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Abstract

In this paper, we prove that if G is a triangle-free graph with minimum
degree at least two and 04(G) > |V(G)| + 2, then for any path P, there exists
a cycle C such that |[V(P)\ V(C)| <1 or G is isomorphic to an exception.

Using this fact, easily we can show that for any set S of at most & vertices,
there is a cycle C' such that S C V(C') under same condition.

1 Introduction

The order of a graph is denoted by n throughout this paper and the minimum degree
is written by 0, and let:

k
or(G) = min{z da(x;) | &1, 22, ...,z are independent },
i=1

where dg(z;) is the degree of a vertex z;. If the independence number of G is less
than k, then we define 04 (G) = oco. For simplicity, we denote G — V(H) by G — H
and a cycle C is called dominating if G — C'is edgeless.

Bondy [4] proved that if G is a 2-connected graph with o3 > n+2, then all longest
cycles are dominating. This lower bound is best possible by (K U K U K}) * K.
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Enomoto et al. [7] generalized this fact as follows: if G is a 2-connected graph with
o3 > n + 2, then p(G) — ¢(G) < 1, where p(G) and ¢(G) are the length of longest
paths and the circumference.

For triangle-free graphs, by the theorem of Broersma, Yoshimoto and Zhang [5],
it holds that a 2-connected triangle-free graph with o3 > (n + 5)/2 contains a
longest cycle that is dominating. The lower bound is sharp, even for the existence
of dominating cycles. In this theorem, longest cycles are not always dominating.
However, if o5 > (n + 1)/2, then all longest cycles are dominating [16]. This lower
bound is almost best possible by examples due to Ash and Jackson [1]. The purpose
of this paper is to show the following fact corresponding to the theorem by Enomoto

et al.

Theorem 1. Let G be a triangle-free graph with 6 > 2. If o4 > n+ 2, then for any
path P, there exists a cycle C' such that |P—C| <1 or G is isomorphic to the graph

in Figure Ii.
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Figure 1:

The lower bound of o4 is best possible because the graph H = Ky 1% K, Ky
Ky * K}, contains a hamilton path and the minimum degree is (n + 1)/4, and so
o4 = n+ 1, however, the circumference is (n 4+ 1)/2. See Figure 1ii. Moreover, high
connectivity is not useful for decreasing the lower bound of ¢, because we can add
edges between the left K ; and the right Kj_;.

As an application of Theorem 1, the following is shown in Section 3:

Theorem 2. Let G be a triangle-free graph with 6 > 2. If o4 > n+ 2, then for any
set S of at most § vertices, there exists a cycle C' such that S C V(C).



From this fact, it holds that a triangle-fee graph with 6 > 2 and 04 > n + 2 is
2-connected. On the other hand, the graph H has a cut vertex, and so the lower
bound n + 2 of o4 for the 2-connectivity is best possible. Because of the proof
of Theorem 2, we shall show a triangle-free graph with 6 > 2 and 04 > n + 1 is
connected. This lower bound is also sharp due to Ky, U Kj .

Finally, we give some additional definitions and notations. The set of all the
neighbours of a vertex € V(G) is denoted by Ng(z) or simply N(z), and its
cardinality by dg(z) or d(z). For a subgraph H of G, we denote Ng(z) NV (H) by
Ny (z) and its cardinality by dy(x). For simplicity, we denote |V (H)| by |H| and
“uj € V(H)” by “u; € H”. The set of neighbours (J,.,; Na(v) \ V(H) is written by
Ng(H) or N(H), and for a subgraph F' C G, Ng(H) NV (F') is denoted by Np(H).

Let C' = v1vy ... vpv1 be a cycle with a fixed orientation. The segment v;v;41 ... v;
is written by viavj where the subscripts are to be taken modulo |C]. The converse
segment v;v;_1 ... v; is written by ngvi. For a path P = ujus ... up, also we denote
uil_ﬁuj = Ujliq1 - - - U; and uj?ui = u;jUj_1 ... u;. The successor of u; is denoted by
u; and the predecessor by u; . For a vertex subset A in C, we write {u;” | u; € A}
and {u; | u; € A} by AT and A~ respectively.

All notation and terminology not explained here is given in [6].

2 The Proof of Theorem 1

For a vertex subset S, if a path P is longest in all paths containing .S, then we call
P a maximal path for S, and the set of all the maximal paths is denoted by P(S).

At first, we show the following lemma.

Lemma 3. If G is a triangle-free graph with 6 > 2, then for any path R, there exists
a path in P(V(R)) such that the degree sum of the ends is at least 04/2 or a cycle
C' such that |R — C| <1 or G is isomorphic to the graph in Figure I1i.

Proof. Let R be any path in G and P = wus...u, € P(V(R)) such that the
degree sum of the ends is maximal in P(V'(R)). Notice that N(u;) = Np(u;) and
N(u,) = Np(up,). If there exist vertices u; € N(up) \ ue and u; € N(up) \ up—1
such that ¢ < j, then {uy,w;—1,u;+1,u,} is an independent set; otherwise there is

a triangle or a cycle containing V' (R), i.e., the cycle is a desired cycle. Because



d(ur) + d(ui—1) + d(uj1) + d(up) > o4, one of d(ur) + d(up) and d(u;—1) + d(uj41)
is at least 04/2. Therefore P or the path ui,lﬁului?ujup?ujﬂ is a desired path.

Assume that:
i > j for any vertices u; € N(uy) \ ug and u; € N(uyp) \ up_1. (1)

Suppose there is a vertex u, € Np(ug) \ {ug,up_2}, and let v, € N(up) \ up_1.
Then P’ = ut+1]_3>usu1]_3)utup(]3us+1 € P(V(R)). The vertex u; is not adjacent to
U1 NOT Ugt1; otherwise there is a triangle or a cycle containing V(R). And the
vertex u, is not adjacent to w41 nor usiy by the assumptions (1) and uy # upy_o.
Thus {u1, 1, Ust1, Uy} is an independent set, and hence one of the paths P and
P’ is a desired path as in the previous case. Therefore N(uy) = {ug, u,_2} and, by
symmetry, N(u,) = {us, u,—1}. Furthermore, by the maximality of the degree sum

of the ends of P:
the degree of an end of any path in P(V(R)) is two.

Because the path u1u2u3up<ﬁu4 is in P(V(R)), the vertex u; has to be adjacent
to uj T = ug; otherwise, as in the above case, we can obtain a desired cycle or path.
Therefore ug = u,_o, i.e., p = 8, and so any vertex in {uy, us, ug, us, uz, ug} is the
end of some path in P(V(R)), and has degree two. As G is triangle-free, the vertices
u1, us and uy are mutually disjoint. If G — P is not empty, then for any x € G — P,

{x,u1,us,ur} is an independent set. Hence:
d(x) > 04— (d(uq) + d(us) + d(uy)) >n+2—-6=n—4.

However, x is adjacent to none of {uy,us, uy, us, ur, ug} because these degrees are
two. Thus d(z) < n — 7, a contradiction. Therefore G — P = () and n = 8. As ug is
adjacent to none of uy, us nor uy, the vertex us has to be adjacent to ug; otherwise
d(u1) + d(us) + d(us) + d(uz) =9 < n + 2. Hence G is isomorphic to the graph in
Figure 1i. O

Assume that G is not isomorphic to the graph in Figure 1i. By the previous
lemma, we can suppose the independence number of G is at least four; otherwise we

are done. Let R be any path in G and P = ujusy...u, € P(V(R)) such that:
the degree sum of the ends is maximal in P(V(R)). (2)
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Then from Lemma 3, d(uy) + d(u,) > 04/2. Notice that we may assume that there
is no path in P(V(R)) whose ends are adjacent; otherwise obviously there exists a
cycle containing V' (R).

If there is w; € Np(u1) N Np(u,)™, then the cycle ull_gul’up?ulul is a desired
cycle. Thus we can suppose Np(u1) N Np(u,)™ = (. Similarly, we get Np(ui) N
Np(u,)™ =0 and Np(uy)” N Np(uy)™ = 0. If Np(uy)™ N Np(u,)™ is also empty,
then Np(u1), Np(u1)™, Np(u,)™ and (Np(up) \ up)™" are mutually disjoint. Hence:

n>|Pl = [Np(uy)| + [Np(u)~| + [Np(up) |+ [(Np(up) \ up) ™
> 2d(uy) +2d(uy) — 1> 04— 1> n.

This is a contradiction. Therefore Np(u1)™ N Np(u,)t™ # 0.
Let u; € Np(uy)™ N Np(u,) ™.

Claim 1. If d(u;) + d(u;—1) > n/2, then there is a desired cycle.
Proof. Let eg = x129 = u;_1u; and:
— —
C= Uy Pui_gupPquul = V1V2...VUp—2V1

which occur on C' in the order of their indices. Notice that N(eg) = N(x1) UN (22)\
{z1,22} C V(C) because P is a maximal path for V(R).

If N(eg) and N(ep)™ are not disjoint, then there exists a triangle or a desired
cycle. Hence N(eg) N N(eg)™ = 0. In the set of segments C' — N(eg), there are two
segments vjav; and vjz’)v; such that {vs,vv} C N(z1) and {vy, v} C N(x3).

Then vy9, 0112 ¢ Ne(eg) U No(eg)™; otherwise there is a desired cycle. Therefore:

n—2>|C| > |N(eo)| + |N(eo)"| + [{vst2: vesa}]
= [Nc(z1)| + [Ne(z) "] + [No(@2)] + [No(22) 7| + [{vss2, vira}|
= 2d(x)) — 1) + 2(d(x2) — 1) +2 = 2(d(21) + d(w2)) — 2> n — 2.

This is a contradiction. O

If § > (n+2)/4, then our proof is completed now by this claim. We divide our

argument into two cases.

Case 1. |[Np(u1)” N Np(u,) ™| =1



Let {u;} = Np(u1)” N Np(u,)*t™. We show that d(u;) + d(u;—1) > n/2. Because:

n>|P| > |Np(u)|+ [Np(ui)~| + [Np(up) "+ [(Np(up) \ wp—1)"|
—|Np(u1)™ N Np(up) ™|
= 2d(w)+2d(uy) —1—1>04—2>n,

it holds that:
V(G) = V(P) = Np(u1) U Np(u1)” UNp(up)" U (Np(up) \ up—1)™" (3)

and:

dm) + d(uy) = 5 +1. (4)

Hence the order n is even.
Because:

— —
Ui—3 Pulquuiui_lui_gupPqu € P(V(R)),

we have u;_su;10 ¢ E(G). If u;_3u; € E(G), then:
ui—z ¢ Np(u1) U Np(u1)™ U Np(up)™ U (Np(up) \ tp-1)""

See Figure 2i. This contradicts (3). Thus u;_su; ¢ E(G). Especially, u;_3 is not us.

Figure 2:

Similarly, if w;4ou, € E(G), then
sz & Np(ur) U Np(ui)”™ U Np(up) " U (Np(up) \ up-1) "

See Figure 2ii. This also contradicts (3). Hence, u;iou, ¢ E(G) and especially
Uiy # Up—1. As uyu, ¢ E(G), {u1, u;—3, uito, upy} is an independent set.
Let x129 = u;—1u; and wy = u;_3 and wy = u;4+2. Because d(uy)+d(u,)+d(wq)+

d(wy) > o4 > n + 2, we have:

d(wy) + d(ws) = g 1



by (2) and (4). Notice that none of uy, u,, wy, wy are adjacent to x, nor xo; otherwise

easily we can find a triangle or a desired cycle. Hence for each i, j,
d(ur) + d(uy) + d(z;) + d(w;) > n + 2.

Assume that n/2 is even, say 2[. Then d(u;) + d(u,) = d(w;) + d(wy) = 20 + 1. By

symmetry, we can suppose that d(w;) < [. Because:
d(ur) + d(up) + d(z;) + d(wy) > 4l + 2,

we have d(z;) > 1+ 1 for i = 1,2. Hence d(z1) + d(zq) > 2l +2 > n/2.
Suppose n/2 is odd, say 2l + 1. Then d(u;) + d(u,) = d(wy) + d(wy) = 21 + 2.

By symmetry, we may assume that d(w;) <[+ 1. Because:
d(ur) + d(ug) + d(wy) + d(x;) > 41 + 4,

we have d(x;) > 1+ 1 for i =1,2. Thus d(z1) + d(x2) > 20+ 2 > n/2.
Therefore, in either cases, d(u;) + d(u;—1) > n/2, and hence we are done by

Claim 1.
Case 2. |Np(u1)™ N Np(u,)™F| > 2.

Let u;,u; € Np(u1)™ N Np(u,)™ (i > 7). If u;—; is adjacent to u;_;, then the

— — «—
cycle uq Puj_lui_luiuj Puyu;_o Pujul is a desired cycle. See Figure 3i. Therefore

ui—1u;—1 ¢ E(G). Similarly we can obtain w;u; ¢ E(G). See Figure 3ii. Hence:

(d(ur) + d(up) + (i) + d(uj1)) + (d(wa) + d(up) + d(wi) + d(u;))

> o4+ 04> 2n+4.



By symmetry, without loosing generality, we may assume:
d(uy) + d(up) + d(ui—1) + d(w;) > n+ 2. (5)

Let eg = 129 = u;_1u; and C' be the cycle ulﬁui_zup?uiﬂul = VU2 ... Up_2V]
which occur on C' in the order of their indices. Notice that a vertex in Ng(eg)t U
{1, x2} has no neighbours in G — P; otherwise P is not maximal. Let vy € N¢(x2)
and v; € Ng(ry) and I, = vjz’)vt and I, = v;r(_j)vs. If there is a vertex v; €
Ni,(vF)™ N Np(v;), then the cycle: vjavlvjavsxgajlvtgvaj is a desired cycle.

See Figure 4i. Hence Ny (v])™ N N, (v;") = 0. Similarly, we have that:

Figure 4:

Ny (eo)t NNy (vf) =0 and Nz (vF)™ N Ny (x)" = 0.

1| = [N1 () + [Nz (o) 4 [(N2,(e0) \ ve) ™| = [Nz (v) ™ 0 N (22) -

Let L = Np(v})” N Np(x2)T. If L is not empty, then for any vertex v, €
L, v ¢ Np(vF)~ because G is triangle-free. If v;fv;” € FE(G), then the cycle

S
—

vl_xgxlvtgvaj Cv; is a desired cycle. Since v;" ¢ Neo(eg)™,
v & Ni,(vi) ™ U N (vf) U N, (e0)™,

and so:

L0 (Np,(v))” UNL(v) UNL(eo)T) = 0.



Similarly, the vertex v is not contained in Ny (vF)™ U Ny, (v;") U Ny (eg)". There-

fore:

||

v

|N7, ()| + [N (v)] + | (N, (eo) \ ve) | = |L| + [LT| + {v T}
N7, (05)| 4 [N, (v)] + [ N1, (e0) \ ve| + 1
= dp, (v]) +dp, (vf) + dp, (21) + dp, (22).

v

By symmetry, we get |I;| > dj, (v]) + dy, (v;") + d, (z1) + dg, (z2). By (5),

n—2>|C|=|L|+ L > di,(v])+d,(v) + di(x1) + dp,(22)
+dy, (v + dp, (v;") + dp, (z1) + dy, (x9)
= d(]) +d) + (d(z1) = 1) + (d(z2) = 1) > n

This is a contradiction. The proof is completed now.

3 The Proof of Theorem 2

By Theorem 1 and the following lemma, it is enough to show that GG is connected.
Notice that if a graph is isomorphic to the exception of Theorem 1, then obviously

for any two vertices, there is a cycle containing the specified vertices.

Lemma 4 ([17]). Let G be a connected graph such that for any path P, there exists
a cycle C' such that |P — C| < 1. Then for any set S with at most 0 vertices, there
exists a cycle C such that S C V(C).

Lemma 5. Let G be a triangle-free graph and H a connected component of G. If
|H| > 3, then there are non-adjacent vertices x,y in H such that |H| > max{2d(x), 2d(y)}.

Proof. Let P = wjuy...u, be a longest path of H. If uwju, ¢ E(G), then |P| >
IN(u1)| + |N(u1)~| + {up}| = 2d(u1) + 1. Hence by symmetry, we have |H| >
max{2d(uy) + 1,2d(u,) + 1}, and so {uy,u,} is a desired pair. If uyu, € E(G), then
wu,—1 ¢ E(G), and V(H) = V(P) as P is longest. Then, we have

[P = up| = [N (up-1) \ ttp| + [(N (up-1) \ up) ™| + |ua| = 2d(wp—1) — 1.

Therefore |H| > 2d(u,—1). As in the above case, we can have |H| > 2d(u;), and so

{uy,u,1} is a desired pair. O



Lemma 6. Let G be a triangle-free graph with 6 > 2. If o4, > n+ 1, then G is

connected.

Proof. Suppose GG contains two connected components H; and H,. Then the as-
sumption that G is triangle-free and > 2 implies H; > 3 for ¢ = 1,2. Therefore
there are non-adjacent vertices xz;,y; in H; such that |H;| > max{2d(z;),2d(y;)} for
i = 1,2 by the previous lemma. Hence d(z1) + d(y1) + d(z2) + d(y2) > 04 > n+ 1.
By symmetry, we may assume d(x1) + d(z3) > (n+1)/2. Thus n > |Hy| + |Hs| >
2(d(zq1) +d(x2)) > n+1. A contradiction. O
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A The Proof of Lemma 4

Proof. Let S C V(G) and C a longest swaying cycle of S. Suppose S — C' # ().
For any vertex x € S — C, there is a path @ joining x and C. Let P be a longest
path containing V(C'U Q). Then there exists a cycle D such that [P — D| < 1.
If « has neighbours in G — C, then |P| > |C| 4 2 and so |D| > |C| + 1. Because
|DNS| > |C'N S|, this contradicts the assumption that C' is a longest swaying cycle.
Hence Ng_c(z) = 0.

Because |C'NS| < 6 and de(x) = d(z) > 0, there exist two vertices v;,v; € N(x)
such that v;1; = v; or vf 6')1}]_ C C'— §. Hence the cycle vixvjavi contains at
least |C'N S|+ 1 vertices of S. This contradicts the assumption that C' is a swaying
cycle. O]
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