Thus ¢(G) > 2071 — 2.
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