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Abstract. The edge degree d(e) of the edge e = uv is defined as the
number of neighbours of e, i.e., |N(u) ∪ N(v)| − 2. Two edges are called
remote if they are disjoint and there is no edge joining them. In this article,
we prove that in a 2-connected graph G, if d(e1) + d(e2) > |V (G)| − 4 for
any remote edges e1, e2, then all longest cycles C in G are dominating, i.e.,
G − V (C) is edgeless. This lower bound is best possible.

As a corollary, it holds that if G is a 2-connected triangle-free graph with
σ2(G) > |V (G)|/2, then all longest cycles are dominating.

1 Introduction

The order of a simple graph G is denoted by n throughout this article, and a cycle

C is called dominating if G−V (C) is a stable set. Nash-Williams [13] showed that if

G is 2-connected and δ(G) ≥ (n + 2)/3, then all longest cycles of G are dominating.

Bondy generalized this fact as follows. Let

σk(G) = min{
∑
i≤k

d(xi) | x1, x2, . . . , xk are independent vertices in G}.

Theorem 1 (Bondy [6]). Let G be a 2-connected graph. If σ3(G) ≥ n + 2, then all

longest cycles in G are dominating.

For studying dominating cycles in triangle-free graphs, an invariant called an

edge degree is useful, and it seems essential. The edge degree d(e) of an edge e = uv

is defined as the number of neighbours of e, i.e., |N(u) ∪ N(v)| − 2. Two edges are

called remote if they are disjoint and there is no edge joining them. Veldman [15]

proved a k-connected graph has a dominating cycle if
∑

l≤k d(el) > k(n − k)/2 for

any k + 1 mutually remote edges e0, e1, . . . , ek. Yamashita [17] improved this result

by replacing the sufficient condition with the existence of three edges e0, e1, e2 such

that
∑

l≤2 d(el) > n − 2 in any k + 1 mutually remote edges.

For the existence of a longest cycle which is dominating, the following fact holds.

Theorem 2 (Broersma, Yoshimoto and Zhang [7]). Let G be a 2-connected graph.

If d(e0) + d(e1) + d(e2) > n − 2 for any mutually remote edges e0, e1, e2, then G

contains a longest cycle which is dominating.
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The lower bound in Theorem 2 is best possible. Consider the vertex disjoint

graphs Km1,k1 , Km2,k2 , Km3,k3 and K2 = {x, y}, and let Xi and Yi be the partite sets

of Kmi,ki
. Then the graph

H1 = Km1,k1 ∪ Km2,k2 ∪ Km3,k3 ∪ K2 ∪ {xx′ | x′ ∈
⋃
i≤3

Xi} ∪ {yy′ | y′ ∈
⋃
i≤3

Yi}

has no dominating cycle, and the degree sum of any three mutually remote edges is

n − 2. See Figure 1.

* * *

* * *
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x

yH1

Figure 1:

The purpose of this article is to establish the following.

Theorem 3. Let G be a 2-connected graph. If d(e1) + d(e2) > n− 4 for any remote

edges e1, e2, then all longest cycles in G are dominating.

The lower bound in Theorem 3 is also best possible. Consider the graphs Km4,k4

and Km5,k5 , where |Xi| ≥ 2 and |Yi| = |Xi| + 2, and let {yi
1, y

i
2, y

i
3} ⊂ Yi for i = 4, 5.

Then the graph

H2 = Km4,k4 ∪ Km5,k5 ∪ {y4
1y

5
1, y

4
2y

5
2, y

4
3y

5
3}

has a longest cycle which is not dominating and the minimum edge degree is (n −
4)/2. See Figure 2. The graphs H1 and H2 generalize the examples due to Ash and

Jackson in [1].

Ore [14] showed that the circumference of a 2-connected graph is at least σ2 or

the graph is hamiltonian. In the same way, can we measure the circumference using

edge degrees? For this question, we have the following conjecture.

Conjecture 4. If G is a 1-tough graph, then the circumference of G is at least

2 + min{d(e1) + d(e2) | e1, e2 are remote edges}

or all longest cycles in G are dominating.
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Figure 2:

In this conjecture, we cannot replace 1-toughness with 2-connectedness by H1.

If a graph is triangle-free, then an edge degree is obtained immediately from the

degree sum of it’s ends, and so d(e0) + d(e1) + d(e2) ≥ 2(σ3(G) − 3) for mutually

remote edges e0, e1, e2. Hence, using Theorem 2 we can improve Aung’s theorem [3],

which states that a 2-connected triangle-free graph with δ(G) > (n + 5)/6 contains

a longest cycle which is dominating.

Corollary 5. Let G be a 2-connected triangle-free graph. If σ3(G) > (n+4)/2, then

G contains a longest cycle which is dominating.

Theorem 1.1 in [3] implies that in a 2-connected triangle-free graph with δ > n/4,

all longest cycles are dominating. Theorem 3 improves this fact.

Corollary 6. Let G be a 2-connected triangle-free graph. If σ2(G) > n/2, then all

longest cycles in G are dominating.

Let G be a bipartite graph with partite sets X and Y , and σ1,1(G) = min{d(x)+

d(y) | xy /∈ E(G), x ∈ X, y ∈ Y }. Moon and Moser showed that a 2-connected

balanced bipartite graph with σ1,1 > n/2 is hamiltonian. Kaneko and Yoshimoto [10]

generalized this by showing that if G is a 2-connected balanced bipartite graph and

is not hamiltonian, then G has a cycle of length at least 2σ1,1 − 2. For dominating

cycles, Theorem 3 implies the following.

Corollary 7. Let G be a 2-connected bipartite graph. If σ1,1(G) > n/2, then all

longest cycles in G are dominating.

These results lead to a question.

Is a 1-tough triangle-free graph with σ2 > (n + 2)/2 hamiltonian?
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The unbalance complete bipartite graphs show that 1-toughness cannot be re-

placed with 2-connectedness. But the minimum degree of the Petersen graph is

(n + 2)/4, perhaps the graph is a special case. However, it is not possible to replace

(n + 2)/2 by n/2 because Bauer et al. [5] constructed a class of non-hamiltonian

1-tough triangle-free graphs with δ = (n + 1)/4.

Finally, we give some additional definitions and notations. The set of all the

neighbours of a vertex x ∈ V (G) is denoted by NG(x) or simply N(x), and its

cardinality by dG(x) or d(x). For a subgraph H ⊂ G, we denote NG(x) ∩ V (H) by

NH(x) and its cardinality by dH(x). The set of neighbours
⋃

v∈H NG(v) \ V (H) is

written by NG(H) or N(H). For a subgraph F ⊂ G, NG(H) ∩ V (F ) is denoted by

NF (H). If the meaning is clear, we denote the vertex subset V (H) by simply H.

All notation and terminology not explained here is given in [8].

2 The Proof of Theorem 3

We assume that G has a longest cycle C = u1u2 . . . u|C|u1 such that E(G − C) ̸= ∅,
and reach a contradiction.

The successor ui+1 of ui is denoted by u+
i and the predecessor by u−

i . For

A ⊂ V (C), we write {u+
i | ui ∈ A} and {u−

i | ui ∈ A} by A+ and A−, respectively.

The segment uiui+1 . . . uj is denoted by ui
−→
C uj where the subscripts are to be taken

modulo |C|. The reverse segment ujuj−1 . . . ui is given by uj

←−
C ui. For each ui ∈ C,

we denote the edge uiui+1 by ei.

Let H be a component in G−C containing at least two vertices and P a longest

path in H such that it’s ends x, y are adjacent to distinct vertices on C. If |V (P )| =

1, then G has a cut vertex, and so |V (P )| ≥ 2. Let NC(x)∪NC(y) = {uτ(1), uτ(2), . . .}
which occur on C in the order of their indices.

Case 1. |V (P )| ≥ 3.

Let uτ(i) ∈ N(x) and uτ(j) ∈ N(y) such that i ̸= j and uτ(i+1) ∈ N(y) and uτ(j+1) ∈
N(x). If eτ(i)+1 = uτ(i)+1uτ(i)+2 is adjacent to H, then NH(eτ(i)+1) contains a vertex

z ̸= x because uτ(i+1) ∈ N(y). Hence the cycle

xuτ(i)

←−
C wzQx,

where w ∈ Neτ(i)+1
(z) and Q is a path joining z and x in H, is longer than C. Thus

neither eτ(i)+1 nor (by symmetry) eτ(j)+1 is adjacent to H.
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Let I = uτ(i)+1

−→
C uτ(j) and J = uτ(j)+1

−→
C uτ(i). If there exists a vertex ul ∈

NI(eτ(i)+1)
− ∩ NI(eτ(j)+1), then the cycle:

xPyuτ(j)

←−
C u+

l w
−→
C ulw

′−→C uτ(i)x

is longer than C, where w ∈ Neτ(i)+1
(u+

l ) and w′ ∈ Neτ(j)+1
(ul). See Figure 3. Hence

x y

u
!(j)

u
!(i)

e
!(j)+1

e
!(i)+1

H

ul

Figure 3:

by symmetry, we have:

NI(eτ(i)+1)
− ∩ NI(eτ(j)+1) = ∅ and NJ(eτ(i)+1) ∩ NJ(eτ(j)+1)

− = ∅.

Similarly, if uτ(i)+1 ∈ N(eτ(j)+1), then the cycle:

xPyuτ(j)

←−
C uτ(i)+1w

−→
C uτ(i)x

is longer than C, where w ∈ Neτ(j)+1
(uτ(i)+1). Thus, uτ(i)+1 /∈ N(eτ(j)+1) and

uτ(j)+1 /∈ N(eτ(i)+1) by symmetry.

Since NI(eτ(i)+1)
− ∪ NI(eτ(j)+1) ⊂ I − uτ(i)+1 and NJ(eτ(i)+1) ∪ NJ(eτ(j)+1)

− ⊂
J − uτ(j)+1,

|C| ≥ |NI(eτ(i)+1)
−| + |NI(eτ(j)+1)| + |NJ(eτ(i)+1)| + |NJ(eτ(j)+1)

−|

+|{uτ(i)+1, uτ(j)+1}| = |NC(eτ(i)+1)| + |NC(eτ(j)+1)| + 2.

Similarly we can show that eτ(i)+1 and eτ(j)+1 have no common neighbours in G −
(C ∪ H). Since neither eτ(i)+1 nor eτ(j)+1 is adjacent to H,

n ≥ |NG−C(eτ(i)+1)| + |NG−C(eτ(j)+1)| + |NC(eτ(i)+1)| + |NC(eτ(j)+1)|

+2 + |H| ≥ d(eτ(i)+1) + d(eτ(j)+1) + 5 > (n − 4) + 5 > n,

a contradiction.
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Case 2. |V (P )| = 2.

Let P = e0 = xy and ÑC(e0) = NC(e0)
+ ∪ NC(e0)

−. For an edge ei = uiui+1 on C,

we denote NC(ei) ∪ {ui, ui+1} by NC [ei].

Fact 1. If an edge ei on C is remote to e0, then |ÑC(e0) \ NC [ei]| < dC(e0).

Proof. Suppose ei is remote to e0. If ei is adjacent to a vertex z ∈ H − {x, y}, then

there exists a path joining e0 and z in H, which contradicts our assumption of P .

Hence, NH(ei) = ∅ and

N(ei) ⊂ G − H − {ui, ui+1} − ÑC(e0) \ NC [ei].

If |ÑC(e0) \ NC [ei]| ≥ dC(e0), then:

d(ei) ≤ n − |H| − 2 − |ÑC(e0) \ NC [ei]|

≤ n − (dH(e0) + 2) − 2 − dC(e0) = n − d(e0) − 4

since |H| ≥ dH(e0) + 2 and d(e0) = dH(e0) + dC(e0). Hence d(e0) + d(ei) ≤ n− 4, a

contradiction.

Let uτ(i) ∈ NC(y) such that uτ(i+1) ∈ NC(x), and let

X = (NC(x) \ NC(y)) ∪ uτ(i+1) and Y = NC(e0) \ X.

If there exists a vertex u−
τ(l) ∈ Y − ∩ N(eτ(i+1)−2), then the cycle:

xyuτ(l)

−→
C wu−

τ(l)

←−
C uτ(i+1)x

is longer than C, where w ∈ Neτ(i+1)−2
(u−

τ(l)). Hence Y − ∩ N(eτ(i+1)−2) = ∅. If

X+ ∩ N(eτ(i+1)−2) = ∅, then

|ÑC(e0) \ NC [eτ(i+1)−2]| ≥ |Y −| + |X+| ≥ dC(e0)

because Y −, X+ and NC [eτ(i+1)−2] are pairwise disjoint. Since this contradicts Fact 1,

X+ ∩ N(eτ(i+1)−2) ̸= ∅.
Let k = min{l | ul ∈ u+

τ(i)

−→
C u−

τ(i+1) and X+ ∩ N(ul) ̸= ∅}. Clearly uk /∈ eτ(i)+1;

otherwise there exists a cycle longer than C. Thus ek−2 ∈ u+
τ(i)

−→
C u−

τ(i+1) and X+ ∩
N(ek−2) = ∅.

Let u+
τ(l) ∈ X+ ∩ N(uk) and Y1 = Y ∩ uτ(l)

−→
C uτ(i) and Y2 = Y ∩ uτ(i+1)

−→
C uτ(l).

Notice that uτ(l) /∈ Y = Y1∪Y2 since uτ(l) ∈ X. If there exists u−
τ(m) ∈ Y −

1 ∩N(ek−2),

then the cycle

xyuτ(m)

−→
C wu−

τ(m)

←−
C u+

τ(l)uk
−→
C uτ(l)x
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Figure 4:

is longer than C, where w ∈ Nek−2
(u−

τ(m)). See Figure 4(i).

If there exists u+
τ(m) ∈ Y +

2 ∩ N(ek−2), then the cycle

xyuτ(m)

←−
C uku

+
τ(l)

−→
C wu+

τ(m)

−→
C uτ(l)x

is longer than C, where w ∈ Nek−2
(u+

τ(m)). See Figure 4(ii). Hence N(ek−2)∩ (Y −
1 ∪

Y +
2 ) = ∅. Since X+, Y −

1 , Y +
2 and NC [ek−2] are pairwise disjoint,

|ÑC(e0) \ N [ek−2]| ≥ |X+| + |Y −
1 | + |Y +

2 | ≥ dC(e0).

This contradicts Fact 1. The proof is completed now.
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