
February 24, 2002

On degree conditions and a dominating longest cycle

Hajo Broersma

Department of Applied Mathematics
Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
h.j.broersma@math.utwente.nl

Kiyoshi Yoshimoto1

Department of Mathematics, College of Science and Technology
Nihon University, Tokyo 101-8308, Japan

yosimoto@math.cst.nihon-u.ac.jp

and

Shenggui Zhang2

Department of Applied Mathematics
Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P.R. China

sgzhang@nwpu.edu.cn

Abstract

Let G be a 2-connected graph. The edge degree d(e) of the edge e = uv is
defined as the number of neighbours of e, i.e., |N(u) ∪N(v)| − 2. Two edges
are called remote if they are disjoint and there is no edge joining them. Here
we prove: if d(e0) + d(e1) + d(e2) > |V (G)| − 2 for any mutually remote edges
e0, e1, e2, then G has a longest cycle C which is dominating, i.e., such that
G− V (C) is edgeless. As a corollary we have: if G is a 2-connected triangle-
free graph with |V (G)| < 2σ3(G) − 4, then G has a longest cycle which is
dominating. This generalises a result due to Aung [J. Combin. Theory Ser.
B 47 (1989) 171-186].
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1 Introduction

Let G be a simple finite graph and C a cycle in G. If G − V (C) is edgeless, then

C is called a dominating cycle. In 1971, Nash-Williams [11] showed that if G is

2-connected and |V (G)| ≤ 3δ(G) − 2, then any longest cycle of G is dominating.

Bondy generalized this fact in 1980 as follows. Let

σ3(G) = min{d(x) + d(y) + d(z) | x, y, z are independent in G}.

Theorem 1 (Bondy [5]). Let G be a 2-connected graph. If |V (G)| ≤ σ3(G) − 2,

then any longest cycle of G is dominating.

For bipartite graphs, Ash and Jackson [1] showed that: if G is a 2-connected

bipartite graph with partite sets B and W and both of |B| and |W | are less than

3δ(G) − 2, then there exists a longest cycle which is dominating. This fact implies

that a 2-connected balanced bipartite graph with |V (G)| < 6δ(G) − 4 contains a

longest cycle which is dominating. They also showed that their conclusion cannot

be replaced by the conclusion that every longest cycle is dominating.

Veldman [12] studied the relation between edge degrees and the existence of

dominating cycles. The edge degree d(e) of the edge e = uv is defined as the

number of neighbours of e, i.e., |N(u) ∪ N(v)| − 2. Actually, the concept of edge

degrees is well-suited for studying the existence of dominating cycles. Two edges

are called remote if they are disjoint and there is no edge joining them. Veldman

proved the following result.

Theorem 2 (Veldman [12]). Let G be a k-connected graph. If
∑

l≤k d(el) >

k(|V (G)| − k)/2 for any k + 1 edges e0, e1, . . . , ek which are mutually remote, then

G has a dominating cycle.

This theorem does not imply the existence of a longest cycle which is dominating.

However if we carefully read the proof [12], we can easily check that the following

result also holds: if G is a 2-connected graph without cycles of length seven, and for

any three mutually remote edges e0, e1, e2, the edge degree sum d(e0)+d(e1)+d(e2)

is greater than |V (G)| − 2, then there exists a longest cycle which is dominating.

Since a bipartite graph contains no odd cycles, the theorem by Ash and Jackson is
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obtained as a corollary. More generally, a similar approach shows that the following

also holds. Let

σ1,1(G) = min{dG(x) + dG(y) | xy /∈ E(G), x ∈ B, y ∈ W}.

Corollary 3. Let G be a 2-connected bipartite graph with partite sets B and W . If

|V (G)| < 3σ1,1(G)− 4, then there exists a longest cycle which is dominating.

From Veldman’s theorem, it follows that a 2-connected triangle-free graph has a

dominating cycle if |V (G)| < 2σ3(G)− 4. For the existence of a longest cycle which

is dominating, in 1989 Aung proved the following.

Theorem 4 (Aung [3]). Let G be a 2-connected triangle-free graph. If |V (G)| ≤
6δ(G)− 6, then there exists a longest cycle which is dominating.

In the next section, we will prove the following more general result.

Theorem 5. Let G be a 2-connected graph. If d(e0)+d(e1)+d(e2) > |V (G)|−2 for

any mutually remote edges e0, e1, e2, then G has a longest cycle which is dominating.

Hence we obtain the following corollary which contains Aung’s theorem.

Corollary 6. Let G be a 2-connected triangle-free graph. If |V (G)| < 2σ3(G) − 4,

then G has a longest cycle which is dominating.

A class of examples due to Wang [14] shows that the lower bound in Theorem 5

is best possible, and from the example due to Ash and Jackson [1], we obtain 2-

connected graphs satisfying the conditions of Theorem 5, but in which some longest

cycles are not dominating.

For the length of longest cycles in bipartite graphs, in 1977 Voss and Zulu-

aga [13] showed: if G is a 2-connected bipartite graph with partite sets B and W

and δ(G) ≥ 3, then c(G) ≥ min{4δ(G)− 4, 2|B|, 2|W |}, where c(G) is the length of

a longest cycle. Recently, Kaneko and Yoshimoto proved the following fact which

was conjectured by Wang [14].

Theorem 7 (Kaneko and Yoshimoto [8]). If G is a 2-connected balanced bipar-

tite graph, then c(G) ≥ 2σ1,1(G)− 2 or G is hamiltonian.

3



Wang’s examples in [14] imply that we cannot remove “balanced” in Theorem 7,

in general. However, the order of these examples is at least 3σ1,1(G) − 4. In fact,

we can easily show the following.

Lemma 8. Let G be a connected bipartite graph with partite sets B and W . If G

contains a dominating cycle, then c(G) ≥ min{2σ1,1(G)− 2, 2|B|, 2|W |}.

Proof. Let C be a longest dominating cycle. If |V (G−V (C))∩B| or |V (G−V (C))∩
W | is empty, then our statement holds. Hence there are x ∈ V (G− V (C))∩B and

y ∈ V (G − V (C)) ∩ W . Let {v1, v2, . . . , vp} = N(x) ∪ N(y) which occur on C in

the order of their indices. If there are two vertices vi, vj in N(x)+ ∩ N(y), then

the cycle vixvj ∪ ←−−−−−vjCvi+1 ∪ vi+1yvj+1 ∪ −−−−−→vj+1Cvi is longer than C and dominating.

Hence |N(x)+ ∩N(y)| ≤ 1. By symmetry, |N(y)+ ∩N(x)| ≤ 1. Therefore |V (C)| ≥
|N(x) ∪N(x)+ ∪N(y) ∪N(y)+| ≥ 2|N(x)|+ 2|N(y)| − 2 ≥ 2σ1,1(G)− 2.

Hence, by Corollary 3, we obtain the following result in which the upper bound

is also best possible by the examples of Wang [14].

Theorem 9. Let G be a 2-connected bipartite graph with partite sets B and W . If

|V (G)| < 3σ1,1(G)− 4, then c(G) ≥ min{2σ1,1(G)− 2, 2|B|, 2|W |}.

Finally, before we start our proof in the next section, we give some additional

definitions and notations. The set of all the neighbours of a vertex x ∈ V (G) is

denoted by NG(x) or simply N(x), and its cardinality by dG(x) or d(x). For a

subgraph H of G, we denote NG(x)∩ V (H) by NH(x) and its cardinality by dH(x).

For simplicity, we denote |V (H)| by |H|, and “ui ∈ V (H)” and “G − V (H)” are

written by “ui ∈ H” and “G−H” respectively. The set of neighbours
⋃

v∈H NG(v)\
V (H) is written by NG(H) or N(H), and for a subgraph F ⊂ G, NG(H) ∩ V (F ) is

denoted by NF (H). Especially for an edge e, |NG(e)| is the edge degree.

Let C = u1u2 . . . upu1 be a cycle with a fixed orientation. The segment uiui+1 . . . uj

is written by
−−−→
uiCuj, or simply [ui, uj] where the subscripts are to be taken mod-

ulo |C|. The converse segment ujuj−1 . . . ui is written by
←−−−
ujCui, and we denote

[ui, uj]− ui by (ui, uj]. A path joining x and y in H is denoted by PH(x, y).

All notation and terminology not explained here is given in [7].
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2 The Proof of Theorem 5

Let C = u1u2 . . . upu1 be a longest cycle such that |E(G−C)| is smallest among all

longest cycles in G. For each vertex ui ∈ NC(H), we define an edge ei = ui+1vi+1

as follows: if ui+1 has neighbours in G − C, then vi+1 = w for an arbitrary vertex

w ∈ NG−C(ui+1); otherwise vi+1 = ui+2. When vi+1 /∈ C, the path ei ∪ [ui+1, ul] is

denoted by [vi+1, ul].

Fact 1. Let ui ∈ NC(H) and x ∈ NH(ui). Then:

1. There is no edge joining ei and H.

2. ui+1 /∈ N(el) for all ul ∈ NC(H).

3. ei is remote to el for all ul ∈ NC(H − x).

4. If ei /∈ E(C), then ei is remote to el for all ul ∈ NC(H).

Proof. (1) As C is longest, clearly ui+1 /∈ N(H), and vi+1 /∈ N(H) if vi+1 /∈ C.

If vi+1 = ui+2 and ui+2 ∈ N(H), then NG−C(ui+1) = ∅, and thus C ′ = uix ∪
PH(x,w) ∪ wui+2 ∪ [ui+2, ui] is longest and |E(G − C ′)| < |E(G − C)| where w ∈
NH(ui+2). This contradicts the assumption of C. (2) Let y ∈ NH(ul) (l 6= i).

Clearly ui+1ul+1 /∈ E(G) because C is longest. If vl+1 = ul+2 and ui+1ul+2 ∈ E(G),

then the cycle ui+1ul+2 ∪ [ul+2, ui] ∪ uix ∪ PH(x, y) ∪ yul ∪ ←−−−−−ulCui+1 is longer than

C or |C ′| = |C| and |E(G − C ′)| < |E(G − C)|. See Figure 1i. The case that

(i) (ii)

ui

uj

ul
ul+1

e0

ei

ej

x y

ui

ulel

x

ui

ul

ei

el

x y

(iii)

ui+1

Figure 1:

vl+1 /∈ C can be shown similarly. (3) By (2), we may assume vi+1vl+1 ∈ E(C). Then

C ′ = vi+1vl+1∪ [vl+1, ui]∪uix∪PH(x, y)∪yul∪←−−−−−ulCvi+1 is longer than C or |C ′| = |C|
and |E(G−C ′)| < |E(G−C)| because |PH(x, y)| ≥ 2. See Figure 1ii. (4) The proof

is similar to the proofs of (2) and (3).
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Define a bijection σ on V (C) ∪ {vl+1 | ul ∈ NC(H)} as follows: σ(ul) =

ul+1 for ul /∈ {um+1, vm+1 | um ∈ NC(H)}, and for each ul ∈ NC(H):





σ(ul+1) = vl+1

σ(vl+1) = ul+2 if vl+1 /∈ C
σ(vl+1) = ul+3 if vl+1 = ul+2 ∈ C.

Let ui, uj be two vertices in NC(H) and I = (ui, uj] and J = (uj, ui], and let

Ĩ = I ∪ σ(I)− uj+1 and J̃ = I ∪ σ(J)− ui+1.

Fact 2. It holds that σ(Ĩ) ∩ σ(J̃) = ∅ and for any e0 ∈ E(H):

σ−1(NeI(ei)) ∪NeI(ej) ∪ σ(NeI(e0)) ⊂ σ(Ĩ)

σ−1(N eJ(ej)) ∪N eJ(ei) ∪ σ(N eJ(e0)) ⊂ σ(J̃)

Proof. Because σ is a bijection and Ĩ ∩ J̃ = ∅, we get the first expression. By

Fact 1(2), ui+1 /∈ N(ei) ∪ N(ej), and thus the second expression holds. Similarly,

the third expression follows from uj+1 /∈ N(ei) ∪N(ej)

Claim 3. Let e0 ∈ E(H) and x ∈ NH(ui), y ∈ NH(uj). If x 6= y, then one of

σ(NeI(e0)) ∩ σ−1(NeI(ei)) and σ(N eJ(e0)) ∩ σ−1(N eJ(ej)) is not empty.

Proof. By Fact 1(1)(3), e0, ei, ej are mutually remote. By Fact 1(2), we have NeI(ej)∩
σ(NeI(e0)) = ∅. Assume that there is a vertex ul ∈ NeI(ej) ∩ σ−1(NeI(ei)), and let

wi ∈ V (ei)∩N(ul+1) and wj ∈ V (ej)∩N(ul). Then the cycle C ′ = ulwj ∪ [wj, ui]∪
uix ∪ PH(x, y) ∪ yuj ∪ ←−−−−−ujCul+1 ∪ ul+1wi ∪ [wi, ul] is longer than C or |C ′| = |C|
and |E(G − C ′)| < |E(G − C)| because |PH(x, y)| ≥ 2. See Figure 1iii. This is a

contradiction. Hence:

NeI(ej) ∩ (σ(NeI(e0)) ∪ σ−1(NeI(ei))) = ∅.

By symmetry, we have:

N eJ(ei) ∩ (σ(N eJ(e0)) ∪ σ−1(N eJ(ej))) = ∅.

Suppose both of σ(NeI(e0))∩σ−1(NeI(ei)) and σ(N eJ(e0))∩σ−1(N eJ(ej)) are empty,

and let D = Ĩ ∪ J̃ . Because σ is a bijection, by Fact 2, we have:

|D| = |σ(Ĩ) ∪ σ(J̃)| = |σ(Ĩ)|+ |σ(J̃)|
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≥ |σ−1(NeI(ei))|+ |NeI(ej)|+ |σ(NeI(e0))|+ |σ−1(N eJ(ej))|+ |N eJ(ei)|+ |σ(N eJ(e0))|
≥ |NeI(ei)|+ |NeI(ej)|+ |NeI(e0)|+ |N eJ(ej)|+ |N eJ(ei)|+ |N eJ(e0)|
= |ND(ei)|+ |ND(ej)|+ |ND(e0)|.

If there is a common vertex in NG−D(e0), NG−D(ei) and NG−D(ej), then we can easily

find a cycle C ′ such that |C ′| > |C| or |C ′| = |C| and |E(G − C ′)| < |E(G − C ′)|.
Moreover, by Fact 1(1), V (e0) ∩ (N(ei) ∪N(ej) ∪N(e0)) = ∅. Thus:

|G| − 2 ≥ |D|+ |NG−D(e0)|+ |NG−D(ei)|+ |NG−D(ej)|
≥ |N(e0)|+ |N(ei)|+ |N(ej)| > |G| − 2. (1)

This is a contradiction.

Claim 4. ei ∈ E(C) for all ui ∈ NC(H).

Proof. Assume that there exists a vertex uj ∈ NC(H) such that ej /∈ E(C). Because

G is 2-connected and |H| ≥ 2, there is a vertex y ∈ NH(uj) such that NH−y(C−uj)

is not empty. Let x ∈ NH−y(C − uj) and ui ∈ NC−uj
(x) such that Ĩ ∩ NC(x) ⊂

NC(H − x). Then for any edge e0 in H, by Fact 1(3), σ(NeI(e0)) ∩ σ−1(NeI(ei)) = ∅.
Moreover, by Fact 1(4), σ(N eJ(e0))∩σ−1(N eJ(ej)) = ∅. This contradicts Claim 3.

Therefore Ĩ = I and J̃ = J . Suppose first that |H| ≥ 3. Because G is 2-

connected, there exists a vertex x ∈ NH(C) and ui ∈ NC(x) such that E(H−x) 6= ∅
and NC−ui

(H − x) 6= ∅. Let e0 ∈ E(H − x) which is adjacent to C − ui, and

uj ∈ NC−ui
(e0) such that [uj+1, ui−1) ∩ NC(e0) = ∅. Then, by Fact 1(3), we have

σ(NJ(e0)) ∩ σ−1(NJ(ej)) = ∅ and σ(NI(e0)) ∩ σ−1(NI(ei)) = ∅. This contradicts

Claim 3.

Assume now that |H| = 2, and let e0 = x1x2 = H and NC(e0) = {uτ(l) | l ≤
|N(e0)|} which occur on C in the order of their indices.

Remark. If we suppose the minimum edge degree is greater than (|G| − 2)/3, then

our proof can be completed immediately as follows: By Claim 4, all eτ(l) ∈ E(C),

and so |(uτ(l), uτ(l+1)]| ≥ 3 by Fact 1(1). Hence:

|G| − 2 ≥ |C| ≥
∑

l≤|N(e0)|
|(uτ(l), uτ(l+1)]| ≥ 3d(e0) > |G| − 2.

This is a contradiction. However we do not use this fact in the following.

Let fl = uτ(l+1)−2uτ(l+1)−1 for all uτ(l). We prove the following claims simultane-

ously.
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Claim 5. If uτ(i) and uτ(j) are adjacent to distinct vertices in H, then:

NK(eτ(i)) ∩ {σ−1(NK(fτ(j))) ∪ σ(NK(fτ(j)))} = ∅

where K = [uτ(j), uτ(i)].

Claim 6. |(uτ(j), uτ(j+1)]| ≥ 5 for all uτ(j) ∈ N(e0).

Proof. Suppose there is a vertex uτ(j) such that |(uτ(j), uτ(j+1)]| ≤ 4. By symmetry,

we may assume that uτ(j) ∈ N(x2). Let uτ(i) ∈ N(x1) such that (uτ(i), uτ(j)] ∩
N(e0) ⊂ N(x2), and let I = (uτ(i), uτ(j)] and J = (uτ(j), uτ(i)]. Then, σ(NI(e0)) ∩
σ−1(NI(eτ(i))) = ∅ and σ(NJ(x1)) ∩ σ−1(NJ(eτ(j))) = ∅ by Fact 1(3). Therefore

σ(NJ(x2)) ∩ σ−1(NJ(eτ(j))) 6= ∅ by Claim 3. Let:

L = σ(NJ(e0) \NJ(x1)) ∩ σ−1(NJ(eτ(j)))

S = σ(L) \ σ−1(NJ(eτ(j)))

T = σ(J) \ {σ−1(NJ(eτ(j))) ∪NJ(eτ(i)) ∪ σ(NJ(e0)) ∪ S}.

By Fact 1(3)(1), S ∩ {N(eτ(i)) ∪ σ(N(e0)) ∪ σ−1(N(eτ(j)))} = ∅. As uτ(i)+1 /∈ L, we

have S ⊂ σ(J), and thus the following inequalities hold:

|C| = |σ(I) ∪ σ(J)| = |σ(I)|+ |σ(J)|
≥ |σ−1(NI(eτ(i)))|+ |NI(eτ(j))|+ |σ(NI(e0))|

+|σ−1(NJ(eτ(j)))|+ |NJ(eτ(i))|+ |σ(NJ(e0))| − |L|+ |S|+ |T |
≥ |NI(eτ(i))|+ |NI(eτ(j))|+ |NI(e0)|+ |NJ(eτ(j))|+ |NJ(eτ(i))|+ |NJ(e0)|

−|L|+ |S|+ |T |
= |NC(eτ(i))|+ |NC(eτ(j))|+ |NC(e0)| − |L|+ |S|+ |T |.

Because |C|+ (|NG−C(e0)|+ |NG−C(eτ(i))|+ |NG−C(eτ(j))|) ≤ |G| − 2, we have |L| −
|S| ≥ |T | + 1 as in (1). Hence |σ(L) ∩ σ−1(N(eτ(j)))| = |σ(L)| − |S| ≥ |T | + 1.

Therefore there exists a vertex uτ(l)+2 ∈ σ(L) such that uτ(l)+3 is adjacent to eτ(j).

Let M be the set of all such vertices, i.e., M = σ(L) ∩ σ−1(N(eτ(j))), and then

|M | ≥ |T |+1. By Fact 1(2), uτ(l)+2 ∈ M is adjacent to uτ(j)+2. If uτ(j)+2 = uτ(j+1)−1,

then the cycle:

C ′ = uτ(l)+2uτ(j+1)−1wuτ(l)+3 ∪ [uτ(l)+3, uτ(j)] ∪ uτ(j)x2w
′uτ(j+1) ∪ [uτ(j+1), uτ(l)+2]
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(i)

ut (i)
ut (j)

ut (l)+1

e0

x1
x2

ft (j+1)

(iii)

e0

et (i)

ut (i)
ut (j)

x1
x2

ut (i+1)

ft (i+1)

et (j)

(ii)umum+1

e0

et (i')

ut (i')

x1 x2

ut (j')

ft (j')

ut (j+1)

ut (j+1)

Figure 2:

is longest and |E(G − C ′)| < |E(G − C)| where w ∈ V (eτ(j)) ∩ N(uτ(l)+3) and

w′ ∈ V (e0) ∩N(uτ(j+1)). See Figure 2i. This is a contradiction. Hence we have:

|(uτ(j), uτ(j+1)]| ≥ 4 for all uτ(j) ∈ N(e0). (2)

Using this fact, we can prove Claim 5 as follows. Let uτ(i′) ∈ N(x1) and uτ(j′) ∈
N(x2) and K = [uτ(j′), uτ(i′)]. Suppose that there is a vertex um ∈ NK(eτ(i′)) ∩
σ−1(NK(fτ(j′))), and let w ∈ V (eτ(i′)) ∩N(um) and w′ ∈ V (fτ(j′)) ∩N(um+1). Let:

C ′ = umw ∪ [w, w′] ∪ w′um+1 ∪ [um+1, uτ(i′)] ∪ uτ(i′)x1x2uτ(j′) ∪ [uτ(j′), um].

See Figure 2ii. If {w, w′} ∩ {uτ(i′)+1, uτ(j′)−1} 6= ∅, then C ′ is longer than C. Hence

w = uτ(i′)+2 and w′ = uτ(j′)−2, and |C ′| = |C|. If uτ(i′)+1uτ(j′)−1 /∈ E(G), then

|E(G − C ′)| < |E(G − C)|. This contradicts the assumption on C. Therefore

uτ(i′)+1uτ(j′)−1 ∈ E(G), and then |C ′| = |C| and |E(G−C ′)| = |E(G−C)|, and this

cycle contradicts the fact (2). Hence we have NK(eτ(i′)) ∩ σ−1(NK(fτ(j′))) = ∅. By

symmetry, we obtain Claim 5.

From (2) and the assumption |(uτ(j), uτ(j+1)]| ≤ 4, we have uτ(j)+2 = uτ(j+1)−2.

Since |M | ≥ |T |+1, there is a vertex uτ(l)+2 ∈ M such that σ((uτ(l), uτ(l+1)])∩T = ∅.
Notice that if um ∈ NJ(uτ(j)+2), then um+1 /∈ NJ(uτ(j)+1); otherwise there is a

cycle which contradicts the assumption on C as uτ(j)+2 = uτ(j+1)−2. Especially,

uτ(l)+3 ∈ N(uτ(j)+2). By Fact 1(2), uτ(l+1)+1 /∈ N(uτ(j)+2), and so σ((uτ(l), uτ(l+1)]) \
N(uτ(j)+2) 6= ∅. Since {uτ(l)+2, uτ(l)+3} ⊂ N(uτ(j)+2), there exists a vertex uτ(l)+k ∈
σ((uτ(l), uτ(l+1)]) \N(uτ(j)+2) such that:

{uτ(l)+k−1, uτ(l)+k−2} ⊂ N(uτ(j)+2).
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Then uτ(l)+k, uτ(l)+k−1 /∈ N(uτ(j)+1) ∪ N(eτ(i)) by the above notice and Claim 5.

Hence uτ(l)+k−1 /∈ σ−1(N(eτ(j))) ∪ N(eτ(i)). Because uτ(l)+k−1 /∈ T , the vertex

uτ(l)+k−2 is adjacent to e0. This is a contradiction.

In the case that d(e0) = 2, clearly both of σ(NI(e0)) ∩ σ−1(NI(eτ(1))) and

σ(NJ(e0)) ∩ σ−1(NJ(eτ(2))) are empty where I = (uτ(1), uτ(2)] and J = (uτ(2), uτ(1)].

This contradicts Claim 3. Therefore d(e0) ≥ 3. By symmetry, we may assume

d(x1) ≥ 2. Let uτ(i), uτ(j+1) ∈ NC(x1) (j > i) such that uτ(i+1) ∈ NC(x2) and

(uτ(i), uτ(j)] ∩ NC(e0) ⊂ NC(x2). See Figure 2iii. Let I = (uτ(i), uτ(j)] and J =

(uτ(j), uτ(i)]. By Fact 1(3), we have σ(NI(e0)) ∩ σ−1(NI(eτ(i))) = ∅ and σ(NJ(x1)) ∩
σ−1(NJ(eτ(j))) = ∅.

Let L = J ∩N(e0) \N(x1), and

S = σ−2(L) \ {N(eτ(i)) ∪ σ−1(N(eτ(j)))}
T = L \N(eτ(i))

U = σ2(L) \ σ−1(N(ej)).

Reversing the orientation on C, similar arguments as above hold for e0, fτ(j+1), fτ(i+1).

Hence we have σ−1(NI′(e0)) ∩ σ(NI′(fτ(j+1))) = ∅ where I ′ = [uτ(i+1), uτ(j+1)), and:

[uτ(j+1), uτ(i+1)) ∩N(e0) \N(x1) = L

from the definition of uτ(i), uτ(j+1), and S ′ = σ2(L) \ {N(fτ(j+1)) ∪ σ(N(fτ(i+1)))}
corresponding to S. By symmetry, we may assume that |S| ≥ |S ′|.

By Claim 6 and Fact 1, S,T and U are mutually disjoint, and it holds that:

(S ∪ T ∪ U) ∩ {σ−1(NJ(eτ(j)) ∪NJ(eτ(i)) ∪ σ(NJ(e0))} = ∅.

As uτ(i), uτ(j+1) /∈ L, we have S∪U ⊂ σ(J), and thus the following inequalities hold:

|C| = |σ(I) ∪ σ(J)| = |σ(I)|+ |σ(J)|
≥ |σ−1(NI(eτ(i)))|+ |NI(eτ(j))|+ |σ(NI(e0))|

+|σ−1(NJ(eτ(j)))|+ |NJ(eτ(i))|+ |σ(NJ(e0))| − |L|+ |S|+ |T |+ |U |
≥ |NI(eτ(i))|+ |NI(eτ(j))|+ |NI(e0)|+ |NJ(eτ(j))|+ |NJ(eτ(i))|+ |NJ(e0)|

−|L|+ |S|+ |T |+ |U |
= |NC(eτ(i))|+ |NC(eτ(j))|+ |NC(e0)| − |L|+ |S|+ |T |+ |U |.
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Because |C|+ (|NG−C(e0)|+ |NG−C(eτ(i))|+ |NG−C(eτ(j))|) ≤ |G| − 2, we have |L| −
|U | ≥ |S|+ |T |+ 1 as in (1). Hence:

|σ2(L) ∩ σ−1(N(eτ(j)))| = |L| − |U | ≥ |S|+ |T |+ 1.

See Figure 2iii. On the other hand, by Claim 5, σ−1(NJ(eτ(j))) ∩ NJ(fτ(j+1)) = ∅.
Therefore:

|{σ2(L) ∩ σ−1(N(eτ(j)))} ∩ σ(N(fτ(i+1)))| ≥ |S|+ |T |+ 1− |S ′| ≥ |T |+ 1.

Then again by Claim 5, {σ2(L) ∩ σ−1(N(eτ(j))) ∩ σ(N(fτ(i+1)))} ∩ σ2(N(eτ(i))) = ∅.
Therefore σ2(L) ∩ σ−1(N(eτ(j))) ∩ σ(N(fτ(i+1))) ⊂ σ2(T ), and thus:

|T |+ 1 ≤ |σ2(L) ∩ σ−1(N(eτ(j))) ∩ σ(N(fτ(i+1)))| ≤ |σ2(T )| = |T |.

This is a contradiction. The proof is completed now.

Remark.

A cycle C is called a vertex-dominating cycle if all vertices of G−C have a neighbour

on C. Recently Yamashita [15] showed: let G be a 2-connected bipartite graph with

partite sets B and W . If both of |B| and |W | are less than 3δ(G), then there is a

vertex-dominating cycle. However, edge degrees do not work for the existence of a

vertex-dominating cycle (See the examples of Wang [14]).

Aung [3] showed: if G is a 2-connected triangle-free graph with order at most

6δ(G) − 6, then |E(G − C)| ≤ 1 for any longest cycle C. For bipartite graphs, the

following conjecture seems to hold.

Conjecture 10. Let G be a 2-connected bipartite graph. If |G| < 3σ1,1(G)−4, then

|E(G− C)| ≤ 1 for any longest cycle C.

Perhaps an even stronger conjecture holds.

Conjecture 11. Let G be a 2-connected graph. If d(e0) + d(e1) + d(e2) > |G| − 2

for any mutually remote edges e0, e1, e2, then |E(G− C)| ≤ 1 for any longest cycle

C.

If σ3(G) − 2 ≥ |G|, then d(e0) + d(e1) + d(e2) ≥ 2σ3(G) − 3 > |G| − 2; In this

case the conjecture follows from Theorem 1.
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